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Abstract This paper presents a study of the Poincaré–Hough model of rotation of the
synchronous natural satellites, in which these bodies are assumed to be composed of a rigid
mantle and a triaxial cavity filled with inviscid fluid of constant uniform density and vorticity.
In considering an Io-like body on a low eccentricity orbit, we describe the different possible
behaviors of the system, depending on the size, polar flattening and shape of the core. We
use for that the numerical tool. We propagate numerically the Hamilton equations of the
system, before expressing the resulting variables under a quasi-periodic representation. This
expression is obtained numerically by frequency analysis. This allows us to characterise the
equilibria of the system, and to distinguish the causes of their time variations. We show that,
even without orbital eccentricity, the system can have complex behaviors, in particular when
the core is highly flattened. In such a case, the polar motion is forced by several degrees and
longitudinal librations appear. This is due to splitting of the equilibrium position of the polar
motion. We also get a shift of the obliquity when the polar flattening of the core is small.

Keywords Natural satellites · Rotation · Periodic orbits · Hamiltonian systems ·
Numerical methods

1 Introduction

Space missions like Galileo for the Jovian system or Cassini for the Saturnian one give us
information on the internal structure of the natural satellites, through their gravity fields
(Anderson et al. 2001), observations of their surfaces (Porco et al. 2006) or measurements of
their rotational states (Tiscareno et al. 2009; Lorenz et al. 2008). It is known that the internal
structure of a body influences its rotational dynamics, especially when this body is locked in
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354 B. Noyelles

a spin-orbit resonance, like the 1:1 resonance for most of the natural satellites of the Solar
system, and the 3:2 resonance for Mercury.

There are at least two ways to approach the modelisation of the interactions between the
internal structure and the rotational dynamics. One way is to complexify the internal struc-
ture, taking account for instance of an atmosphere, a deformable crust, a subsurface ocean,
an iron core . . . in a simplified dynamical model that allows to consider only one degree
of freedom (see e.g. Rambaux et al. 2011 for the longitudinal libration of satellites having
an internal ocean, or Tokano et al. 2011 for the forcing of the polar motion of Titan due
to its atmosphere). Another possibility is to consider a simple internal structure model (i.e.
to assume the body to be rigid), in a full dynamical model considering several degrees of
freedom (longitudinal motion, obliquity, and polar motion) like in Henrard (2005a,b).

An evolution of this approach is to consider a two-layer body composed of a rigid man-
tle and an ellipsoidal fluid core in which the flow is laminar and core-mantle interactions
result in pressure coupling at the core-mantle boundary. This has been originally written by
Hough (1895) and Poincaré (1910) (that is the reason why this model is sometimes called the
Poincaré–Hough model), put in Hamiltonian form by Getino (1995), Getino and Ferrándiz
(1997) under general assumptions, and by Touma and Wisdom (2001), and recently used for
Io (Henrard 2008), Mercury (Noyelles et al. 2010) and the Moon (Meyer and Wisdom 2011).
Another model exists, taking account of the elasticity of the mantle (Getino and Ferrándiz
1995). This case will not be considered here.

In the case of the 1:1 spin-orbit resonance, the existing studies do not consider a wide
range of internal structure parameter. This paper aims at contributing to fill the gap to under-
stand the behavior of the system for any size and shape (provided it is triaxial) of the core.
The plan of the study is the following: after a description of the model, we present a sys-
tematic numerical study of the system with different sizes and shapes of the core, the con-
sidered body being an Io-like body on a low eccentricity orbit with a uniform nodal regres-
sion and constant inclination. Then, “unusual” behaviors are highlighted with analytical
explanations.

2 The model

In the study of Henrard (2008), the size of the core was not constrained, but its shape was
assumed to be proportional to the whole Io. We here generalize this approach, in letting the
shape parameters vary.

2.1 Physical model

Four references frames are considered (see Figs. 1, 2). The first one, (e1, e2, e3) is assumed
to be inertial for the rotational dynamics, it is in fact centered on the satellite and in trans-
lation with the inertial reference frame in which the motion of the satellite is defined. The
second one, (nc

1, nc
2, nc

3) is linked to the angular momentum of a pseudo-core that we define
later, while the third one, i.e. (n1, n2, n3), is linked to the total angular momentum of the
satellite. Finally, the last one, written as (f1, f2, f3), is rigidly linked to the principal axes
of inertia of the satellite. In this last reference frame, the matrix of inertia of the satellite
reads:

I =
⎛
⎝

A 0 0
0 B 0
0 0 C

⎞
⎠ (1)
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Fig. 1 In the left panel we have 3 reference frames: one linked to the ecliptic plane (e1, e2, e3), another
linked to the angular momentum N (n1, n2, n3), and the last one linked to the axes of inertia (f1, f2, f3) of
the satellite. In the right panel we have a similar configuration but instead of the angular momentum of the
satellite, we have a reference frame linked to the angular momentum of a pseudo-core (defined later). We have
the Euler angles (h, K , g) positioning the vector n2 on the plane perpendicular to the angular momentum
of the satellite and the Euler angles (hc, Kc, gc) positioning the vector nc

2 on the plane perpendicular to the
angular momentum of the pseudo-core. The angles (l, J ) and (lc, Jc) position the axis of least inertia. Note
that Jc is defined on the other side than J

Fig. 2 The four reference frames
gathered in the same view. The
angles (h, K ) position the plane
orthogonal to the angular
momentum N. The Euler angles
(g, J, l) locate the axis of least
inertia and the body frame
(f1, f2, f3). The angles (Jc, lc)
place the angular momentum of
the pseudo-core with respect to
the axis of least inertia f1
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with 0 < A ≤ B ≤ C , while that of the core is:

Ic =
⎛
⎝

Ac 0 0
0 Bc 0
0 0 Cc

⎞
⎠, (2)

in the same reference frame. So, the orientations of the mantle and the cavity are the same,
a misalignment of their principal axes would require to consider the mantle as elastic, this
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is beyond the scope of the paper. This would in fact require additional parameters related to
the elasticity of the mantle, see e.g. Getino and Ferrándiz (1995).

As for the whole satellite, we have 0 < Ac ≤ Bc ≤ Cc. In this way, the principal moments
of inertia of the mantle are respectively Am = A − Ac, Bm = B − Bc and Cm = C − Cc.
The principal elliptical radii of the cavity are written respectively a, b, c, yielding

Ac =
�

(x2
2 + x2

3 )ρ dx1 dx2 dx3 = Mc
5 (b2 + c2),

Bc =
�

(x2
1 + x2

3 )ρ dx1 dx2 dx3 = Mc
5 (a2 + c2),

Cc =
�

(x2
1 + x2

2 )ρ dx1 dx2 dx3 = Mc
5 (a2 + b2),

where ρ and Mc are respectively the mass density and the mass of the fluid core, the quad-
rature being performed over the volume of the core.

2.2 The kinetic energy of the system

A Hamiltonian formulation of such a problem is usually composed of a kinetic energy and a
disturbing potential, here the perturbation of the planet. Therefore, we consider every inter-
nal process, as the core-mantle interactions in our case, as part of the kinetic energy of the
satellite. This section is widely inspired from Henrard (2008).

The components (v1, v2, v3) of the velocity field at the location (x1, x2, x3) inside the
liquid core, in the frame of the principal axes of inertia of the mantle, are assumed to be
Poincaré (1910):

v1 =
(
ω2 + a

c
ν2

)
x3 −

(
ω3 + a

b
ν3

)
x2, (3)

v2 =
(

ω3 + b

a
ν3

)
x1 −

(
ω1 + b

c
ν1

)
x3, (4)

v3 =
(
ω1 + c

b
ν1

)
x2 −

(
ω2 + c

a
ν2

)
x1, (5)

where (ω1, ω2, ω3) are the components of the angular velocity of the mantle with respect to
an inertial frame, and the vector of coordinates (ν1, ν2, ν3) specifies the velocity field of the
core with respect to the moving mantle. This vector is the velocity of a given fluid particle.
Here we assume that this velocity field (ν1, ν2, ν3) depends only on the time t , and not on
the spatial coordinates (x1, x2, x3). It implies that we have

∇ · v = ∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
= 0, (6)

this equation is known as the continuity equation.
The angular momentum of the core N′

c is obtained by:

N′
c =

�
core

(x × v)ρ dx1 dx2 dx3 (7)

and the result is:
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N′
c = Mc

5

[(
c

b
ν1 + ω1

)
b2 +

(
b

c
ν1 + ω1

)
c2

]
f1

+ Mc

5

[(
c

a
ν2 + ω2

)
a2 +

(
a

c
ν2 + ω2

)
c2

]
f2

+ Mc

5

[(
b

a
ν3 + ω3

)
a2 +

(
a

b
ν3 + ω3

)
b2

]
f3. (8)

We now set the following quantities:

D1 = 2Mc
5 bc =

√(
Ac − Bc + Cc

)(
Ac + Bc − Cc

)
,

D2 = 2Mc
5 ac =

√( − Ac + Bc + Cc
)(

Ac + Bc − Cc
)
,

D3 = 2Mc
5 ab =

√( − Ac + Bc + Cc
)(

Ac − Bc + Cc
)
,

that have the dimension of moments of inertia and can be seen as parameters of the core as
Ac, Bc and Cc, and we can write:

N′
c = [

Acω1 + D1ν1
]
f1 + [

Bcω2 + D2ν2
]
f2 + [

Ccω3 + D3ν3
]
f3, (9)

while the angular momentum of the mantle is

Nm = Amω1f1 + Bmω2f2 + Cmω3f3, (10)

and the total angular momentum of the satellite is

N = [
Aω1 + D1ν1

]
f1 + [

Bω2 + D2ν2
]
f2 + [

Cω3 + D3ν3
]
f3. (11)

The kinetic energy of the core is

Tc = 1

2

�
core

ρv2 dx1 dx2 dx3 (12)

i.e.1

Tc = 1

2

(
Ac(ω

2
1 + ν2

1 )+Bc(ω
2
2 + ν2

2 )+Cc(ω
2
3 + ν2

3 )+2D1ω1ν1 + 2D2ω2ν2 + 2D3ω3ν3

)
,

(13)

while the kinetic energy of the mantle Tm is

Tm = 1

2
Nm · ω = Amω2

1 + Bmω2
2 + Cmω2

3

2
. (14)

From T = Tm + Tc we finally deduce the kinetic energy of the satellite:

T = 1

2

(
Aω2

1 + Bω2
2 + Cω2

3 + Acν
2
1 +Bcν

2
2 +Ccν

2
3 +2D1ω1ν1 + 2D2ω2ν2 + 2D3ω3ν3

)
.

(15)

We can easily check the expressions of the partial derivatives, for instance

∂T

∂ω1
= Aω1 + D1ν1 = N1 (16)

1 We here correct a misprint present in Eq. 13 of Noyelles et al. (2010).
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or

∂T

∂ν1
= D1ω1 + Acν1 = N c

1 , (17)

where Ni are the components of the total angular momentum. N c
i are not the components of

the angular momentum of the core but are close to it for a cavity close to spherical. We have,
for instance for the first component:

N c
1 − N ′c

1 = (Ac − D1)(ω1 − ν1) = Mc

5
(c − b)2(ω1 − ν1), (18)

so the difference is of the second order in departure from the sphericity. From now on, we
call angular momentum of the pseudo-core the vector Nc = N c

1 f1 + N c
2 f2 + N c

3 f3.
With these notations, the Poincaré–Hough’s equations of motion, for the system mantle-

core in the absence of external torque, are [see e.g. Eq. 15 in Touma and Wisdom (2001) or
Henrard (2008)]:

dN
dt

= N × ∇NT , (19)

dNc

dt
= Nc × ∇−NcT , (20)

with

∇NT = ∂T
∂ N1

f1 + ∂T
∂ N2

f2 + ∂T
∂ N3

f3, (21)

and

∇−NcT = − ∂T
∂ N c

1
f1 − ∂T

∂ N c
2

f2 − ∂T
∂ N c

3
f3. (22)

Here T is the kinetic energy expressed in terms of the components of the vectors N and Nc,
i.e.

T = 1

2α

(
Ac N 2

1 + A(N c
1 )2 − 2D1 N1 N c

1

) + 1

2β

(
Bc N 2

2 + B(N c
2 )2 − 2D2 N2 N c

2

)

+ 1

2γ

(
Cc N 2

3 + C(N c
3 )2 − 2D3 N3 N c

3

)
(23)

with α = AAc − D2
1, β = B Bc − D2

2 and γ = CCc − D2
3 .

2.3 The Hamiltonian

2.3.1 The rotational kinetic energy

We assume that the cavity and the satellite are almost spherical, this allows us to introduce
the four small parameters εi :

ε1 = 2C − A − B

2C
= J2

MR2

C
, (24)

ε2 = B − A

2C
= 2C22

MR2

C
, (25)

ε3 = 2Cc − Ac − Bc

2Cc
, (26)
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Table 1 Physical and dynamical
parameters ruling our pseudo-Io
We used the same as Henrard
(2008). The orbital frequency n
and the regression rate of the
ascending orbital node �̇ are
taken from L1.2 ephemerides
(Lainey et al. 2006). The phases
(initial conditions of the orbital
angles) are arbitrarily chosen

Parameter Value

GM p (planet) 1.261648547674763616 × 1023 km3s−2

GM (satellite) 5955.5 km3s−2

Rp 71492 km

J2p 1.4736 × 10−2

J2 1.828 × 10−3

C22 5.537 × 10−4

C/(MR2) 0.376856

a 422029.958 km

e 4.15 × 10−3

I 2.16 arcmin

n 1297.2044725279755 rad/y


̇ 0.97311853791375 rad/y

�̇ −0.8455888497945 rad/y

λo(0) 0


o(0) 2 rad

�o(0) 0.1 rad

ε1 = J2
MR2

C 4.85066 × 10−3

ε2 = 2C22
MR2

C 2.93852 × 10−3

ε4 = Bc − Ac

2Cc
, (27)

where M is the mass of our body and R its mean radius, and also the parameter δ = Cc/C , i.e.
the ratio between the polar inertial momentum of the core and of the satellite. ε1 represents
the polar flattening of the satellite, while ε2 is its equatorial ellipticity. ε3 and ε4 have the same
meaning for the cavity. If we assume the core of the satellite to be spherical, we should take
ε3 = ε4 = 0, while ε4 = 0 represents an axisymmetric cavity. Henrard (2008) considered
that the ellipsoid of inertia of the core and the mantle were proportional, the mathematical
formulation was ε3 = ε1 and ε4 = ε2.

We now introduce the two sets of Andoyer’s variables (Andoyer 1926), (l, g, h, L , G, H)

and (lc, gc, hc, Lc, Gc, Hc), related respectively to the whole satellite and to its core. The
angles (h, K , g) are the Euler angles of the vector n2, node of the equatorial plane over
the plane perpendicular to the angular momentum N, the angles (J, l) position the axis of
least inertia f1 with respect to n2. Correspondingly the angles (hc, Kc, gc) are the Euler
angles of the vector nc

2, node of the equatorial plane over the plane perpendicular to the
angular momentum of the pseudo-core Nc, and (Jc, lc) position the axis of least inertia
with respect to nc

2. The Fig. 2 shows a schematic view of all the reference frames and rel-
evant angles. The variables are (h, g, l) and (hc, gc, lc) and the corresponding momenta
(H = N cos K , G = N , L = N cos J ) and (Hc = N c cos Kc, Gc = N c, Lc = N c cos Jc).
Expressed in Andoyer’s variables the components of N and Nc are:

N1 = √
G2 − L2 sin l, N c

1 = √
G2

c − L2
c sin lc,

N2 = √
G2 − L2 cos l, N c

2 = √
G2

c − L2
c cos lc,

N3 = L , N c
3 = Lc.
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We can now straightforwardly derive the Hamiltonian H1 of the free rotation of the
satellite, using Andoyer’s variables and changing the sign of Nc to take the minus sign of
the Poincaré–Hough equations into account (Eq. 20). We also linearize the Hamiltonian with
respect to the small parameters εi (their orders of magnitude being about 10−3, see Table 1),
and get:

H0 = 1

2C(1 − δ)

(
G2 + G2

c

δ
+ 2

√
(G2 − L2)(G2

c − L2
c) cos(l − lc) + 2L Lc

)

+ ε1

2C(1 − δ)2

(
G2 − L2 + G2

c − L2
c + 2

√
(G2 − L2)(G2

c − L2
c) cos(l − lc)

)

− ε2

2C(1 − δ)2

(
(G2 − L2) cos(2l) + (G2

c − L2
c) cos(2lc)

+2
√

(G2 − L2)(G2
c − L2

c) cos(l + lc)

)

− ε3

2C(1 − δ)2

(
δ(G2 − L2) + (G2

c − L2
c)

(
2 − 1

δ

)

+2δ

√
(G2 − L2)(G2

c − L2
c) cos(l − lc)

)

+ ε4

2C(1 − δ)2

(
δ(G2 − L2) cos(2l) + (G2

c − L2
c)

(
2 − 1

δ

)
cos(2lc)

+2δ

√
(G2 − L2)(G2

c − L2
c) cos(l + lc)

)
. (28)

We now introduce the following canonical change of variables, of multiplier 1
nC , n being

the mean orbital motion of the satellite:

p = l + g + h, P = G
nC ,

r = −h, R = P(1 − cos K ),

ξ1 = −√
2P(1 − cos J ) sin l, η1 = √

2P(1 − cos J ) cos l,

pc = −lc + gc + hc, Pc = Gc
nC ,

rc = −hc, Rc = Pc(1 − cos Kc),

ξ2 = √
2Pc(1 + cos Jc) sin lc, η2 = √

2Pc(1 + cos Jc) cos lc.

(29)

The first three lines of this new set of variables and associated moments are related to
the whole body, while the last three ones are related to the pseudo-core. P is the normalized
norm of the angular momentum, it should be close to 1 at the spin-orbit resonance. Since the
obliquity K is small, we have R ∝ K 2, i.e. this is a small quantity related to the obliquity of
the body. The quantities (ξ1, η1) are related to the polar motion of the whole body, i.e. the
angle J between the geometrical polar axis and the angular momentum, while l is the preces-
sion angle associated. We can note that ξ1 and η1 are always defined, while l is not defined
when J = 0. The last three lines have basically the same meaning for the pseudo-core. We
will see later that the degree of freedom (rc, Rc) is in fact not involved in the dynamics of
this model, and that pc is not involved either, letting the norm of the angular momentum of
the pseudo-core Pc be a constant. So, we can consider that the rotational dynamics of our
body has 4, and not 6, degrees of freedom.
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In order to be consistent with the minus sign in the equations and before lc, the amplitude
of the wobble of the pseudo-core Jc has to be replaced by π − Jc. In this way, we have
Lc = Gc cos(π − Jc) = −Gc cos(Jc). In this new set of variables, we have

N1 = −nC

√
P2 −

(
P − ξ2

1 +η2
1

2

)2
ξ1

ξ2
1 +η2

1
, N c

1 = nC

√
P2

c −
(

ξ2
2 +η2

2
2 − Pc

)2
ξ2

ξ2
2 +η2

2
,

N2 = nC

√
P2 −

(
P − ξ2

1 +η2
1

2

)2
η1

ξ2
1 +η2

1
, N c

2 = nC

√
P2

c −
(

ξ2
2 +η2

2
2 − Pc

)2
η2

ξ2
2 +η2

2
,

N3 = nC
(

P − ξ2
1 +η2

1
2

)
, N c

3 = nC
(

ξ2
2 +η2

2
2 − Pc

)
,

and the Hamiltonian of the free rotational motion becomes, after division by nC :

H1 = n

2(1 − δ)

⎛
⎝P2 + P2

c

δ
+ 2

√(
P − ξ2

1 + η2
1

4

)(
Pc − ξ2

2 + η2
2

4

)(
η1η2 − ξ1ξ2

)

+ 2
(

P − ξ2
1 + η2

1

2

)(ξ2
2 + η2

2

2
− Pc

)⎞
⎠

+ nε1

2(1 − δ)2

(
P2

c −
(ξ2

2 + η2
2

2
− Pc

)2 + P2 −
(

P − ξ2
1 + η2

1

2

)2

+2

√(
P − ξ2

1 + η2
1

4

)(
Pc − ξ2

2 + η2
2

4

)(
η1η2 − ξ1ξ2

))

+ nε2

2(1 − δ)2

(
1

4

(
4P − ξ2

1 − η2
1

)(
ξ2

1 − η2
1

) + 1

4

(
4Pc − ξ2

2 − η2
2

)(
ξ2

2 − η2
2

)

−2

√(
P − ξ2

1 + η2
1

4

)(
Pc − ξ2

2 + η2
2

4

)(
η1η2 + ξ1ξ2

))

− nε3

2(1 − δ)2

(
δ
(

P2 −
(

P − ξ2
1 + η2

1

2

)2) +
(

P2
c −

(ξ2
2 + η2

2

2
− Pc

)2)(
2 − 1

δ

)

+2δ

√(
P − ξ2

1 + η2
1

4

)(
Pc − ξ2

2 + η2
2

4

)(
η1η2 − ξ1ξ2

))

+ nε4

2(1 − δ)2

(
δ

4

(
4P − ξ2

1 − η2
1

)(
η2

1 − ξ2
1

) +
(

2 − 1

δ

)1

4

(
4Pc − ξ2

2 − η2
2

)(
η2

2 − ξ2
2

)

+2δ

√(
P − ξ2

1 + η2
1

4

)(
Pc − ξ2

2 + η2
2

4

)(
η1η2 + ξ1ξ2

))
. (30)

Finally, in order to get an easy-to-read formula, we can develop this Hamiltonian up to
the second order in (ξ1, ξ2, η1, η2) to get:

H1 ≈ n

2(1 − δ)

(
P2 + P2

c

δ
+ 2

√
P Pc

(
η1η2 − ξ1ξ2

)

+2
(

P
ξ2

2 + η2
2

2
+ Pc

ξ2
1 + η2

1

2
− P Pc

))
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+ nε1

2(1 − δ)2

(
P

(
ξ2

1 + η2
1

) + Pc
(
ξ2

2 + η2
2

) + 2
√

P Pc
(
η1η2 − ξ1ξ2

))

+ nε2

2(1 − δ)2

(
P

(
ξ2

1 − η2
1

) + Pc
(
ξ2

2 − η2
2

) − 2
√

P Pc
(
η1η2 + ξ1ξ2

))
(31)

− nε3

2(1 − δ)2

(
δP

(
ξ2

1 + η2
1

) +
(

2 − 1

δ

)
Pc

(
ξ2

2 + η2
2

) + 2δ
√

P Pc
(
η1η2 − ξ1ξ2

))

+ nε4

2(1 − δ)2

(
δP

(
η2

1 − ξ2
1

) +
(

2 − 1

δ

)
Pc

(
η2

2 − ξ2
2

) + 2δ
√

P Pc
(
η1η2 + ξ1ξ2

))
.

This is in fact a third-order development since the powers in (ξ1, ξ2, η1, η2) are even. In the
forthcoming computations, this last approximation has not been used, the equations we have
propagated deriving from the Hamiltonian (30).

2.3.2 The gravitational potential

To compute the gravitational potential due to the parent planet on its satellite, we must first
obtain the coordinates x, y, and z of the unit vector pointing to the planet in the reference
frame linked to the principal axes of inertia (f1, f2, f3), from its coordinates in the inertial
frame xi , yi and zi . Five rotations are to be performed:

⎛
⎝

x
y
z

⎞
⎠ = R3(−l)R1(−J )R3(−g)R1(−K )R3(−h)

⎛
⎝

xi

yi

zi

⎞
⎠ (32)

with xi , yi , zi depending on the mean longitude λo, the longitude of the ascending node �o,
the longitude of the perihelion 
o, the inclination i , and the eccentricity e.
The rotation matrices are defined by

R3(φ) =
⎛
⎝

cos φ − sin φ 0
sin φ cos φ 0

0 0 1

⎞
⎠, R1(φ) =

⎛
⎝

1 0 0
0 cos φ − sin φ

0 sin φ cos φ

⎞
⎠ . (33)

The gravitational potential then reads:

V1(λo, l, g, h, J, K ) = −3

2
C

GMp

d3

(
ε1(x2 + y2) + ε2(x2 − y2)

)
(34)

where G is the gravitational constant, Mp the mass of the perturber, i.e. Jupiter for Io, (x, y, z)
the unit vector pointing at the perturber in the frame (f1, f2, f3), such that x2 + y2 + z2 = 1,
while d is the distance planet-satellite.

Let us note that unlike (Henrard 2008), we consider that the perturbation is applied to the
whole satellite and not only to its mantle, this issue is addressed in Noyelles et al. (2010).
From the variables x, y and z, it is easy to introduce the set of variables defined in (Eq. 29).
We also modify the moment Λo associated with λo (that appears in the expressions of x
and y) in such way that all our variables are now canonical with multiplier 1/nC and our
gravitational potential becomes (after division by nC)

H2(λo, p, P, r, R, ξ1, η1) = −3

2

GMp

nd3

(
ε1(x2 + y2) + ε2(x2 − y2)

)
. (35)

Finally, we use the formulae (30) and (35) to get the Hamiltonian of the system:

H = H1(P, ξ1, η1, ξ2, η2) + H2(λo, p, P, r, R, ξ1, η1). (36)
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The four degrees of freedom of this Hamiltonian are the spin (p, P), the obliquity (r, R), the
wobble of the whole body (ξ1, η1) and the wobble of the core (ξ2, η2).

2.3.3 Evaluating Pc

Since the variable pc, spin angle of the pseudo-core, does not appear explicitly in the Ham-
iltonian of the system, its associated momentum Pc, norm of the angular momentum of the
pseudo-core is not ruled by the Hamilton equations. So, it can be either a constant, or a time
varying input as is the orbital motion of the system. We here choose to set Pc = δ = Cc/C ,
the mean value of P being very close to 1 as our pseudo-Io is in 1:1 spin-orbit resonance. So,
we assume a kind of equipartition of the norm of the angular momentum between the core
and the mantle.

An exact equipartition would be Pc(t) = δP(t), meaning that the fluid would follow every
fluctuation of the orbital velocity of our pseudo-Io. It would mean that the fluid follows the
longitudinal librations of the mantle, as if it were rigid. In such a case, the amplitude of the
longitudinal librations would not be affected by the presence of an at least partially liquid
core. Observations of such librations for Mercury (Margot et al. 2007) and the Moon (Koziel
1967; Williams et al. 1973) support the assumption that the longitudinal librations are the
response of the solid mantle (and not of the full body) to variations of the orbital velocity of
the body. That is the reason why we consider a constant value for Pc, that results from a kind
of rough averaging of P .

While this model describes the rigid dynamics of a body having a fluid core, we must not
forget that real bodies on which this model could be applied have a viscous fluid core. We
here discuss the relevance of our assumptions on Pc for these bodies. From a physical point
of view, the reason for the decoupling between the fluid and the mantle is a low viscosity of
the fluid. At the core-mantle boundary (CMB), the no-slip condition imposes that the velocity
field follows the mantle. So, there is a thin turbulent layer close to this boundary, known as
the Ekman layer, in which the velocity field evolves continuously from the no-slip condition
at the boundary to the one satisfying Pc = δ. The typical thickness of the Ekman layer is
d = √

ν/Ω (Greenspan 1968), ν being the kinematic viscosity and Ω = n the spin frequency
of the fluid. Usually a kinematic viscosity ν = 10−6 m2/s is considered at the core-mantle
boundary because it is consistent with a Fe/Fe-S composition (see e.g. Kerswell and Malkus
1998), what yields d = 0.16 m. A viscosity of 36 m2/s is necessary for the thickness of the
Ekman layer to reach 1 km. In fact, the viscosity is expected to increase with the depth under
the CMB, since molten, and even rigid iron, should be concentrated at the inner core (see
e.g. Rutter et al. 2002). We anecdotally recall the extremum of viscosity of the pitch derived
from the pitch drop experiment set up in 1927 at the University of Queensland, Brisbane,
QLD, Australia (Edgeworth et al. 1984), i.e. ν = (2.09 × 105 ± 4.6 × 104) m2/s.

2.4 Link with the Navier-Stokes equation

As said in the introduction, there are at least two ways to approach the interactions between
the internal structure and the rotational dynamics. One is to complexify the internal structure
in considering only one degree of freedom, and the other one is to consider several dynamical
degrees of freedom (4 in this study) with a quite simple internal structure. We must keep in
mind that these 2 very different approaches aim at studying the same bodies. A complete
study of the core dynamics would require to consider the Navier-Stokes equation, we here
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make a link with this equation to help in the interpretation of our model from a physical point
of view.

The dynamics of a particle of fluid is often assumed to be ruled by the well-known Na-
vier-Stokes equation, we give here its expression as given in Greenspan (1968):

∂

∂t
q + (q · ∇)q + 2� × q = − 1

ρ
∇ p − ν∇ × (∇ × q) − r × d�

dt
, (37)

with

– q: particle velocity measured in a rotating system
– �: angular velocity of the rotating system, its coordinates being (ω1, ω2, ω3)

– ρ: density of the fluid
– r: position of the particle
– p = P + ρU − ρ

2 (� × r) · (� × r): the reduced pressure, where P is the pressure of the
fluid, and U an exterior potential,

– ν: kinematic viscosity of the fluid.

In our case we have

q =
⎛
⎝

(a/c)ν2x3 − (a/b)ν3x2

(b/a)ν3x1 − (b/c)ν1x3

(c/b)ν1x2 − (c/a)ν2x1

⎞
⎠ . (38)

In an over-simplified case where we neglect the viscosity ν, the convective acceleration
(q · ∇)q and the reduced pressure p, the formula (37) reads:

∂

∂t
q + 2� × q = 0, (39)

i.e.

dν1

dt
+ 2(ω2ν3 − ω3ν2) = 0,

dν2

dt
+ 2(ω3ν1 − ω1ν3) = 0, (40)

dν3

dt
+ 2(ω1ν2 − ω2ν1) = 0.

For comparison, the formula (19) reads:

A
dω1

dt
+ D1

dν1

dt
= (Bω2 + D2ν2)ω3 − (Cω3 + D3ν3)ω2,

B
dω2

dt
+ D2

dν2

dt
= (Cω3 + D3ν3)ω1 − (Aω1 + D1ν1)ω3, (41)

C
dω3

dt
+ D3

dν3

dt
= (Aω1 + D1ν1)ω2 − (Bω2 + D2ν2)ω1.

The systems of Eqs. 40 and 41 present some similarities, the main difference being that the
moments of inertia are involved in Eq. 41. They should be in fact considered as global equa-
tions (i.e. considering the whole volume of fluid), while the Eq. 40 is a local form, considering
an individual fluid particle.

The reader can find another formulation of these equations in Rambaux et al. (2007).
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3 A numerical study

3.1 The algorithm

As shown in Henrard (2008), the proper frequency associated with the core, i.e. the free
core nutation, is close to the spin period of the considered body. For a synchronous satellite,
this period is also the orbital period, so we have a proximity between a proper frequency
of the problem and a forcing period. As a consequence, a perturbative approach will meet
difficulties to converge because of small divisors. Such a problem has already been encoun-
tered in Noyelles et al. (2010). That is the reason why we prefer a full numerical study,
consisting of a numerical integration of the equations derived from the Hamiltonian (36),
and a frequency analysis of the solutions of the problem. The frequency analysis algorithm
we use is widely inspired from NAFF (see Laskar 1993 for the method, and Laskar 2005 for
the convergence proofs), with a refinement suggested by Champenois (1998) consisting in
iterating the process to enhance the accuracy of the determination.

The basic idea of the frequency analysis is to consider that a complex variable of the prob-
lem x(t) is quasi-periodic, i.e. can be expressed as an, a priori infinite, sum of a converging
trigonometric series like

x(t) =
∞∑

n=0

An exp (ıνnt) (42)

where An are constant complex amplitudes, and νn constant frequencies, with

x(t) ≈
N∑

n=0

A•
n exp

(
ıν•

n t
)
, (43)

the bullet meaning that the coefficients have been numerically determined. A detailed descrip-
tion of the algorithm is given in appendix. In the case of a real variable, the Eq. 43 becomes

x(t) ≈
N∑

n=0

A•
n cos

(
ν•

n t + φ•
n

)
, (44)

or

x(t) ≈
N∑

n=0

A•
n sin

(
ν•

n t + φ•
n

)
, (45)

where the amplitudes are now real, and the φ•
n are real phases expressed with the counter-

clockwise convention, previously included in the complex amplitudes (in Eq. 43).
The rotation of a synchronous satellite is reputed to have reached an equilibrium state,

known as Cassini State 1 (see e.g. Cassini 1693; Peale 1969; Bouquillon et al. 2003 for
an extension to the polar motion), after dissipation of its rotational energy. There should
remain free oscillations with negligible amplitude around the equilibrium, in the following
we assume them as null, since they cannot be detected except for the Moon (Rambaux and
Williams 2011). It can be shown that, for rigid dynamics, between 2 and 4 Cassini States
exist. In the context of natural satellites of the giant planets where the nodal precession rate
is small with respect to the orbital frequency, the 4 Cassini States exist, and they induce an
obliquity close to k π

2 , k being an integer (see Ward and Hamilton 2004 or Noyelles 2010,
Appendix B). The Cassini State 1, corresponding to k = 0, i.e. a small obliquity, is a priori
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the most probable one, because it is stable and the primordial obliquity of the satellite is
thought to be small.

In order to numerically simulate the rotational dynamics of the satellite, we need initial
conditions that are actually very close to the equilibrium, that is perturbed by the orbital
dynamics of the satellite. For that, we use the algorithm NAFFO (Noyelles et al. 2011),
consisting in:

1. A first numerical integration of the equations of the system, with initial conditions
conveniently chosen,

2. Frequency analysis of the solution and identification of the contributions depending on
the free modes,

3. Evaluation of the free modes at the time origin of the numerical simulation, and removal
from the initial conditions,

then the process is iterated until convergence. In a Hamiltonian framework as is the case
here, Noyelles et al. (2011) have shown that the convergence is quadratic in the amplitude of
the free modes, provided that the quasi-periodic decomposition is exact, i.e. that the signal is
indeed quasi-periodic, and that the numerical error has negligible impact. The proof is based
on the d’Alembert characteristic (see e.g. Henrard 1974), that gives a relation between the
amplitudes An and the arguments νnt in Eq. 43. This algorithm has already been successfully
applied in problem of rotational dynamics (Dufey et al. 2009; Noyelles 2009; Robutel et al.
2011), in dynamics of exoplanetary systems (Couetdic et al. 2010), and in the analysis of
ground-track resonances around Vesta (Delsate 2011).

3.2 The numerical tests

The numerical algorithm we have just described has been used in different cases, dependent
on the free parameters ε3, ε4 (≈ polar flattening and equatorial ellipticity of the core), and
δ = Cc/C , representing the size of the core through its inertial polar momentum. In all our
simulations we considered a kind of pseudo-Io, i.e. a satellite with physical and dynami-
cal properties close to the ones of the Galilean satellite of Jupiter Io, except that its orbit
has constant eccentricity and inclination. The numerical integrations are performed with
the Adams-Bashforth-Moulton 10th order predictor corrector integrator, with a tolerance of
10−14, and a step size of 5 × 10−5 y ≈ 1.8 × 10−3 d.

We considered as reference values for the internal structure parameters δ = 0.5, ε3 = ε1

and ε4 = ε2, and we tested different pseudo-Ios with different values of these parameters.

4 “Classical” behavior

We expect to have, at the Cassini State 1:

– σ = p − λo + π close to 0 because of the 1:1 spin-orbit resonance,
– P close to 1 (the norm of the angular momentum being close to nC),
– ρ = �o − h = �o + r (third Cassini Law),
– R close to 0 (the obliquity being small),
– J and Jc close to 0 (small polar motions of the satellite and its core),

the “classical” behavior being small oscillations around this equilibrium. We use it to define
our first initial conditions, before refining them with NAFFO.
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Table 2 Proper frequencies of
the small oscillations around the
equilibrium for ε3 = ε1, ε2 = ε4
and δ = 0.5. n is the orbital
frequency given in Table 1

Frequency (rad/y) Period (d) ω/n

ωu 243.4050908 9.42845 0.187638

ωv 4.1898509 547.73630 3.2299 × 10−3

ωw 19.5319416 117.49643 0.015057

ωz 1334.4264821 1.71979 1.028694

Table 3 The variable P − 1

Amplitude Frequency (rad/y) Phase (t = 0) T (d) Identification

1 1.5156914 × 10−4 1296.2313540 65.408◦ 1.77047 λo − 
o + π

2 6.6760683 × 10−7 2592.4627080 −49.183◦ 0.88523 2λo − 2
o + π

3 3.8653845 × 10−9 3888.6940620 −163.775◦ 0.59016 3λo − 3
o + π

4 1.2702319 × 10−9 0 −180◦ ∞ cst

5 2.2957822 × 10−11 5184.9254160 81.634◦ 0.44262 4λo − 4
o + π

6 1.5952860 × 10−11 2596.1001228 −11.459◦ 0.88399 2λo − 2�
The series are in cosine

Table 4 The resonant argument σ

Amplitude Frequency (rad/y) Phase (t = 0) T (d) Identification

1 62.574 arcsec 1296.2313540 −24.592◦ 1.77047 λo − 
o + π/2

2 0.138 arcsec 2592.4627080 −139.183◦ 0.88523 2λo − 2
o + π/2

3 0.053 arcsec 3888.6940620 106.225◦ 0.59016 3λo − 3
o + π/2

4 2.03 × 10−5 arcsec 2596.1001228 −101.459◦ 0.88399 2λo − 2�o − π/2

5 2.37 × 10−6 arcsec 5184.9254164 −8.366◦ 0.44262 4λo − 4
o + π/2

6 1.21 × 10−6 arcsec 1299.8687682 166.868◦ 1.76551 λo + 
o − 2�o − π/2

The series are in cosine

Table 5 The variable R

Amplitude Frequency (rad/y) Phase (t = 0) T (d) Identification

1 2.5966515 × 10−7 0 0◦ ∞ cst

2 1.6920424 × 10−10 2596.1001228 −11.459◦ 0.88399 2λo − 2�o

3 3.1006440 × 10−11 1296.2313540 65.408◦ 1.77047 λo − 
o + π

4 1.2914058 × 10−12 3892.3314767 −36.051◦ 0.58960 3λo − 
o − 2�o + π/2

5 5.5914871 × 10−13 3.6374149 −142.276◦ 630.924 2
o − 2�o

The series are in cosine

4.1 In-depth study of a reference case

We here present an in-depth study of a “reference case”, considering ε3 = ε1, ε4 = ε2,
and δ = 0.5. This study consists of a numerical estimation of the frequencies of the proper
librations (Table 2), and of a numerical decomposition of the canonical variables (Tables 3,
4, 5, 6, 7, 8).
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Table 6 The variable ρ

Amplitude Frequency (rad/y) Phase (t = 0) T (d) Identification

1 67.204 arcsec 2596.1001228 78.541◦ 0.88399 2λo − 2�o + π/2

2 1.542 arcsec 1296.2313540 155.408◦ 1.77047 λo − 
o − π/2

3 0.517 arcsec 3892.3314767 53.949◦ 0.58960 3λo − 
o − 2�o + π

4 0.222 arcsec 3.6374146 −52.276◦ 630.924 2
o − 2�o − 3π/2

The series are in cosine

Table 7 The variable η1 + ıξ1

Amplitude Frequency (rad/y) Phase (t = 0) T (d) Identification

1 5.22646 × 10−5 −1298.0500614 −174.270◦ 1.76799 −λo + �o − π

2 5.54231 × 10−7 1298.0500614 174.270◦ 1.76799 λo − �o + π

3 2.81640 × 10−7 −1.8187074 71.138◦ 1261.849 �o − 
o + π

4 2.20597 × 10−7 1.8187074 −71.138◦ 1261.849 
o − �o − π

5 5.96421 × 10−9 −2594.2814154 −59.679◦ 0.88461 
o + �o − 2λo − π

6 3.66084 × 10−9 2594.2814154 59.679◦ 0.88461 2λo − 
o − �o + π

The series are in complex exponential

Table 8 The variable η2 + ıξ2

Amplitude Frequency (rad/y) Phase (t = 0) T (d) Identification

1 7.36054 × 10−5 1298.0500614 −5.730◦ 1.76799 λo − �o

2 3.33184 × 10−7 −1298.0500614 5.730◦ 1.76799 −λo + �o

3 2.03442 × 10−7 1.8187074 108.862◦ 1261.849 
o − �o

4 1.55904 × 10−7 −1.8187074 −108.862◦ 1261.849 �o − 
o

The series are in complex exponential

We recall that the orbital frequency n is 1297.20447137 rad/y (Lainey et al. 2006). A com-
parison with Henrard (2008) lacks of significance since the physical model was different (the
gravitational torque of Jupiter acting only on the mantle, while it acts on the whole satellite
here), but we can see that, like Henrard, we find a proper frequency of the core ωz close to
the spin frequency of Io, that is also its orbital frequency since our satellite is locked in the
1:1 spin-orbit resonance.

The Tables 3, 4, 5, 6, 7, and 8 give a quasi-periodic decomposition of the canonical vari-
ables with identification of the forced oscillations, i.e. the mean longitude of our pseudo-Io
λo, the motion of its pericenter 
o, and the motion of its orbital ascending node �o. The
phases are indicated at the time origin and allow to determine the presence of π or π/2 in
the identification.

Since our rotational model takes four degrees of freedom into account, we can split the
canonical variables and moments into 3 groups related to these degrees of freedom.

The first group (σ, P) (Tables 3, 4) can be linked to the longitudinal motion. We can
see that the mean position is the theoretical equilibrium (σ = 0, P = 1) related to the 1:1
spin-orbit resonance, and there are small oscillations around this equilibrium, related to the
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Table 9 Influence of the size of the core δ, with ε3 = ε1 and ε4 = ε2

δ Tu (d) Tv (d) Tw (d) Tz (d) R∗

0.1 12.650 453.259 208.551 1.745 2.304 × 10−7

0.2 11.926 480.369 185.790 1.741 2.365 × 10−7

0.3 11.156 504.669 163.028 1.736 2.450 × 10−7

0.4 10.328 526.965 140.264 1.729 2.525 × 10−7

0.5 9.428 547.734 117.496 1.720 2.597 × 10−7

0.6 8.433 567.278 94.723 1.706 2.680 × 10−7

0.7 7.303 585.780 71.939 1.685 2.760 × 10−7

0.8 5.963 603.294 49.130 1.645 2.842 × 10−7

0.9 4.216 619.394 26.230 1.540 2.922 × 10−7

mean anomaly λo − 
o and its harmonics. We can see from the Table 4 that the deviation
from the theoretical equilibrium does not exceed 2 arcmin for an eccentricity of 4.15×10−3.
This amplitude is proportional to the eccentricity (at least for small eccentricities, see e.g.
Comstock and Bills 2003), that induces periodic variations of the planet-satellite distance.

The second group (ρ, R) (Tables 5, 6) locates the angular momentum of the whole body
with respect to the orbital plane. Once more, the angle can be averaged to 0 with a instan-
taneous departure that does not exceed 2 arcmin, this equilibrium is a consequence of the
third Cassini law. It is also known that the mean obliquity, that can be derived from the mean
value of R, is due to the interior structure and the regression rate of the orbital node (see e.g.
Ward and Hamilton 2004). We can also see that the oscillations are dominated by the mode
2λo − 2�o, emphasizing an influence of the orbital node on this degree of freedom.

The third group involves the last two degrees of freedom (ξ1, η1) (Table 7) and (ξ2, η2)

(Table 8), that are strongly coupled as shown by Henrard (2008). They represent respectively
the polar motion of the whole body and the orientation of the velocity field of the fluid. They
are ruled by two kinds of small oscillations: fast ones due to harmonics of the proper mode
λo − �o, and slow ones due to the argument of the pericenter 
o − �o.

4.2 Influence of the parameters

To characterise the influence of the internal structure parameters (i.e. ε3, ε4 and δ), we quantify
their effects on our outputs. We choose here to consider in particular the proper frequencies
ωu to ωz , and the mean value of R (Tables 9, 10, 11).

We can see that all these outputs depend on the size of the core δ (Table 9). In particular,
the period of the free longitudinal librations Tu follows the classical law (see e.g. Goldreich
and Peale 1966):

Tu ≈ π

n

√
Cm/

(
MR2

)
3C22

, (46)

yielding Tu ∝ √
1 − δ. We note that this period depends on the size of the core, while Henrard

did not find any dependency in applying the gravitational torque just on the mantle. To check
the influence of the shape of the core, we now present the outputs with varying ε3 (Table 10)
and ε4 (Table 11).
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Table 10 Influence of the polar flattening of the core ε3, with δ = 0.5 and ε4 = ε2

ε3/ε1 Tu (d) Tv (d) Tw (d) Tz (d) R∗

0.2 9.428 6414.819 117.118 1.728 1.040 × 10−6

0.3 9.428 2491.673 117.112 1.727 4.612 × 10−7

0.4 9.428 1572.784 117.121 1.726 3.592 × 10−7

0.5 9.428 1163.452 117.147 1.725 3.177 × 10−7

1 9.428 547.734 117.496 1.720 2.597 × 10−7

3 9.428 254.876 122.879 1.695 2.326 × 10−7

5 9.428 210.742 136.657 1.668 2.277 × 10−7

6 9.428 200.875 148.926 1.655 2.268 × 10−7

7 9.428 194.454 168.492 1.641 2.260 × 10−7

8 9.428 189.284 201.639 1.628 2.256 × 10−7

9 9.428 185.621 278.943 1.616 2.251 × 10−7

Table 11 Influence of the equatorial ellipticity of the core ε4, with δ = 0.5 and ε3 = ε1

ε4/ε2 Tu (d) Tv (d) Tw (d) Tz (d) R∗

0 9.428 545.949 117.771 1.7199 2.5996 × 10−7

0.1 9.428 546.128 117.718 1.7199 2.5998 × 10−7

0.5 9.428 546.841 117.563 1.7199 2.5954 × 10−7

1 9.428 547.734 117.496 1.7198 2.5967 × 10−7

3 9.428 551.316 118.652 1.7195 2.6070 × 10−7

5 9.428 554.914 122.283 1.7193 2.6069 × 10−7

10 9.428 564.010 149.248 1.7186 2.6248 × 10−7

We recall that for Mercury, i.e. in the case of the 3:2 spin-orbit resonance, the flattening of
the core ε3 alters the frequencies ωv and ωz , but not the others ones. Here, the variations of
the period of the free longitudinal librations Tu have only negligible variations, while the 3
other proper frequencies are affected. As for Mercury, the periods Tv and Tz increase with ε3

getting closer to 0, Tz getting closer to the spin period 1.769 d, and Tv tending to infinity. We
also have an increase of the free wobble period when ε3 increases. We can note that it seems
to be possible to fine-tune the parameters (ε3 ≈ 7.7ε1) to have a resonance between the free
wobble and the free oscillations of the obliquity (Tv = Tw), but this is only anecdotal. This
very peculiar case would require strict fine-tuning between the flattening of the body and of
the core to occur, so we can consider it as very unlikely. Finally, the equilibrium position of
the angular momentum, i.e. R∗, is shifted from the origin (here the normal to the orbit) when
the core tends to be spherical (small ε3).

In the case of the 3:2 spin-orbit resonance, no significant influence of the equatorial ellip-
ticity of the core had been detected. We here (Table 11) see a small influence on Tv, Tw, Tz

and R∗, but that does not seem to be significant. Once more, the longitudinal librations seem
not to be affected.
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Fig. 3 Trajectory passing close to the equilibrium ξ1 = ξ2 = η1 = η2 for δ = 0.5, ε3 = 10ε1 and ε4 = 0.
The left panel shows the polar motion of the whole body, and the right one is related to the pseudo-core. We
can see that the trajectory does not librate around this equilibrium, but presents a butterfly-shape, that suggests
the presence of 2 new stable equilibria

Table 12 The variable P − 1 for ε3 = 10ε1 and ε4 = 0

Amplitude Frequency (rad/y) Phase (t = 0) T (d) Identification

1 2.81032 × 10−3 0 0 ∞ cst

2 1.56939 × 10−4 1296.2313540 65.408◦ 1.77047 λo − 
o + π

3 6.77223 × 10−7 2592.4627080 −49.183◦ 0.88523 2λo − 2
o + π

4 5.20072 × 10−8 1298.0500614 174.270◦ 1.76799 λo − �o + π

5 3.80792 × 10−8 1.8187074 288.862◦ 1261.849 
o − �o + π

6 3.92165 × 10−9 3888.6940620 −163.775◦ 0.59016 3λo − 3
o + π

7 3.50511 × 10−10 2594.2814154 59.67◦ 0.88461 2λo − 
o − �o + π

The series are in cosine

As a reminder, Henrard (2005a) found free periods of respectively Tu = 13.25, Tv =
159.39 and Tw = 229.85 days in considering a rigid Io. The rigid value of 13.25 days can be
obtained in setting Cm = C in Eq. 46.

5 Analysis of a bifurcation

In the previous section, we do not present the behavior of the system for some physically
possible values of the core shape parameters ε3 and ε4. The reason is that for some range of
these parameters, the system presents more complex behaviors, that we here introduce. In
particular, we assume since the beginning a “classical” Cassini State 1 in which null ampli-
tudes of the polar motions of the body J and of the core Jc define a stable equilibrium. In
fact, this has not been checked yet, and our numerical investigations have revealed that this
equilibrium is unstable for instance for δ = 0.5, ε3 = 10ε1 and ε4 = 0.

5.1 Numerical characterisation of the equilibria

A simulation of the behavior of the system for δ = 0.5, ε3 = 10ε1 and ε4 = 0 gives a
butterfly shape for the outputs related to the polar motion of the body (η1, ξ1) and of the
velocity field of the fluid (η2, ξ2) for the solution passing close to the equilibrium defined by
J = Jc = 0 (Fig. 3). It suggests that this equilibrium is in fact unstable, and that two new
stable equilibria appear.
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Table 13 The resonant argument σ for ε3 = 10ε1 and ε4 = 0

Amplitude Frequency (rad/y) Phase (t = 0) T (d) Identification

1 63.973 arcsec 1296.2313540 −24.592◦ 1.77047 λo − 
o + π/2

2 0.139 arcsec 2592.4627080 −139.183◦ 0.88523 2λo − 2
o + π/2

3 0.113 arcsec 1298.0500614 84.270◦ 1.76799 λo − �o + π/2

4 5.4 × 10−4 arcsec 3888.6940620 106.225◦ 0.59016 3λo − 3
o + π/2

5 3.0 × 10−5 arcsec 2594.2814154 149.679◦ 0.88461 2λo − 
o − �o + 3π/2

6 2.2 × 10−5 arcsec 1294.4126466 46.546◦ 1.77295 λo − 2
o + �o + 3π/2

7 1.6 × 10−5 arcsec 2596.1001228 −101.459◦ 0.88399 2λo − 2�o − π/2

The series are in cosine

Table 14 The variable R for ε3 = 10ε1 and ε4 = 0

Amplitude Frequency (rad/y) Phase (t = 0) T (d) Identification

1 3.3172485 × 10−7 0 0◦ ∞ cst

2 3.0899861 × 10−7 1.8187074 108.862◦ 1261.849 
o − �o

3 1.4728954 × 10−10 2596.1001228 −11.459◦ 0.88399 2λo − 2�o

4 7.9302319 × 10−11 2592.4627080 −49.183◦ 0.87986 2λo − 2
o + π

5 2.0015617 × 10−11 1296.2313540 65.408◦ 1.77047 λo − 
o + π

6 1.5218917 × 10−11 2594.2814154 −120.321◦ 0.88461 2λo − 
o − �o

7 8.1094453 × 10−12 1294.4126466 46.546◦ 1.77295 λo − 2
o + �o + 3π/2

8 4.4761150 × 10−12 1298.0500614 174.270◦ 1.76799 λo − �o + π

The series are in cosine

These equilibria have been reached thanks to NAFFO. The quasi-periodic decompositions
of the solution corresponding to the equilibrium (ξ1 = ξ2 = 0, η1 ≈ 0.25, η2 ≈ −0.17) are
given in Tables 12, 13, 14, 15, 16, and 17. The other equilibrium is symmetrical to this one,
i.e. corresponds to (ξ1 = ξ2 = 0, η1 ≈ −0.25, η2 ≈ 0.17).

We can see from these tables that the difference is not only in (ξ1, η1, ξ2, η2). The differ-
ence for the degree of freedom related to the longitudinal behavior (σ, P) is striking. First,
we can see a significant departure (2.81 × 10−3) from the expected mean P, i.e. 1 (Table 12).
We also note significant longitudinal librations related to the combination of proper modes
λo − �o (Table 13), that did not appear in the “classical” behavior (Table 4).

The difference is even more important for the degree of freedom related to the location of
the angular momentum, i.e. (ρ, R) (Tables 15, 14). In this case, we can see large oscillations
associated with the argument of the pericenter 
o − �o. It is known that a motion due to
the position of the pericenter has the eccentricity as physical cause, while our eccentricity is
only 4.15 × 10−3, the peak-to-peak oscillations of ρ reaching 80◦. So, we can expect higher
oscillations for bigger eccentricities.

In this case, the shift of P led us to change iteratively the value of the constant Pc so that
it remains equal to δ〈P〉. We have seen that a change of Pc yields a significant difference
on the locations of the stable equilibria, that is the reason why the mean values of η1 + ıξ1

and η2 + ıξ2 we give in Tables 16, 17 are significantly different from the ones that can be
guessed from Fig. 3.
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374 B. Noyelles

Table 16 The variable η1 + ıξ1 for ε3 = 10ε1

Amplitude Frequency (rad/y) Phase (t = 0) T (d) Identification

1 0.2501568 0 0◦ ∞ cst

2 3.36571 × 10−5 −1296.2313540 −155.408◦ 1.77047 
o − λo − 3π/2

3 7.44538 × 10−6 1296.2313540 155.408◦ 1.77047 λo − 
o + 3π/2

4 5.19058 × 10−6 −1298.0500614 −174.270◦ 1.76799 −λo + �o − π

5 1.72624 × 10−6 1.8187074 −71.138◦ 1261.849 
o − �o + π

6 1.69988 × 10−6 −1.8187074 71.138◦ 1261.849 �o − 
o − π

7 5.90500 × 10−7 1298.0500614 174.270◦ 1.76799 λo − �o + π

8 4.69722 × 10−8 2592.4627080 −49.183◦ 0.88523 2λo − 2
o + π

9 3.95648 × 10−8 −2592.4627080 43.183◦ 0.88523 2
o − 2λo − π

10 3.31650 × 10−9 2594.2814161 59.679◦ 0.88461 2λo − 
o − �o + π

The series are in complex exponential

Table 17 The variable η2 + ıξ2 for ε3 = 10ε1

Amplitude Frequency (rad/y) Phase (t = 0) T (d) Identification

1 0.1690165 0 180◦ ∞ cst

2 3.25350 × 10−5 1296.2313540 −114.592◦ 1.77047 λo − 
o

3 7.01986 × 10−6 1298.0500614 −5.730◦ 1.76799 λo − �o

4 1.16880 × 10−6 −1.8187074 −108.862◦ 1261.848 �o − 
o

5 1.15291 × 10−6 1.8187074 108.862◦ 1261.848 
o − �o

6 1.09791 × 10−6 −1296.2313540 −65.408◦ 1.77047 
o − λo − π

7 2.37221 × 10−7 −1298.0500614 5.730◦ 1.76799 �o − λo

8 8.29840 × 10−9 2592.4627079 130.817◦ 0.88523 2λo − 2
o

9 4.26308 × 10−9 2594.2814150 59.679◦ 0.88461 2λo − 
o − �o + π

10 1.54598 × 10−9 −2592.4627077 −130.817◦ 0.88523 2
o − 2λo

The series are in complex exponential

5.2 Analytical study

In order to understand the appearance of 2 new stable equilibria, we propose a simplified
analytical study of the problem. This study consists in starting from the Hamiltonian H
(Eq. 36), in expressing the oscillating angle (respectively σ = p − λo + π because of the
1:1 spin-orbit resonance, and ρ = �o − h because of the third Cassini Law), in averaging
over the circulating ones, to deduce a secular Hamiltonian yielding the equilibria. All these
calculations have been performed thanks to Maple software.

The starting point is the Hamiltonian H (Eq. 36) in which the coordinates of the perturber
(i.e. a pseudo-Jupiter if we consider a pseudo-Io) x and y are replaced thanks to Eq. 32 with

xi = − (cos �o cos(λo − �o) − cos Io sin �o sin(λo − �o)), (47)

yi = − (sin �o cos(λo − �o) + cos Io cos �o sin(λo − �o)), (48)

zi = − sin Io sin(λo − �o). (49)

We here neglect the influence of the eccentricity.
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Then the following canonical transformation is performed

σ = p − λo + π, P,

ρ = �o + r, R,

ξ1, η1,

ξ2, η2.

(50)

Since this transformation, involving λo and �o, is time-dependent, we must add −n P + �̇R
to the Hamiltonian. σ and ρ are oscillating arguments that can be averaged to 0, while λo

and �o are circulating.
A first-order averaging of the Hamiltonian is performed, then the Hamilton equations are

derived, i.e.

dσ

dt
= ∂H

∂ P
,

d P

dt
= −∂H

∂σ
,

dρ

dt
= ∂H

∂ R
,

d R

dt
= −∂H

∂r
,

dξ1

dt
= ∂H

∂η1
,

dη1

dt
= − ∂H

∂ξ1
,

dξ2

dt
= ∂H

∂η2
,

dη2

dt
= − ∂H

∂ξ2
,

(51)

the equilibria corresponding to null time derivatives of the variables and associated moments,
i.e. the right-hand sides of these equations vanish. The numerical exploration drove us to
neglect the influence of the inclination and the obliquity (I = 0, R = 0), and to consider ξ1

and ξ2 as null at the equilibrium. These approximations allowed us to simplify the system,
and we finally find with a good agreement the equilibrium values of P, η1 and η2 in solving
numerically the following equations:

1

n

dσ

dt
= −1 + P − Pc

1 − δ
+ η2

1

2(1 − δ)2 (ε1 − ε2 − δε3 + δε4) + η2
2

2(1 − δ)

+ η1η2
(
Pc − η2

2/4
)

2 (1 − δ)

√
P Pc − Pη2

2/4 − Pcη
2
1/4 + η2

1η
2
2/16

(
1+ ε1−ε2−δε3+δε4

1−δ

)
,

(52)

1

n

dξ1

dt
= η1 P

(1 − δ)2 (ε1 − ε2 − δε3 + δε4) + η1 Pc

1 − δ
+ η3

1

2(1 − δ)2 (−ε1 + ε2 + δε3 − δε4)

− η1η
2
2

2(1 − δ)
+ η2

1η2
(
η2

2/4 − Pc
)

4(1 − δ)

√
P Pc − Pη2

2/4 − Pcη
2
1/4 + η2

1η
2
2/16

×
(

1 + ε1 − ε2 − δε3 + δε4

1 − δ

)

+ η2

1−δ

√
P Pc − Pη2

2/4 − Pcη
2
1/4 + η2

1η
2
2/16

(
1 + ε1−ε2−δε3 + δε4

1 − δ

)
, (53)
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Table 18 Location of a new stable equilibrium, determined analytically (a) thanks to Eq. 52 to 54 and
numerically (n), for δ = 0.5

ε3/ε1 ε4/ε2 P − 1 (n) P − 1 (a) η1 (n) η1 (a) η2 (n) η2 (a)

9.45 0 1.5831 × 10−4 4.0680 × 10−4 0.0608 0.0972 −0.0411 −0.0657

10 0 2.8103 × 10−3 2.8121 × 10−3 0.2502 0.2502 −0.1690 −0.1691

10 0.3 1.9482 × 10−3 1.9501 × 10−3 0.2099 0.2100 −0.1418 −0.1419

The last column, A, gives the amplitude of the 1.77-d longitudinal librations, obtained in our numerical code.
Here, only the equilibrium corresponding to η1 > 0 and η2 < 0 has been considered. In all these cases,
another stable equilibrium exists in changing the signs of η1 and η2

and

1

n

dξ2

dt
= η2 Pc

(1 − δ)2

(
ε1 − ε2 +

(
1

δ
− 2

)
ε3 +

(
2 − 1

δ

)
ε4

)
+ η2 P

1 − δ

+ η3
2

2(1 − δ)2

(
−ε1 + ε2 +

(
2 − 1

δ

)
ε3 +

(
1

δ
− 2

)
ε4

)
− η2

1η2

2(1 − δ)
(54)

+ η1η
2
2

(
η2

1/4 − P
)

4(1 − δ)

√
P Pc − Pη2

2/4 − Pcη
2
1/4 + η2

1η
2
2/16

(
1 + ε1 − ε2 − δε3 + δε4

1 − δ

)

+ η1

1 − δ

√
P Pc − Pη2

2/4 − Pcη
2
1/4 + η2

1η
2
2/16

(
1 + ε1 − ε2 − δε3 + δε4

1 − δ

)
.

For ε3 = 10ε1, ε4 = 0 and δ = 0.5, the real roots of this system are

– P = 1.046772470, η1 = 1.446908787, η2 = −1.023119016
– P = 1.002812138, η1 = 0.2502391659, η2 = −0.1690724173
– P = 1, η1 = η2 = 0
– P = 1.002812138, η1 = −0.2502391659, η2 = 0.1690724173
– P = 0.3489241565, η1 = 0.8353731582, η2 = −0.5606980247

while they are, for ε3 = 9ε1, ε4 = 0 and δ = 0.5:

– P = 1.041484268, η1 = −1.443249317, η2 = −1.020531379
– P = 0.3471614224, η1 = −0.8332603709, η2 = −0.5892040580
– P = 1, η1 = η2 = 0
– P = 0.9978852209, η1 = −2.010693353, η2 = −1.421011855.

So, we can see for P ≈ 1 and |η1|, |η2| < 0.5, an appearance of 2 additional equilibria. In
order to test the validity of this analytical study, we propose (Table 18) a short comparison
between its results and the numerical results, in 3 cases where the 2 equilibria appear. We
can see a significant discrepancy for the first case, where ε3 = 9.45ε1 and ε4 = 0. In this
case, the equilibria are close to the origin η1 = η2 = 0, while a good agreement is reached
for the other two cases, where the equilibrium values of η1 and η2 are bigger. The observed
discrepancy can be due to the neglect of the obliquity, the inclination and the eccentricity.

We now propose to study the existence of these 2 additional equilibria. Since their exis-
tence is linked to the stability of the equilibrium corresponding to ηi , ξi = 0, P = 1 and
Pc = δ, we in fact study this stability. In setting ξ1 = ξ2 = 0, P = 1 and Pc = δ in the
averaged Hamiltonian, we get the quantity S:
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S(η1, η2) = α − 1 + 1 − δ + η2
1δ + η2

2 − η2
1η

2
2/2

2(1 − δ)

+ ε1

(
−3

2
+ η2

1 + η2
2δ − (

η4
1 + η4

2

)
/4

2(1 − δ)2 + α

1 − δ

)

+ ε2

(
−3

2
− η2

1 + η2
2δ − (

η4
1 + η4

2

)
/4

2(1 − δ)2 − α

1 − δ

)
(55)

+ (ε3 − ε4)

(
−δη2

1 + η2
2(1 − 2δ) + δη4

1/4 + η4
2/2(1 − 1/(2δ))

2(1 − δ)2 − δα

1 − δ

)

with

α = η1η2

1 − δ

√
δ − η2

1δ + η2
2

4
+ η2

1η
2
2

16
. (56)

We do not call S “Hamiltonian” since two variables, i.e. ξ1 and ξ2, are set to constants, while
their associated momenta η1 and η2 vary. The study is now equivalent to the investigation
of the extrema of the surface defined by the Eq. 55. In fact we study the point defined by
η1 = η2 = 0, we know thanks to previous calculations that it gives null first-order derivatives
of S. The topological nature of this point can be investigated in studying the second order
partial derivatives of S. We consider the Hessian matrix

M =
⎛
⎝

∂2S
∂η2

1

∂2S
∂η1∂η2

∂2S
∂η2∂η1

∂2S
∂η2

2

⎞
⎠ (57)

= 1

(δ − 1)2

(
ε1 − ε2 + δ(ε4 − ε3 + 1 − δ)

√
δ(1 − δ + ε1 − ε2 + δ(ε4 − ε3))√

δ(1 − δ + ε1 − ε2 + δ(ε4 − ε3)) 1 − δ + δ(ε1 − ε2 − 2ε3 + 2ε4)

)
.

A minimum (corresponding to a stable equilibrium) is reached when the two eigenvalues of
the Hessian, λ1,2, are positive. We have:

λ1 = β +
√

�

2
(58)

λ2 = β −
√

�

2
(59)

with

β = 1 − δ2 + (ε1 − ε2)(1 + δ) + (ε3 − ε4)(1 − 3δ)

2
(60)

and

� = (
1 − δ2)2 − 2(ε1 − ε2)(1 − 7δ + 7δ2 − δ3) + 2(ε3 − ε4)(1 − 3δ − δ2 + 3δ3)

+ (ε1 − ε2)
2(1 + δ)2 + 2(ε1ε4 + ε2ε3 − ε1ε3 − ε2ε4)(1 − 2δ + 5δ2)

+ (ε3 − ε4)
2(1 − 2δ + δ2 + 4δ3). (61)

Numerical evaluations show that λ1 is always positive, and that λ2 is usually positive, except
for the interior parameters given in Table 18. In these peculiar cases, we have λ1λ2 < 0, so
the considered point (η1 = η2 = 0) is a saddle point.
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Table 19 The first case is the
reference one, and the other ones
correspond to the cases where
two additional stable equilibria
appear

ε3/ε1 ε4/ε2 〈Km 〉 〈Jm 〉 〈Jc〉
1 1 2.299 arcmin 0.155 arcsec 21.470 arcsec

9.45 0 9.065 arcmin 3.632◦ 3.335◦
10 0 37.542 arcmin 14.975◦ 13.726◦
10 0.3 31.220 arcmin 12.555◦ 11.516◦

Fig. 4 Location of the North
Pole of the mantle of the body
(located by f3) with respect to its
angular momentum Nm in the
classical case (left) and with a
highly flattened core (right)

This study shows that the equilibrium corresponding to J = Jc = 0 is unstable for
λ2 = 0. This condition is independent of the mean motion and is applicable to any body in
1:1 spin-orbit resonance, in which the interior model of a rigid mantle, a fluid core and a small
solid inner core composed of small material is realistic. We have also neglected the effect
of the orbital inclination and of the regression of the ascending node. This approximation is
relevant, since most of the natural satellites of the giant planets have inclinations of the order
of a few arcmin, and the nodal regression of Io is one of the most rapid in the Solar System.
Since here this approximation gives good results, it should be available for most of the Solar
System bodies in a comparable dynamical situation.

5.3 Effect on the observable variables

We now consider the influence of this peculiar behavior on the observable parameters, i.e.
data that could be observed if our pseudo-Io were real and if it were observed with enough
accuracy. In particular, they have to refer to the mantle since its rotation is actually the rotation
of the surface. These observable data can be deduced from the canonical variables, that give
a complete mathematical description of the system.

A complete derivation of the observable outputs can be found in Noyelles et al. (2010),
we here choose to represent the following quantities:

– the mean obliquity of the mantle 〈Km〉,
– the mean amplitude of the polar motion of the mantle 〈Jm〉,
– the mean amplitude of the polar motion of the core 〈Jc〉.

All these results are obtained thanks to frequency analysis, and they are gathered in
Table 19. We can see that the stable equilibria that appear induce a forcing of the polar
motion of the surface (or mantle) of our pseudo Io (Fig. 4), that can reach 15◦. In Noyelles
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Fig. 5 Behavior of the orientation of the angular momentum of our pseudo Io K exp ır , with 2 different
internal structure models, in the inertial reference frame. The right panel shows a shift of this motion that is
not on averaged at the origin

(2008) we found a forcing of the polar motion of a rigid Titan, due to a resonance between the
free wobble and the forced precession of Titan’s perihelion. We considered it as a possible
explanation for the super-synchronous rotation of Titan, before it was observed (Stiles et al.
2008, 2010). This is different here, since no resonance appears.

6 Orientation of the angular momentum

Among the Third Cassini Law (see e.g. Cassini 1693 or Colombo 1966), the equilibrium
orientation of the total angular momentum of the body is assumed to be in the Cassini State
1. As a consequence, the angular momentum, the normal to the orbital plane and the nor-
mal to the Laplace Plane are coplanar, the Laplace Plane being a reference plane based on
the precessional motion of the orbital ascending node, that minimizes the variations of the
inclination of the considered body. There are in fact several ways to define this plane, as
for instance in Yseboodt and Margot (2006) or in D’Hoedt et al. (2009). A difficulty is:
how to consider a constant reference plane if the precession rate of the ascending node is
not constant? Should we average over a “long enough” time interval, or over a time-interval
suitable to the observations of a space mission?

The reader can find in Noyelles (2009) a discussion on the choice of an “appropriate” ref-
erence plane depending on the variations of the orbital inclination, that allows the argument
ρ = �o − h to librate. It is shown that, for the rotation of a rigid body in 1:1 spin-orbit
resonance, if the satellite orbits close to its parent planet, the precessional motion is ruled
by the oblateness of the planet (its J2) and so its precession rate is close to be constant. In
such a case, choosing the equatorial plane of the planet as a reference plane to describe the
behavior of the angular momentum of the body can be a convenient choice. However, when
the satellite orbits far from its parent planet as it is the case for Titan or Callisto, the reference
plane for the nodal precession is shifted because of the Solar gravitational perturbation. In
such a case, considering the planet’s equatorial plane as the reference plane could either result
in an oscillating rotation node h as for Titan (Noyelles et al. 2008), or in an erratic apparent
behavior due to an improper choice of the reference plane, as for Callisto (Noyelles 2009).

In our case of a pseudo-Io with a constant regression of the node, no “strange” behavior
is expected. In particular, the Table 6 supports the assumption of a quasi-periodic behavior
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Table 20 The variable K exp (ır) for δ = 0.5, ε3 = 0 and ε2 = ε4

Amplitude (arcsec) Frequency (rad/y) Phase (t = 0) T (d) Identification

1 84.516 1.093 × 10−4 78.801◦ 2.1 × 107 ν

2 66.484 0.8455888 −5.730◦ 2714.006 −�o

3 0.022 −2595.2545339 5.730◦ 0.884 �o − 2λo

4 0.006 1296.2314632 −35.742◦ 1.770 λo − 
o + ν

5 0.006 −1296.2312447 −166.558◦ 1.770 
o − λo + ν

6 0.005 −1295.3857651 −71.138◦ 1.772 
o − λo − �o − π

7 0.005 1297.0769428 59.679◦ 1.769 λo − 
o − �o + π

The series are in complex exponential and the amplitudes in arcseconds. We can note a nearly constant
component ν, that has a negligible impact in the usual case

Fig. 6 Behavior of the orientation of the angular momentum of the mantle (i.e. the surface) of our pseudo Io
Km exp ırm , with 2 different internal structure models, in the inertial reference frame. Contrary to the total
angular momentum (Fig. 5), it does not exhibit particular behavior

of the difference of the nodes ρ. However, we have found a different behavior for a small
flattening of the core ε3 (Fig. 5 and Table 20) resulting in a significant shift of the mean
equilibrium orientation of the total angular momentum. This shift seems to be not constant
but a long-period oscillation, its period being ≈57,000 years. We call ν this oscillation.

In Noyelles et al. (2010), we had found a singular behavior for small ε3, that we attributed to
the exact resonance between the Free Core Nutation frequency ωz and the spin frequency. We
also noticed an asymptotic behavior of the free frequency ωv that tended to 0 (and the period
Tv to infinity) when ε3 tended to 0. This last behavior is here observed as well as can be seen
in Table 10. This is confirmed by some tests at ε3 = ε1/10 suggesting Tv = 9933.75 days.
However, even if the free period Tz gets closer to the spin period of 1.76799 day, it does not
seem to reach it. So we cannot speak of resonant behavior, it seems more likely to be a kind
of singularity at ε3 = 0.

The Fig. 6 shows the orientation of the angular momentum of the mantle/surface, that
does not exhibit this shift. So, if such a situation would occur (i.e. very small polar flattening
of the core), the equatorial/ring plane of the planet could be an acceptable reference plane to
describe the orientation of this axis. In fact, a physical signature of this dynamics remains in
the core, we indeed get a mean Jc of ≈3 arcmin for ε3 = 0 while we have 〈Jc〉 ≈ 21 arcsec
for ε3 = ε1.
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7 Conclusion

In this study we have presented the behavior of a pseudo-Io on a low eccentricity orbit around
its parent planet, with a uniform nodal regression and a constant inclination, in considering
it as a two-layer body composed of a rigid mantle and a fluid triaxial core. This model can
be applied to study the rotation of most differentiated natural satellites.

We have described the “usual” case, consisting of small oscillations around the expected
equilibrium, i.e. synchronous rotation with a small obliquity and no polar motion, but we
also have, especially for a highly flattened core, another behavior resulting in a polar motion
forced by several degrees. Another peculiar behavior is when the polar flattening of the core
ε3 is very small. In this last case we have a forcing of the obliquity of the full body, but
not of its mantle, so there should be no observational evidence of this phenomenon. From a
mathematical point of view, this could be due to a kind of singularity in the parameter ε3.

This study aimed at exploring the behavior of a model, its application to real bodies would
require to consider complete ephemerides. This would add additional forcing frequencies
complicating the dynamics of the system. New behavior cannot a priori be excluded.

A possibility to improve the model would be to consider nonlinear phenomena in the fluid,
but this is another story . . .
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SYSDYN) at the University of Namur (FUNDP, Belgium). The author is indebted to Nicolas Delsate and Julien
Frouard for fruitful discussions. BN is F.R.S.-FNRS post-doctoral research fellow.

Appendix: The NAFF algorithm

The frequency analysis algorithm that we use is based on Laskar’s original idea, named NAFF
as Numerical Analysis of the Fundamental Frequencies (see for instance Laskar 1993 for the
method, and Laskar 2005 for the convergence proofs). It aims at identifying the coefficients
ak and ωk of a complex signal f (t) obtained numerically over a finite time span [−T ; T ]
and verifying

f (t) ≈
n∑

k=1

ak exp(ıωk t), (62)

where ωk are real frequencies and ak complex coefficients. If the signal f (t) is real, its fre-
quency spectrum is symmetric and the complex amplitudes associated with the frequencies
ωk and −ωk are complex conjugates. The frequencies and amplitudes associated are found
with an iterative scheme. To determine the first frequency ω1, one searches for the maximum
of the amplitude of

φ(ω) = 〈 f (t), exp(ıωt)〉, (63)

where the scalar product 〈 f (t), g(t)〉 is defined by

〈 f (t), g(t)〉 = 1

2T

T∫

−T

f (t)g(t)∗χ(t)dt, (64)
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g(t)∗ being the complex conjugate of g(t).χ(t) is a weight function alike a Hann or a Ham-
ming window, i.e. a positive function verifying

1

2T

T∫

−T

χ(t)dt = 1. (65)

Using such a window can help the determination in reducing the amplitude of secondary
minima in the transform (64). Its use is optional.

Once the first periodic term exp(ıω1t) is found, its complex amplitude a1 is obtained by
orthogonal projection, and the process is started again on the remainder f1(t) = f (t) − a1

exp(ıω1t). The algorithm stops when two detected frequencies are too close to each other,
what alters their determinations, or when the number of detected terms reaches a limit set by
the user. This algorithm is very efficient, except when two frequencies are too close to each
other. In that case, the algorithm is not confident in its accuracy and stops. When the differ-
ence between two frequencies is larger than twice the frequency associated with the length
of the total time interval, the determination of each fundamental frequency is not perturbed
by the other ones. Although the iterative method suggested by Champenois (1998) allows to
reduce this distance, some troubles may remain. In our particular case, these problems are
likely to arise because of the proximity between the free frequency of the core ωz and the
frequency of the spin.
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