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Abstract Spin–orbit coupling can be described in two approaches. The first method, known
as the “MacDonald torque”, is often combined with a convenient assumption that the quality
factor Q is frequency-independent. This makes the method inconsistent, because derivation
of the expression for the MacDonald torque tacitly fixes the rheology of the mantle by making
Q scale as the inverse tidal frequency. Spin–orbit coupling can be treated also in an approach
called “the Darwin torque”. While this theory is general enough to accommodate an arbitrary
frequency-dependence of Q, this advantage has not yet been fully exploited in the literature,
where Q is often assumed constant or is set to scale as inverse tidal frequency, the latter asser-
tion making the Darwin torque equivalent to a corrected version of the MacDonald torque.
However neither a constant nor an inverse-frequency Q reflect the properties of realistic
mantles and crusts, because the actual frequency-dependence is more complex. Hence it is
necessary to enrich the theory of spin–orbit interaction with the right frequency-dependence.
We accomplish this programme for the Darwin-torque-based model near resonances. We
derive the frequency-dependence of the tidal torque from the first principles of solid-state
mechanics, i.e., from the expression for the mantle’s compliance in the time domain. We
also explain that the tidal torque includes not only the customary, secular part, but also an
oscillating part. We demonstrate that the lmpq term of the Darwin–Kaula expansion for the
tidal torque smoothly passes zero, when the secondary traverses the lmpq resonance (e.g.,
the principal tidal torque smoothly goes through nil as the secondary crosses the synchronous
orbit). Thus, we prepare a foundation for modeling entrapment of a despinning primary into
a resonance with its secondary. The roles of the primary and secondary may be played, e.g.,
by Mercury and the Sun, correspondingly, or by an icy moon and a Jovian planet. We also
offer a possible explanation for the “improper” frequency-dependence of the tidal dissipation
rate in the Moon, discovered by LLR.
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1 Introduction

The paper addresses tidal torques acting on a body in the vicinity of a spin–orbit resonance.
Although the topic has been popular since mid-sixties and has already been addressed in
books, the common models are not entirely adequate to the actual physics. Just as in the
nonresonant case discussed in Efroimsky and Williams (2009), a generic problem with the
popular models of libration or of capture into a resonance is that they employ wrong rhe-
ologies (the work by Rambaux et al. 2010 being the only exception we know of). Above
that, the model based on the MacDonald torque suffers a defect stemming from a genuine
inconsistency inherent in the theory by MacDonald (1964) and Gerstenkorn (1955).

As explained in Efroimsky and Williams (2009) and Williams and Efroimsky (2012), the
MacDonald theory, both in its original and corrected versions, tacitly fixes an unphysical
shape of the functional dependence Q(χ), where Q is the dissipation quality factor and χ is
the tidal frequency. So we base our treatment on the developments by Darwin (1879, 1880)
and Kaula (1964), combining those with a realistic frequency-dependence of the damping
rate.

Since our main purpose is to lay the groundwork for the subsequent study of the process
of falling into a resonance, the two principal results obtained in this paper are the following:

(a) Starting with a realistic rheological model (an expression for the compliance in the time
domain), we derive the complex Love numbers k̄l as functions of the frequency χ , and
write down their negative imaginary parts as functions of the frequency: −Im

[
k̄l (χ)

] =
|kl (χ)| sin εl (χ). It is these expressions that appear as factors in the terms of the Dar-
win-Kaula expansion of tides. These factors’ frequency-dependencies demonstrate a
nontrivial shape, especially near resonances. This shape plays a crucial role in mod-
eling of despinning in general, specifically in modeling the process of falling into a
spin–orbit resonance.

(b) We demonstrate that, beside the customary secular part, the Darwin torque contains a
usually omitted oscillating part.

A much extended version of this paper is available online (arXiv:1105.6086).

2 Linear bodily tides

Linearity of tide means that: (a) under a static load, deformation scales linearly, and (b) under
undulatory loading, the same linear law applies, separately, to each frequency mode. Thus
the deformation magnitude at each frequency should depend linearly upon the tidal stress
at this frequency, and should bear no dependence upon loading at other tidal modes. So the
dissipation rate at that frequency will depend on the stress at that frequency only.

2.1 Linearity of the tidal deformation

At a point R = (R, λ, φ), the potential due to a tide-raising secondary of mass M∗
sec,

located at r∗ = (r∗, λ∗, φ∗) with r∗ ≥ R, is expandable over the Legendre polynomials
Pl(cos γ ):
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W (R, r∗) =
∞∑

l=2

Wl(R, r∗) = −G M∗
sec

r∗
∞∑

l=2

(
R

r∗

)l

Pl(cos γ )

= −G M∗
sec

r∗
∞∑

l=2

(
R

r∗

)l l∑

m=0

(l − m)!
(l + m)! (2 − δ0m)Plm(sin φ)Plm(sin φ∗)

× cos m(λ − λ∗), (1)

where G = 6.7 × 10−11 m3 kg−1 s−2 is Newton’s gravity constant, and γ is the angular
separation between the vectors r∗ and R pointing from the primary’s centre. The latitudes
φ, φ∗ are reckoned from the primary’s equator, while the longitudes λ, λ∗ are reckoned from
a fixed meridian.

Under the assumption of linearity, the term Wl(R, r∗) in the secondary’s potential causes
a linear deformation of the primary’s shape. The subsequent adjustment of the primary’s
potential being linear in the said deformation, the adjustment Ul of this potential is propor-
tional to Wl . The theory of potential requires Ul(r) to fall off, outside the primary, as r−(l+1).
Thus the overall amendment to the potential of the primary amounts to:

U (r) =
∞∑

l=2

Ul(r) =
∞∑

l=2

kl

(
R

r

)l+1

Wl(R, r∗), (2)

R now being the mean equatorial radius of the primary, R = (R, φ, λ) being a surface point,
r = (r, φ, λ) being an exterior point located above it at a radius r ≥ R. The coefficients kl ,
called Love numbers, are defined by the primary’s rheology.

For a homogeneous incompressible spherical primary of density ρ, surface gravity g, and
rigidity μ, the static Love number of degree l is given by

kl = 3

2 (l − 1)

1

1 + Al
, where Al ≡ (2 l2 + 4l + 3)μ

l g ρ R
= 3 (2 l2 + 4 l + 3) μ

4 l π G ρ2 R2 . (3)

For R � r, r∗, consideration of the l = 2 input in (2) turns out to be sufficient.1

These formulae apply to static deformations. However an actual tide is never static, except
in the case of synchronous orbiting with a zero eccentricity and inclination.2 A realistic per-
turbing potential produced by the secondary carries a spectrum of modes ωlmpq (positive
or negative) numbered with four integers lmpq as in formula (101) below. The perturbation
causes a spectrum of stresses in the primary, at frequencies χlmpq = |ωlmpq |. Although in
a linear medium strains are generated at the frequencies of the stresses, friction makes each
Fourier component of the strain fall behind the appropriate component of the stress. Friction
also reduces the magnitude of the shape response—hence the deviation of a dynamical Love
number kl(χ) from its static counterpart kl = kl(0). Below we shall explain that formulae
(2–3) can be easily adjusted to the case of undulatory tidal loads in a homogeneous planet
or in tidally-despinning homogeneous satellite (treated now as the primary, with its planet
playing the role of the tide-raising secondary). However generalisation of formulae (2–3) to
the case of a librating moon (treated as a primary) turns out to be nontrivial, because the

1 Special is the case of Phobos, for whose orbital evolution the k3 and perhaps even the k4 terms may be
relevant (Bills et al. 2005). Another class of exceptions is constituted by close binary asteroids. The topic is
addressed by Taylor and Margot (2010), who took into account the Love numbers up to k6.
2 The case of a permanently deformed moon in a 1:1 spin–orbit resonance falls under this description too.
Recall that in the tidal context the distorted body is taken to be the primary. So from the viewpoint of the
satellite its host planet is orbiting the satellite synchronously, thus creating a static tide.
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standard derivation by Love (1909, 1911) falls apart in the presence of the non-potential
inertial force containing the time-derivative of the primary’s angular velocity.

The frequency-dependence of a dynamical Love number takes its origins in the “inertia”
of strain and, therefore, of the shape of the body. Hence the analogy to linear circuits: the
lth components of W and U act as a current and voltage, while the lth Love number plays,
up to a factor, the role of impedance. Therefore, under a sinusoidal load of frequency χ , it is
convenient to replace the actual Love number with its complex counterpart

k̄l(χ) = |k̄l(χ)| exp [−i εl(χ)] , (4)

εl being the phase delay of the reaction relative to the load (Munk and MacDonald 1960;
Zschau 1978). The “minus” sign in (4) makes U lag behind W for a positive εl . (So the
situation resembles a circuit with a capacitor, where the current leads the voltage.)

For a steady deformation, the lag should vanish, and so should the entire imaginary part:

Im
[
k̄l(0)

] = | k̄l(0)| sin εl(0) = 0, (5)

leaving the complex Love number real:

k̄l(0) = Re
[
k̄l(0)

] = | k̄l(0)| cos εl(0), (6)

and equal to the customary static Love number:

k̄l(0) = kl . (7)

Combined with the constitutive (rheological) law, the equation of motion renders the
complex k̄l(χ), as explained in Appendix B.1. Once k̄l(χ) is found, its absolute value

kl(χ) ≡ |k̄l(χ)| (8)

and negative argument

εl(χ) = − arctan
Im

[
k̄l(χ)

]

Re
[
k̄l(χ)

] (9)

should be inserted into the lth term of the Fourier expansion for the tidal potential. Things
get simplified when we study how the tide, caused on the primary by a secondary, is acting
on that same secondary. In this case, the lth term in the Fourier expansion contains |kl(χ)|
and εl(χ) in the convenient combination kl(χ) sin εl(χ), which is exactly −Im

[
k̄l(χ)

]
.

Rigorously speaking, we should say not “the lth term”, but “the lth terms”, as each l cor-
responds to an infinite set of positive and negative Fourier modes ωlmpq , the physical forcing
frequencies being χ = χlmpq ≡ |ωlmpq |. Thus, while the functional forms of both |kl(χ)|
and sin εl(χ) depend only on l, these functions take values that are different for different sets
of numbers mpq , because χ assumes different values χlmpq on these sets. For triaxial bodies
the functional forms of |kl(χ)| and sin εl(χ) may depend also on m, p, q .

2.2 Damping of a linear tide

Besides the standard assumption Ul(r) ∝ Wl(R, r∗), the linearity condition includes the
requirement that the functions kl(χ) and εl (χ) be well defined. This implies that they depend
solely upon the frequency χ , not upon the other frequencies involved. Nor shall the Love
numbers or lags be influenced by the stress or strain magnitudes at this or other frequencies.
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Then, at frequency χ , the mean (over a period) damping rate 〈 �
E (χ)〉 depends on the value

of χ and on the loading at that frequency, and is not influenced by the other frequencies:

〈Ė(χ)〉 = −χ E peak(χ)/Q(χ) (10)

or, equivalently:

�Ecycle(χ) = −2π E peak(χ)/Q(χ), (11)

�Ecycle(χ) being the one-cycle energy loss, and Q(χ) being the so-called quality factor.
If E peak(χ) in (10–11) is agreed to denote the peak energy stored at frequency χ , the

appropriate Q factor is connected to the phase lag ε(χ) through

Q−1
energy

= sin |ε|. (12)

and not through Q−1
energy

= tan |ε| as often presumed (see Appendix A for explanation).
If E peak(χ) is defined as the peak work, the appropriate Q factor is related to the lag via

Q−1
work

= tan |ε|
[
1 −

(π

2
− |ε|

)
tan |ε|

]−1
, (13)

as demonstrated in Appendix A below.3 In the limit of a small ε, (13) becomes

Q−1
work

= sin |ε| + O(ε2) = |ε| + O(ε2), (14)

so definition (13) makes 1/Q a good approximation to sin ε for small lags only.
For the lag approaching π/2, the quality factor defined through (12) attains its minimum,

Qenergy = 1, while definition (13) furnishes Qwork = 0. The latter is not surprising, as in
the said limit no work is carried out on the system.

Linearity requires k̄l(χ) and therefore εl(χ) to be well-defined functions, i.e., to be inde-
pendent from all the other frequencies but χ . As we see, the requirement extends to Q(χ).

The third definition, Q−1
Goldreich

= tan |ε|, offered by Goldreich (1963), relates neither to
the peak work nor to the peak energy. The ambiguity in definition of Q makes this factor
redundant, albeit a part of the historical tradition. Practical calculations contain the products
of the Love numbers by the sines of the phase lags, kl sin εl , where l is the degree of the
appropriate spherical harmonic. One may though define the tidal Q by (12) and equip it with
the subscript l, thus emphasising its otherness from the seismic Q (Efroimsky 2012).

3 Several basic facts from continuum mechanics

This section offers a squeezed synopsis of the basic linear solid-state mechanics. A more
detailed introduction, including a glossary and examples, is offered in the Electronic Sup-
plementary Material 1 “Continuum mechanics. A celestial-mechanician’s survival kit”.

3.1 Stationary linear deformation of isotropic incompressible media

Mechanical properties of a medium are furnished by the so-called constitutive equation or
constitutive law, which interrelates the stress tensor S with the strain tensor U defined as

U ≡ 1

2

[
(∇ ⊗ u) + (∇ ⊗ u)

T
]
, (15)

u being the displacement. The viscous, elastic and hereditary stresses are related to U via

3 Deriving this formula in Efroimsky and Williams (2009), we inaccurately termed E peak (χ) as peak energy.
However our calculation of Q was carried out in understanding that E peak (χ) is the peak work.
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(v)

S = A
∂

∂t
U,

(e)
S = B U,

(h)

S = B̃ U, (16)

where A is a four-dimensional matrices of viscosities, B is that of elastic moduli, while B̃ is
an operator-valued matrix. To furnish the value of σi j = ∑

kl B̃i jkl ukl at time t , the operators

B̃i jkl integrate the values of ukl (t
′) over the interval t ′ ∈ (− ∞, t ].

In isotropic media, each matrix includes two terms only. The elastic stress becomes:

(e)
S =(e)

S volumetric + (e)
S deviatoric= 3 K

(
1

3
I Sp U

)
+ 2 μ

(
U − 1

3
I Sp U

)
, (17)

with K and μ being the bulk elastic modulus and the shear elastic modulus, correspondingly,
I standing for the unity matrix, and Sp denoting the trace of a matrix: Sp U ≡ ∑

i Uii .
The hereditary stress becomes:

(h)

S =(h)

S volumetric + (h)

S deviatoric= 3 K̃

(
1

3
I Sp U

)
+ 2 μ̃

(
U − 1

3
I Sp U

)
, (18)

where K̃ and μ̃ are the bulk-modulus operator and the shear-modulus operator, accordingly.
The viscous stress acquires the form:

(v)

S =(v)

S volumetric + (v)

S deviatoric= 3 ζ
∂

∂t

(
1

3
I Sp U

)
+ 2 η

∂

∂t

(
U − 1

3
I Sp U

)
, (19)

the quantities ζ and η being termed as the bulk and shear viscosity, correspondingly.
The term 1

3 I Sp U is called the volumetric part of the strain, while U − 1
3 I Sp U is called

the deviatoric part. Accordingly, in expressions (17–19) for the stresses, the pure-trace terms
are called volumetric, the other term being named deviatoric.

If an isotropic medium is also incompressible, the relative change of the volume, Sp U = 0,
vanishes; so the volumetric parts of the strain and stresses become nil. The incompressibil-
ity assumption may be applicable both to crusty and to low-porous icy bodies. At least for
Iapetus, the low-porosity assumption is likely to be correct (Castillo-Rogez et al. 2011).

3.2 Evolving stresses and strains: basic notations

In the general case, loading varies in time, so one has to deal with the stress and strain tensors
as functions of time. However, treatment of viscoelasticity turns out to be simpler in the
frequency domain, i.e., in the language of complex rigidity and complex compliance. To this
end, the stress σγν and strain uγ ν in a linear medium can be Fourier-expanded as

σγν(t) =
∞∑

n=0

σγν(χn ) cos
[
χn t + ϕσ (χn )

] =
∞∑

n=0

Re
[
σ̄γ ν(χn ) exp

(
iχn t

)]
, (20)

uγ ν(t) =
∞∑

n=0

uγ ν(χn ) cos
[
χn t + ϕu(χn )

] =
∞∑

n=0

Re
[
ūγ ν(χn ) exp

(
iχn t

)]
, (21)

where the complex amplitudes are:

σ̄γ ν(χ) = σγν(χ) exp [iϕσ (χ)] , ūγ ν(χ) = uγ ν(χ) exp [iϕu(χ)] , (22)

while the initial phases ϕσ (χ) and ϕu(χ) are chosen in a manner that sets the real amplitudes
σγν(χn ) and uγ ν(χn ) non-negative.
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We wrote the above expansions as sums over a discrete spectrum, as the spectrum gener-
ated by tides is discrete. Generally, the sums can be replaced with integrals over frequency:

σγν(t) =
∞∫

0

σ̄γ ν(χ) e
iχ t

dχ and uγ ν(t) =
∞∫

0

ūγ ν(χ) e
iχ t

dχ. (23)

Whenever necessary, the frequency is set to approach the real axis from below: Im(χ) → 0−.

3.3 Should we consider positive frequencies only?

At first glance, the above question appears pointless, because in classical physics a negative
frequency is a mere abstraction. Mathematically, a full Fourier decomposition of a real field
can always be reduced to a decomposition over positive frequencies only.

For example, the full Fourier integral for the stress can be written as

σγν(t) =
∞∫

−∞
s̄γ ν(ω) eiωt dω =

∞∫

0

[
s̄γ ν(χ) eiχ t + s̄γ ν(−χ) e−iχ t ] dχ, (24)

where we define χ ≡ |ω|. Denoting complex conjugation with asterisk, we write:

σ ∗
γ ν(t) =

∞∫

0

[
s̄∗
γ ν(−χ) eiχ t + s̄∗

γ ν(χ) e
−iχ t

]
dχ. (25)

The stress is real: σ ∗
γ ν(t) = σγν(t). Equating the right-hand sides of (24) and (25), we obtain

s̄γ ν(−χ) = s̄∗
γ ν(χ), (26)

whence

σγν(t) =
∞∫

0

[
s̄γ ν(χ) e

iχ t + s̄∗
γ ν(χ) e

−iχ t
]

dχ = Re

∞∫

0

2 s̄γ ν(χ) e
iχ t

dχ. (27)

This leads us to (23), if we set

σ̄γ ν(χ) = 2 s̄γ ν(χ). (28)

Our switch from σγν(t) = ∫ ∞
−∞ s̄γ ν(ω) e

iωt
dω to the expansion σγν(t) = ∫ ∞

0 σ̄γ ν(ω) e
iχ t

dχ makes things simpler, but the simplification comes at a cost, as we shall see in a second.
Recall that the tide can be expanded over the modes

ωlmpq ≡ (l − 2p) ω̇ + (l − 2p + q) Ṁ + m (�̇ − θ̇ ) ≈ (l − 2p + q) n − m θ̇ , (29)

each of which can assume positive or negative values, or be zero. Here l, m, p, q are some
integers, θ is the primary’s sidereal angle, θ̇ is its spin rate, while ω, �, M and n are the
secondary’s periapse, node, mean anomaly, and mean motion. The tidal frequencies, at which
the medium gets loaded, are given by the modes’ absolute values: χlmpq ≡ | ωlmpq |.

The positively-defined forcing frequency χlmpq is the actual physical frequency at which
the lmpq term in the expansion for the tidal potential (or stress or strain) oscillates.

The motivation for keeping also the modes ωlmpq is subtle: it depends upon the sign of
ωlmpq whether the lmpq component of the tide lags or advances. Specifically, the phase lag
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between the lmpq component of the perturbed primary’s potential U and the lmpq compo-
nent of the tide-raising potential W generated by the secondary is given by

εlmpq = ωlmpq �tlmpq = | ωlmpq | �tlmpq sgn ωlmpq = χlmpq �tlmpq sgn ωlmpq , (30)

where the time lag �tlmpq is always positive.
While the lag between the applied stress and resulting strain in a sample of a medium is

always positive, the tidal lag can be positive or negative. This in no way implies violation of
causality (the time lag �tlmpq is always positive). Rather, it reflects the directional difference
between the planetocentric positions of the tide-raising body and the resulting bulge. For
example, the principal tide, lmpq = 2200, stays behind (has a positive phase lag ε2200 ) when
the secondary is below the synchronous orbit, and advances (has a negative phase lag ε2200 )
when the secondary is at a higher orbit. To summarise, decomposition of a tide over both
positive and negative modes ωlmpq (and not just over the positive frequencies χlmpq ) does
have a physical meaning, as the sign of a mode ωlmpq carries physical information.

Thus we arrive at the following conclusions:

1. As the fields emerging in the tidal theory—the tidal potential, stress, and strain—are all
real, their expansions in the frequency domain may, in principle, be written down using
the positive frequencies χ only.

2. The tidal potential contains components corresponding to the tidal modes ωlmpq of both
the positive and negative signs. While the lmpq components of the potential, stress, and
strain oscillate at the positive frequencies χlmpq = |ωlmpq |, the sign of ωlmpq points
whether the lagging of the lmpq component of the bulge is positive or negative (falling
behind or advancing). This sign enters the expression for the appropriate component of
the torque or force. Hence a consistent tidal theory should employ expansions over both
positive and negative tidal modes ωlmpq and not just over the positive χlmpq .

3. In order to rewrite the tidal theory in terms of the positively-defined frequencies χlmpq
only, one must inserts “by hand” the extra multipliers

sgn ωlmpq = sgn
[
(l − 2p + q) n − m θ̇

]
(31)

into the expressions for the lmpq components of the tidal torque and force.
4. One can employ a rheological law (constitutive equation interconnecting the strain and

stress) and a Navier–Stokes equation (the second law of Newton for an element of the
medium) to calculate the phase lag εlmpq of the primary’s potential Ulmpq relative to the
potential Wlmpq generated by the secondary. If both these equations are expanded, in the
frequency domain, via positively-defined forcing frequencies χlmpq only, the resulting
phase lag, too, will emerge as a function of χlmpq :

εlmpq = εl (χlmpq ). (32)

Within this treatment, one has to equip the lag, “by hand”, with the sign factor (31). On
crossing of an lmpq resonance, the factor will change its sign. Accordingly, the lmpq
term of the tidal torque (or force) will change its sign too.

The lag (32) is the negative argument of the complex Love number k̄l (χlmpq ). Solution of the
constitutive and Navier–Stokes equations renders the complex Love numbers, from which one
can calculate the lags. Hence the above item [4] may be rephrased in the following manner:

4′. Under the convention that Ulmpq = U (χlmpq ) and Wlmpq = W (χlmpq ), we have:

Ulmpq = k̄l (χlmpq ) Wlmpq when ωlmpq >0, i.e., when ωlmpq = χlmpq , (33a)
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Ulmpq = k̄∗
l
(χlmpq ) Wlmpq when ωlmpq <0, i.e., when ωlmpq =−χlmpq , (33b)

the asterisk denoting the complex conjugation.

This ugly convention, a switch from k̄l to k̄∗
l

, is the price we pay for employing only the
positive frequencies in our expansions, when solving the constitutive and Navier–Stokes
equations, to find the Love number. In other words, this is a price for our pretending that
Wlmpq and Ulmpq are functions of χlmpq —whereas in reality they are functions of ωlmpq .

Alternative to this would be expanding the stress, strain, and the potentials over the positive
and negative modes ωlmpq , with the negative frequencies showing up in the equations. With
the convention that Ulmpq = U (ωlmpq ) and Wlmpq = W (ωlmpq ), we would have

Ulmpq = k̄l (ωlmpq ) Wlmpq , for all ωlmpq . (34)

3.4 The complex rigidity and compliance: stress–strain relaxation

The stress cannot be obtained by means of an integral operator that would map the past
history of the strain, U(t ′) over t ′ ∈ (−∞, t], to the value of S at time t . The insufficiency
of such an operator stems from the presence of a time-derivative on the right-hand side of
the viscous part of the stress, given by the first expression in (16). Exceptional are the cases
of no viscosity (e.g., a purely elastic material).

On the other hand, we expect on physical grounds that the operator Ĵ inverse to μ̂ is an
integral operator. In other words, we assume that the current value of strain depends only on
the present and past values taken by the stress and not on the current rate of change of the
stress. The assumption works for weak deformations, i.e., insofar as no plasticity shows up.
So we assume that the operator Ĵ is just an integral operator.

Since the forced medium “remembers” the history of loading, the strain at time t must be
a sum of small installments 1

2 J (t − t ′) dσγν(t ′), each of which stems from a small change
dσγν(t − τ) of the stress at an earlier time t ′ < t . The entire history of the past loading
results, at the time t , in a total strain uγ ν(t) rendered by an integral operator Ĵ (t) acting on
the entire function σγν(t ′) and not on its particular value (Karato 2008):

2 uγ ν(t) = Ĵ (t) σγ ν =
∞∫

0

J (τ )
�
σγν (t − τ) dτ =

t∫

−∞
J (t − t ′) �

σγν (t ′) dt ′, (35)

where t ′ is some earlier time (t ′ < t), overdot denotes d/dt ′, while the “age variable”
τ = t − t ′ is reckoned from the current moment t and is aimed back into the past. The
so-defined integral operator Ĵ (t) is called the compliance operator, while its kernel J (t − t ′)
goes under the name of the compliance function or the creep-response function.

Integrating (35) by parts, we recast the compliance operator into the form of

2 uγ ν(t) = Ĵ (t) σγ ν = J (0) σγ ν(t) − J (∞) σγ ν(−∞) +
∞∫

0

�
J (τ ) σγ ν(t − τ)dτ (36a)

= J (0) σγ ν(t) − J (∞) σγ ν(−∞) +
t∫

−∞

�
J (t − t ′) σγ ν(t

′) dt ′. (36b)
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The quantity J (∞) is the relaxed compliance. Being the asymptotic value of J (t − t ′) at
t − t ′ → ∞, this parameter corresponds to the strain after complete relaxation. The load in
the infinite past may be assumed zero, and the term −J (∞) σγ ν(−∞) may be dropped.

The second important quantity emerging in (36) is the unrelaxed compliance J (0), which
is the value of the compliance function J (t − t ′) at t − t ′ = 0. This parameter describes the
instantaneous reaction to stressing, and thus defines the elastic part of the deformation (the
rest of the deformation being viscous and hereditary). Thus the term containing the unrelaxed
compliance J (0) should be kept. The term, though, can be absorbed into the integral if we
agree that the elastic contribution enters the compliance function not as4

J (t − t ′) = J (0) + viscous and hereditary terms, (37)

but as

J (t − t ′) = J (0)�(t − t ′) + viscous and hereditary terms, (38)

the Heaviside step-function �(t − t ′) being unity for t − t ′ ≥ 0 and zero for t − t ′ < 0. As
the derivative of the step-function is the delta-function δ(t − t ′), we can write (36b) as

2uγ ν(t) =
t∫

−∞

�
J (t − t ′) σγ ν(t

′)dt ′, with J (t − t ′) containing J (0)�(t − t ′). (39)

Formulae (35–36) and (39) are but different expressions for the compliance operator Ĵ acting
as

2 uγ ν = Ĵ σγν. (40)

Inverse to the compliance operator is the rigidity operator μ̂ defined through

σγν = 2 μ̂ uγ ν . (41)

Generally, μ̂ is not an integral operator, but is an integro-differential operator. So it cannot
take the form of σγν(t) = 2

∫ t
−∞ μ̇(t − t ′) uγ ν(t ′) dt ′. However it can be written as

σγν(t) = 2

t∫

−∞
μ(t − t ′) u̇γ ν(t

′) dt ′, (42)

if we permit the kernel μ(t − t ′) to contain a term η δ(t − t ′), where δ(t − t ′) is the
delta-function. After integration, this term will furnish the viscous part of the stress, 2 η u̇γ ν .

The kernel μ(t − t ′) is termed the stress-relaxation function. Its time-independent part
is μ(0)�(t − t ′), where the unrelaxed rigidity μ(0) is inverse to the unrelaxed compliance
J (0) and describes the elastic part of deformation. Each term in μ(t − t ′), which neither is
a constant nor contains a delta-function, is responsible for hereditary reaction.

4 Expressing the stress through the strain, we encountered three possibilities: the elastic stress was simply
proportional to the strain, the viscous stress was proportional to the time-derivative of the strain, while the
hereditary stress was expressed by an integral operator μ̃. However, when we express the strain through the
stress, we place the viscosity into the integral operator, so the viscous reaction also looks hereditary. It is our
convention, though, to apply the term hereditary to delayed reactions other than purely viscous.
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3.5 Stress–strain relaxation in the frequency domain

The complex compliance J̄ (χ) and the complex rigidity μ̄(χ) are, by definition, the Fourier
images not of the J (τ ) and μ(τ) functions, but of their time-derivatives:5

∞∫

0

J̄ (χ) eiχτ dχ = �
J (τ ), where J̄ (χ) =

∞∫

0

�
J (τ ) e−iχτ dτ. (43)

and
∞∫

0

μ̄(χ) eiχτ dχ = μ̇(τ ), where μ̄(χ) =
∞∫

0

μ̇(τ ) e−iχτ dτ, (44)

the integrations over τ spanning the interval [0,∞), as both kernels are nil for τ < 0 anyway.
In (43) and (44), we made use of the fact (explained in Sect. 3.3) that, when expanding real
fields, it is sufficient to use only positive frequencies.

Formula (35), in combination with the Fourier expansions (23) and with (43), furnishes:

2

∞∫

0

ūγ ν(χ) e
iχ t

dχ =
∞∫

0

σ̄μν(χ) J̄ (χ) e
iχ t

dχ, (45)

which leads us to:

2 ūγ ν(χ) = J̄ (χ) σ̄γ ν(χ). (46)

Similarly, insertion of (23) into (42) leads to the relation

σ̄γ ν(χ) = 2 μ̄(χ) ūγ ν(χ), (47)

comparison whereof with (46) immediately entails:

J̄ (χ) μ̄(χ) = 1. (48)

Writing down the complex rigidity and compliance as

μ̄(χ) = |μ̄(χ)| exp [i δ(χ)] (49)

and

J̄ (χ) = | J̄ (χ)| exp [−i δ(χ)] , (50)

we split (48) into two expressions:

| J̄ (χ)| = 1

|μ̄(χ)| (51)

and

ϕu(χ) = ϕσ (χ) − δ(χ). (52)

From the latter, we see that the angle δ(χ) is a measure of lagging of a strain harmonic mode
relative to the appropriate harmonic mode of the stress. It ensues from (49–50) that

tan δ(χ) ≡ −Im
[
J̄(χ)

]

Re
[
J̄(χ)

] = Im [μ̄(χ)]

Re [μ̄(χ)]
. (53)

5 Recall that it is the time-derivative of J (τ ) that is the kernel of the integral operator (39). Hence, to arrive

at (46), we have to define J̄ (χ) as the Fourier image of
�
J (τ ).
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4 Complex Love numbers

The developments presented in this section will rest on a theorem, which is known as the
correspondence principle or the elastic-viscoelastic analogy, and which applies to linear
deformations in the absence of nonconservative (inertial) forces. While the literature attri-
butes the authorship of the theorem to different scholars, its true pioneer was Sir George
Darwin (1879). One of the corollaries ensuing from this theorem is that, in the frequency
domain, the complex Love numbers are expressed via the complex rigidity or compliance in
the same way as the static Love numbers are expressed via the relaxed rigidity or compliance.

As was pointed out by Biot (1954, 1958), the theorem is inapplicable to non-potential
forces. Hence the said corollary fails in the case of librating bodies, because of the presence
of the inertial force6 −ω̇×rρ, where ρ is the density and ω is the libration angular velocity. So
the expression (3) for the Love numbers, generally, cannot be employed for librating bodies.

Section 4.1 below explains the transition from the stationary Love numbers to their dynam-
ical counterparts, the Love operators. We present this formalism in the frequency domain,
in the spirit of Zahn (1966) who pioneered this approach in application to a purely vis-
cous medium. Section 4.2 addresses the negative tidal modes emerging in the Darwin–Kaula
expansion for tides. Employing the correspondence principle, in Sect. 4.3 we write down the
expressions for the factors |k̄l (χ)| sin εl (χ) = −Im[k̄l (χ)] emerging in the expansion for
tides. Technical details of this derivation are discussed in Sects. 4.4–4.5.

For more on the correspondence principle and its applicability to Phobos see Appendix B.

4.1 From the Love numbers to the Love operators

A homogeneous incompressible primary, when perturbed by a static secondary, yields its
form and, consequently, has its potential changed. The lth spherical harmonic Ul(r) of the
resulting increment of the primary’s exterior potential is related to the lth spherical harmonic
Wl(R, r) of the perturbing exterior potential through (2).

Under evolving disturbances, the Love numbers become operators mapping the function
Wl(R, r∗, t ′), with t ′ ∈ (−∞, t], onto a value of Ul at time t :

Ul(r, t) =
(

R

r

)l+1

k̂l(t) Wl(R, r∗, t ′). (54)

Being linear for weak forcing, the operators must read:

Ul(r, t) =
(

R

r

)l+1 τ=∞∫

τ=0

kl(τ )
�

W l (R, r∗, t − τ) dτ

=
(

R

r

)l+1 t ′=t∫

t ′=−∞
kl(t − t ′)

�
W l (R, r∗, t ′) dt ′ (55a)

or, after integration by parts:

Ul(r, t) =
(

R

r

)l+1

[kl(0)W (t) − kl(∞)W (−∞)]+
(

R

r

)l+1 ∞∫

0

k̇l (τ ) Wl(R, r∗, t − τ)dτ

(55b)

6 The centripetal term is potential and causes no troubles, except for the need for a degree-0 Love number.
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=
(

R

r

)l+1

[kl(0)W (t) − kl(∞)W (−∞)]+
(

R

r

)l+1 t∫

−∞
k̇l (t − t ′) Wl(R, r∗, t ′)dt ′

(55c)

= −
(

R

r

)l+1

kl(∞)W (−∞) +
(

R

r

)l+1 t∫

−∞

d

dt

[
kl(t − t ′)

−kl(0) + kl(0)�(t − t ′)
]

Wl(R, r∗, t ′) dt ′. (55d)

Just as in the case of the compliance operator (35–36), in expressions (55) we obtain the
terms kl(0)W (t) and −kl(∞)W (−∞). Of the latter term, we can get rid by setting W (−∞)

nil, while the former term may be incorporated into the kernel in exactly the same way as
in (37–39). Thus, dropping the unphysical term with W (−∞), and inserting the elastic term
into the Love number not as kl(0) but as kl(0)�(t − t ′), we simplify (55d) to

Ul(r, t) =
(

R

r

)l+1 t∫

−∞
k̇l (t − t ′) Wl(R, r∗, t ′) dt ′, (56)

with kl(t − t ′) now including, as its part, kl(0)�(t − t ′) instead of kl(0).
Were the body perfectly elastic, kl(t −t ′) would consist of the instantaneous-reaction term

kl(0)�(t − t ′) only. Accordingly, the time-derivative of kl would be: k̇l (t − t ′) = kl δ(t − t ′)
where kl ≡ kl(0), so expressions (55–56) would coincide with (2).

Similarly to introducing the complex compliance, one can define the complex Love num-

bers as Fourier transforms of
�
kl (τ ):

∞∫

0

k̄l (χ)eiχτ dχ = �
kl (τ ), (57)

the overdot standing for d/dτ . Churkin (1998) suggested to term the time-derivatives
�
k l (t)

as the Love functions.7 Inversion of (57) trivially yields:

k̄l (χ) =
∞∫

0

k̇l (τ ) e−iχτ dτ = kl (0) + i χ

∞∫

0

[
kl (τ ) − kl (0)�(τ)

]
e−iχτ dτ, (58)

where we integrated only from 0 because the future disturbance contributes nothing to the
present distortion, so kl(τ ) vanishes at τ < 0. Recall that the time τ denotes the difference
t − t ′. So τ is reckoned from the present moment t and is directed back into the past.

Defining in the standard manner the Fourier components Ūl (χ) and W̄l (χ) of functions
Ul (t) and Wl (t), we write (55) in the frequency domain:

Ūl (χ) =
(

R

r

)l+1

k̄l (χ) W̄l (χ), (59)

where we denote the frequency simply by χ instead of the awkward χlmpq . To employ (59)

in the tidal theory, one has to know the frequency-dependencies k̄l (χ).

7 Churkin (1998) used functions kl (t) which were, due to a difference in notations, the same as our
�
kl (τ ).
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4.2 The positive forcing frequencies χ ≡ |ω| versus the positive and negative tidal modes ω

It should be remembered that, by relying on formula (59), we place ourselves on thin ice,
because the similarity of this formula to (46) and (47) is deceptive.

In (46) and (47), it was legitimate to limit our expansions of the stress and the strain
to positive frequencies χ only. Had we carried out those expansions over both positive and
negative frequencies ω, we would have obtained, instead of (46) and (47), similar expressions

2 ūγ ν(ω) = J̄ (ω) σ̄γ ν(ω) and σ̄γ ν(ω) = 2 μ̄(ω) ūγ ν(ω). (60)

For positive ω, these would simply coincide with (46) and (47), had we renamed ω as χ . For
negative ω = −χ , the resulting expressions would read as

2 ūγ ν(−χ) = J̄ (−χ) σ̄γ ν(−χ) and σ̄γ ν(−χ) = 2 μ̄(−χ) ūγ ν(−χ), (61)

where we stick to the agreement that χ always stands for a positive quantity. In accordance
with (26), complex conjugation of (61) would then return us to (60).

Physically, the negative-frequency components of the stress or strain are nonexistent. If
brought into consideration, they are obliged to obey (26) and, thus, should play no role,
except for a harmless renormalisation of the Fourier components in (28).

When we say that the physically measurable stress σγν(t) is equal to
∑

Re
[
σ̄γ ν(χ) e

iχ t ]
,

it is unimportant to us whether the χ-contribution in σγν(t) comes from the term σ̄γ ν(χ) e
iχ t

only, or also from the term σ̄γ ν(−χ) e
i(−χ)t

. Indeed, the real part of the latter is a clone of
the real part of the former (and it is only the former term that is physical). However, things
remain that simple only for the stress and the strain.

As we emphasised in Sect. 3.3, the situation with the potentials is drastically different.

While the potential U (t) is still equal to
∑

Re
[
Ū (χ) e

iχ t ]
, it is now important to distin-

guish whether the χ-contribution into U (t) comes from the term Ūγ ν(χ) e
iχ t

or from the

term Ū (−χ) e
i(−χ)t

, or from both. Although the negative mode (−χ) would bring the same
input as the positive mode χ , the inputs will contribute differently into the tidal torque.
As can be seen from (109), the secular part of the torque is proportional to sin εl , where
εl ≡ ωlmpq �tlmpq , with the time lag �tlmpq being positively defined—see formula (105).
So the secular part of the torque explicitly contains the sign of the tidal mode ωlmpq .

Thus, as explained in Sect. 3.3, a more accurate form of formula (59) should be:

Ūl (ω) = k̄l (ω) W̄l (ω), (62)

where ω can be of any sign.
If however we pretend that the potentials depend on the physical frequency χ = |ω| only,

i.e., if we always write U (ω) as U (χ), then (59) must be written as:

Ūl (χ) = k̄l (χ) W̄l (χ), when χ = |ω| for ω > 0, (63a)

and

Ūl (χ) = k̄∗
l
(χ) W̄l (χ), when χ = |ω| for ω < 0. (63b)

Unless we keep this detail in mind, we shall get a wrong sign for the lmpq component of the
torque after the despinning secondary crosses the appropriate commensurability. (We shall,
of course, be able to mend this by simply inserting the sign sgn ωlmpq by hand.)

123



Bodily tides near spin–orbit resonances 297

4.3 The complex Love number as a function of the complex compliance

While the static Love numbers depend on the static rigidity μ via (3), it is not readily appar-
ent that the same relation link k̄l(χ) to μ̄(χ). The correspondence principle discussed in
Appendix B tells us that in many situations the viscoelastic operational moduli μ̄(χ), J̄ (χ)

obey the same algebraic relations as the elastic parameters μ, J . This is why in these situa-
tions the Fourier or Laplace transform of our viscoelastic equations mimic (144), except that
the functions acquire overbars: σ̄γ ν = 2 μ̄ ūγ ν , etc. So the solution is Ūl = k̄l W̄l , with k̄l

retaining the same dependence on ρ, R and μ̄ as in (3), except that now μ have an overbar:

k̄l(χ) = 3

2 (l − 1)

1

1 + (2 l 2 + 4 l + 3) μ̄(χ)
l g ρ R

= 3

2 (l − 1)

1

1 + Al μ̄(χ)/μ

= 3

2 (l − 1)

1

1 + Al J/ J̄ (χ)
= 3

2 (l − 1)

J̄ (χ)

J̄ (χ) + Al J
(64)

Here the coefficients Al are defined via the unrelaxed quantities μ = μ(0) = 1/J = 1/J (0)

in the same way as the static Al were introduced via the static (relaxed)μ = μ(∞) = 1/J (∞)

in (3).
The moral of the story is that at low frequencies each k̄l depends on μ̄ or J̄ in the same

way as the static kl depends on the static μ or J . This happens because at low frequencies
we drop the acceleration term in the equation of motion (147b), so (147b) looks like (144a).

Representing a complex Love number as

k̄l(χ) = Re
[
k̄l(χ)

] + i Im
[
k̄l(χ)

] = |k̄l(χ)| e
−iεl (χ)

(65)

we can write for the phase lag εl(χ):

tan εl(χ) ≡ −Im
[
k̄l(χ)

]

Re
[
k̄l(χ)

] (66)

or, equivalently:

|k̄l(χ)| sin εl(χ) = −Im
[
k̄l(χ)

]
. (67)

The products |k̄l(χ)| sin εl(χ) standing on the left-hand side in (67) emerge also in the Fou-
rier series for the tidal potential. So it is these products, not kl/Q, that enter the expansions
for forces, torques and the damping rate. They link the body’s rheology with its spin history:
from J̄ (χ) to k̄l(χ) to |k̄l(χ)| sin ε(χ), the latter being employed in the theory of tides.

Through simple algebra, expressions (64) entail:

|k̄l(χ)| sin εl(χ) = −Im
[
k̄l(χ)

] = 3

2 (l − 1)

−Al J Im
[
J̄ (χ)

]

(
Re

[
J̄ (χ)

] + Al J
)2 + (

Im
[
J̄ (χ)

])2 .

(68)

As we know from Sects. 3.3 and 4.2, formulae (66–68) should be used with care. Since
in reality Ū and k̄l are functions not of χ but of ω, then formulae (68) should be equipped
with multipliers sgn ωlmpq , when plugged into the expression for the lmpq component of
the tidal force or torque. This prescription is equivalent to (63).
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4.4 Should we write k̄lmpq and εlmpq , or would k̄l and εl be enough?

In the preceding subsection, the static relation (2) was generalised to evolving settings as

Ulmpq(r, t) =
(

R

r

)l+1

k̂l(t) Wlmpq(R, r∗, t ′), (69)

where lmpq is a quadruple of integers employed to number a Fourier mode in the Darwin–
Kaula expansion (96) of the tide, while Ulmpq(r, t) and Wlmpq(R, r∗, t ′) are the harmonics
containing cos(χlmpq t − εlmpq) and cos(χlmpq t ′) correspondingly.

One might be tempted to generalise (2) even further to

Ulmpq(r, t) =
(

R

r

)l+1

k̂lmpq(t) Wlmpq(R, r∗, t ′),

with the Love operator (and, consequently, its kernel, the Love function) bearing dependence
upon m, p, and q . Accordingly, (59) would become

Ūlmpq(χ) = k̄lmpq(χ) W̄lmpq(χ). (70)

Fortunately, insofar as the Correspondence Principle is valid, the functional form of k̄lmpq(χ)

depends upon l only and, thus, can be written down simply as k̄l(χlmpq). We know this from
the considerations offered after equations (144). There we explained that k̄l depends on
χ = χlmpq via J̄ (χ), while the functional form of k̄l bears no dependence on m, p, q .

The phase lag is often denoted as εlmpq , a time-honoured tradition set by Kaula (1964).
However, as the lag is expressed through k̄l via (66), all said above about k̄l applies to the
lag: while the functional form of the dependency εlmpq(χ) may be different for different ls,
it is invariant under the other three integers, so the notation εl(χlmpq) is more adequate.

It should be mentioned, though, that for bodies of pronounced non-sphericity coupling
between the spherical harmonics furnishes the Love numbers and lags whose expressions
through the frequency, for a fixed l, have different functional forms for different m, p, q . In
these cases, the notations k̄lmpq and εlmpq become necessary (Smith 1974; Wahr 1981a,b,c;
Dehant 1987a,b). For a slightly non-spherical body, the Love numbers differ from the Love
numbers of the spherical reference body by a term of the order of the flattening, so a small
non-sphericity can usually be neglected.

4.5 Rigidity versus self-gravitation

For small bodies and small terrestrial planets, the values of Al vary from about unity to
hundreds. For example, A2 is about 2 for the Earth, 20 for Mars, 80 for the Moon, and 200
for Iapetus. For superearths, the values will be much smaller than unity, though. Insofar as

Al
J

| −
J (χ) |

� 1, (71)

one can approximate (64) with

k̄l(χ) = − 3

2(l − 1)

_
J (χ)

_
J (χ) + Al J

= −3

2

_
J (χ)

Al J
+ O

(
| _

J/(Al J ) |2
)
, (72)

except in the closest vicinity of an lmpq resonance, where χlmpq approaches nil and J̄
diverges for some rheologies—like, for example, for those of Maxwell or Andrade.
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Whenever the approximate formula (72) is applicable, we can rewrite (66) as

tan ε(χ) ≡ −Im
[
k̄l(χ)

]

Re
[
k̄l(χ)

] ≈ − Im
[
J̄ (χ)

]

Re
[
J̄ (χ)

] = tan δ(χ), (73)

wherefrom we readily deduce that the phase lag ε(χ) of the tidal frequency χ coincides with
the phase lag of the complex compliance:

ε(χ) ≈ δ(χ), (74)

if χ is not too small (so we are not too close to the commensurability). This way, insofar as
the condition (71) is fulfilled, the component Ūl(χ) of the primary’s potential lags behind
the component W̄l(χ) of the perturbed potential by the same phase angle as the strain lags
behind the stress at frequency χ in a sample of the material. Dependent on the rheology, a
vanishing tidal frequency may or may not limit the applicability of (71) and thus cause a
considerable difference between ε and δ.

In other words, the approximation is valid insofar as changes of shape are determined
solely by the local material properties, and not by self-gravitation of the object as a whole.
This depends on the rheological model. For a Voigt or SAS8 solid in the limit of χ → 0, we
have J̄ (χ) → J , so the zero-frequency limit of k̄l(χ) is the static Love number kl ≡ |k̄(0)|. In
this case, approximation (72–74) remains applicable all the way down to χ = 0. For the Max-
well and Andrade models, however, one obtains, for vanishing frequency: J̄ (χ) ∼ 1/(ηχ),
whence μ̄ ∼ ηχ and k̄2(χ) approaches the hydrodynamical Love number k(hyd)

2 = 3/2.
We see that for the Voigt and SAS models approximation (74) works, for Al � 1, at

all frequencies, as the condition Al � 1 can be set for any value of χ . For the Maxwell
and Andrade solids, the condition holds only at χ � τ−1

M
A−1

l
= μ

η A−1
l

, and so does the
approximation (74). At frequencies below this threshold, self-gravitation “beats” the local
material properties, and the behaviour of the tidal lag deviates from that of the lag in a sample.
This fact should be kept in mind when one wants to explore crossing of a resonance.

A standard caveat is in order, concerning formulae (72–74). As in reality the potential Ū
is a function of ω and not χ , our illegitimate use of χ should be compensated by multiplying
εl (χlmpq ) with sgn ωlmpq , when εl shows up in the expression for the tidal force or torque.

4.6 The case of inhomogeneous bodies

Tidal dissipation within a multilayer near-spherical body is studied through expanding the
involved fields over the spherical harmonics in each layer, setting the boundary conditions
on the outer surface, and using the matching conditions on boundaries between layers. This
formalism was developed by Alterman et al. (1959). An updated discussion of the method
can be found in Sabadini and Vermeersen (2004). For a brief review, see Legros et al. (2006).

Calculation of tidal dissipation in a Jovian planet is an even more formidable task (see
Remus et al. 2012a and references therein). However dissipation in a giant planet with a solid
core may turn out to be approachable by analytic means (Remus et al. 2011, 2012b).

8 The acronym SAS stands for the Standard Anelastic Solid, also known as the Hohenemser-Prager model.

123



300 M. Efroimsky

5 Dissipation at different frequencies

5.1 The data collected on the Earth: in the lab, over seismological basins, and through
geodetic measurements

In Efroimsky and Lainey (2007), we considered the generic rheological model

Q = (E χ)
α

, (75a)

where χ is the tidal frequency and E is a parameter having the dimensions of time. The
physical meaning of this parameter is elucidated in Efroimsky and Lainey (2007). Under the
special choice of α = −1 and for sufficiently large values of Q, this parameter coincides with
the time lag �t which, for this special rheology, turns out to be the same at all frequencies.

Actual experiments register not the inverse quality factor but the phase lag between the
reaction and the action. So the empirical law should rather be written down as

1

sin δ
= (E χ)

α
, (75b)

which is equivalent to (75a), provided the Q factor is defined there as Qenergy and not as
Qwork —see Sect. 2.2 for details.

The applicability realm of the empirical power law (75) is remarkably broad—in terms of
both the physical constituency of the bodies and their chemical composition. Most intriguing
is the robust universality of the values taken by the index α for very different materials:
between 0.2 and 0.4 for ices and silicates, and between 0.14 and 0.2 for partial melts.
Historically, two communities independently converged on this form of dependence.

In the material sciences, the rheological model (82), wherefrom the power law (75b)
stems, traces its lineage to the groundbreaking work by Andrade (1910) who explored creep
in metals. Through the subsequent century, this law was found to be applicable to a vast
variety of other materials, including minerals (Weertman and Weertman 1975; Tan et al.
1997) and their partial melts (Fontaine et al. 2005). With almost the same values of α, this
law applies also to ices (McCarthy et al. 2007; Castillo-Rogez 2009), a milestone result,
taken the physical and chemical differences between ices and silicates. It is agreed upon
that in crystalline materials the Andrade regime can find its microscopic origin both in the
dynamics of dislocations (Karato and Spetzler 1990) and in the grain-boundary diffusional
creep (Gribb and Cooper 1998). As the same behaviour is inherent in metals, silicates, ices,
and even glass-polyester composites (Nechada et al. 2005), it should stem from a single
underlying phenomenon determined by some principles more general than specific material
properties. An attempt to find such a universal mechanism was undertaken by Miguel et al.
(2002). See also the theoretical considerations offered in Karato and Spetzler (1990).

In seismology, the power law (75) became popular in the second part of the XXth century,
with the progress of precise measurements on large seismological basins (Mitchell 1995;
Stachnik et al. 2004; Shito et al. 2004). Further confirmation of this law came from geodetic
experiments that included: (a) satellite laser ranging (SLR) measurements of tidal variations
in the J2 component of the gravity field of the Earth; (b) space-based observations of tidal
variations in the Earth’s rotation rate; and (c) space-based measurements of the Chandler
wobble period and damping (Benjamin et al. 2006; Eanes and Bettadpur 1996; Eanes 1995).
Not surprisingly, the Andrade law became a key element in the recent attempt to construct
a universal rheological model of the Earth’s mantle (Birger 2007). This law also became a
component of the non-hydrostatic-equilibrium model for the zonal tides in an inelastic Earth
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by Defraigne and Smits (1999), a model that became the basis for the IERS Conventions
(Petit and Luzum 2010). While the lab experiments give for α values within 0.2–0.4, the
geodetic techniques favour the interval 0.14–0.2. This minor discrepancy may have emerged
due to the presence of partial melt in the mantle and, possibly, due to nonlinearity at high
bounding pressures in the lower mantle. The universality of the Andrade law compels us to
assume that (75) is generic for silicate planets and moons. Similarly, the applicability of (75)
to samples of ices in the lab is likely to indicate that this law can be employed for description
of an icy moon as a whole.

Karato and Spetzler (1990) argue that at frequencies below a certain threshold χ0 anelas-
ticity gives way to purely viscoelastic behaviour, so the parameter α becomes close to unity.
This detail is missing in the theory of the Chandler wobble of Mars, by Zharkov and Gudkova
(2009).9 For the Earth’s mantle, the threshold corresponds to the time-scale about a year or
slightly longer. Although in Karato and Spetzler (1990) the rheological law is written in terms
of 1/Q, we shall substitute it with a law more appropriate to the studies of tides:

kl sin εl = ( E χ )
−p

, where p = 0.2 − 0.4 for χ > χ0

and p ∼ 1 for χ < χ0, (76)

χ being the frequency, and χ0 being the frequency threshold below which viscosity takes
over anelasticity.

The reason why we write the power scaling law as (76) and not as (75) is that at the lowest
frequencies the geodetic measurements render kl sin εl , not the lag angle δ in a sample (e.g.,
Benjamin et al. 2006). For the same reason, we denoted the exponents in (75) and (76) with
different letters, α and p. Below we shall see that these exponents do not always coincide.
Another reason for giving preference to (76) is that not only the sine of the lag but also the
absolute value of the Love number is frequency-dependent.

5.2 Tidal damping in the Moon, from laser ranging

Fitting of the LLR data to the scaling law (75) was carried out by Williams et al. (2001)
who demonstrated that the lunar mantle possesses quite an abnormal value of the exponent:
−0.19. A later reexamination in Williams et al. (2008) gave a less embarrassing value, −0.09,
which was still negative and thus seemed to contradict our knowledge about microphysical
damping mechanisms in minerals. Thereupon, Williams and Boggs (2009) commented:

“There is a weak dependence of tidal specific dissipation Q on period. The Q increases
from ∼30 at a month to ∼35 at one year. Q for rock is expected to have a weak depen-
dence on tidal period, but it is expected to decrease with period rather than increase.
The frequency dependence of Q deserves further attention and should be improved.”

While there always remains a possibility of the raw data being insufficient or of the fitting
procedure being imperfect, the fact is that the negative exponent obtained in Williams and
Boggs (2009) does not necessarily contradict the law (75). Indeed, the exponent obtained
through LLR was not the α from (75) but was the p from (76). The distinction is critical due
to the difference in frequency-dependence of the seismic and tidal dissipation. It turns out
that the near-viscous value p ∼ 1 from the second line of (76), appropriate for low frequen-
cies, does not retain its value all the way to the zero frequency. Specifically, in Sect. 5.4 we

9 This circumstance was ignored also by Defraigne and Smits (1999). Accordingly, if the claims by Karato
and Spetzler (1990) are correct, the table of corrections for the tidal variations in the Earth’s rotation in the
IERS Conventions is likely to contain increasing errors for periods of about a year and longer.
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shall see that below the frequency 1/(τM Al ) the exponential p begins to decrease with the
decrease of the frequency. (Here τM = η/μ is the Maxwell time, η and μ being the mantle’s
viscosity and rigidity.) As the frequency becomes lower, p changes its sign and eventually
becomes −1 in a close vicinity of χ = 0. This behaviour follows from calculations based on
a realistic rheology (formulae 88–90 below), and goes along with the evident physical fact
that the average tidal torque must vanish in a resonance.10 In Sect. 5.7, comparison of this
behaviour with the LLR results will yield us an estimate for the mean lunar viscosity.

5.3 The Andrade model as an example of viscoelastic behaviour

The complex compliance of a Maxwell material contains a term J = J (0) responsible for
the elastic part of the deformation and a term −i/χη describing the viscosity. Any additional
term in the compliance will correspond to other forms of hereditary reaction. The available
geophysical data strongly favour a particular extension of the Maxwell approach, the And-
rade model (Cottrell and Aytekin 1947; Duval 1976). In modern notations, the model looks
as 11

J (t − t ′) = [
J + β (t − t ′)α + η−1 (

t − t ′)] �(t − t ′), (77)

where α is a dimensionless parameter, β is a dimensional parameter, η is the steady-state
viscosity, while J is the unrelaxed compliance which is inverse to the unrelaxed rigidity:
J ≡ J (0) = 1/μ(0) = 1/μ. So (77) is the Maxwell model amended with a hereditary term.

An example illustrating the model is rendered by deformation under constant loading. The
anelastic term dominates at short times, the strain being a convex function of t (the so-called
primary or transient creep). As time goes on and the load is kept constant, the viscous term
becomes larger, and the strain becomes almost linear in t (the secondary creep).

For all minerals (including ices), α assumes values from 0.14 to 0.4 (more often, through
0.3)—see the references in Sect. 5.1. The parameter β may be rewritten as

β = J τ−α
A

= μ−1 τ−α
A

, (78)

the quantity τA having dimensions of time. This timescale associated with the Andrade creep
may be termed as the “Andrade time” or the “anelastic time”. We see from (78) that a short
τA makes the anelasticity more pronounced, while a long τA makes the anelasticity weak.12

Within some frequency bands, the Andrade time gets very close to the Maxwell time
(Castillo-Rogez et al. 2011; Castillo-Rogez and Choukroun 2010):

τA ≈ τM �⇒ β ≈ J τ−α
M

= J 1−α η−α = μα−1 η−α, (79)

where the viscoelastic timescale (the relaxation Maxwell time) is given by

τM ≡ η

μ
= η J. (80)

10 For example, the principal tidal torque τlmpq = τ2200 acting on a secondary must vanish on crossing the
synchronous orbit. This indeed happens, as the exponential p becomes −1 in the close vicinity of χ2200 = 0.
11 As we integrate over t − t ′ ∈ [ 0, ∞ ), the terms β(t − t ′)α and η−1 (

t − t ′) can do without the Heaviside
step-function �(t − t ′). We remind though that the first term, J , does need this multiplier, so that insertion of
(77) into (39) renders the desired J δ(t − t ′) under the integral, after the differentiation in (39) is performed.
12 While the Andrade creep is caused by “unpinning” of jammed dislocations (Karato and Spetzler 1990;
Miguel et al. 2002), it is not apparently clear if τA can be identified with the typical time of unpinning.
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One cannot expect τA and τM to coincide in all situations, as they may possess some degree of
frequency-dependence. There exist indications that in the Earth’s mantle the role of anelas-
ticity (compared to viscoelasticity) undergoes a decrease when the frequencies become lower
than 1/year—see the miscrophysical model suggested in section 5.2.3 of Karato and Spetzler
(1990). The relation between τA and τM may depend also upon the intensity of loading, i.e.,
upon the damping mechanisms involved. The microphysical model considered in Karato and
Spetzler (1990) was applicable to strong deformations, with anelastic dissipation being dom-
inated by dislocations unpinning. Accordingly, the dominance of viscosity over anelasticity
(τA � τM ) at low frequencies may be regarded proven for strong deformations only. At low
stresses, when the grain-boundary diffusion mechanism is dominant, the values of τA and τM

may remain comparable at low frequencies. The topic needs further research.
In terms of the Andrade and Maxwell times, the compliance becomes:

J (t − t ′) = J

[
1 +

(
t − t ′

τA

)α

+ t − t ′

τM

]
�(t − t ′). (81)

In the frequency domain, compliance (81) will look:

J̄(χ) = J + β (iχ)−α � (1 + α) − i

ηχ
(82a)

= J
[
1 + (i χ τA )−α � (1 + α) − i (χ τM )−1] , (82b)

where χ is the frequency and � is the Gamma function. The imaginary and real parts are:

Im[ J̄ (χ)] = −(η χ)−1 − χ−α β sin (α π/2) �(α + 1) (83a)

= −J (χτM )−1 − J (χτA )−α sin ( α π/2 ) �(α + 1), (83b)

Re[ J̄ (χ)] = J + χ−α β cos (α π/2) �(α + 1) (84a)

= J + J (χτA )−α cos (α π/2) �(α + 1), (84b)

whence we obtain the following dependence of the phase lag upon the frequency:

tan δ(χ) = −Im
[
J̄ (χ)

]

Re
[
J̄ (χ)

] = (η χ)
−1 + χ

−α
β sin (α π/2) � (α + 1)

μ
−1 + χ

−α
β cos (α π/2) � (α + 1)

(85a)

= z−1 ζ + z−α sin (α π/2) � (α + 1)

1 + z−α cos (α π/2) � (α + 1)
. (85b)

Here z is the dimensionless frequency defined as

z ≡ χ τA = χ τM ζ, (86)

while ζ is a dimensionless parameter of the Andrade model:

ζ ≡ τA/τM . (87)

5.4 Tidal response of viscoelastic spherical bodies obeying the Andrade and Maxwell
models

An lmpq term of the tidal torque is proportional to kl (χ) sin εl (χ) = |k̄l (χlmpq )| sin
εl (χlmpq ). These factors’ frequency dependence can be obtained by combining (68) with
(82). Leaving details for Appendix C.2, we present the results, without the sign multiplier.
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• The high-frequency band: χ � χH I ,

|k̄l (χ)| sin εl (χ) ≈ 3

2 (l − 1)

Al

(Al + 1)2 sin
(απ

2

)
�(α + 1) ζ−α

(
τM χ

)−α
. (88)

At high frequencies, anelasticity dominates. So, dependent upon the microphysics of the
mantle, the parameter ζ may be of order unity or slightly lower. We say slightly, because we
expect both anelasticity and viscosity to be present near the transitional zone. (A too low ζ

would eliminate viscosity from the picture.) Were the parameter ζ evolving slowly with the
decrease of the frequency, we would be able to say that for small bodies and small terrestrial
planets (i.e., for Al � 1), the boundary between the high and intermediate frequencies is

χH I = τ−1
M

ζ

α
1−α

,

while for large terrestrial planets (i.e., for Al � 1) the boundary is

χH I = τ−1
A

= τ−1
M

ζ−1.

Both these formulae are derived in the Appendix.
In reality, these two estimates may be overruled by microphysics. At a certain threshold

frequency, the anelastic timescale τA and therefore the parameter ζ begin to grow rapidly with
the decrease of the frequency. This happens when the effectiveness of anelastic dissipation
(defect unpinning) begins to decrease. Whenever this threshold happens to be higher than the
above estimates for χH I , one has simply to identify χH I with the said threshold. According
to Karato and Spetzler (1990), for the Earth’s mantle this threshold is about 1/year. Hence
for terrestrial planets it may be more realistic to set, by hand:

χH I ≈ 1 /year.

• The intermediate-frequency band: χH I � χ � τ−1
M

(Al + 1)−1,

|k̄l (χ)| sin εl (χ) ≈ 3

2 (l − 1)

Al

(Al + 1)2

(
τM χ

)−1
. (89)

While Appendix C.2 renders τ−1
M

ζ

α
1−α for the upper bound, here we identify this bound

with the afore-mentioned threshold χH I , in understanding that below this frequency ζ begins
to grow rapidly, thus causing a switch from the Andrade to a near-Maxwell regime.

• The low-frequency band: τ−1
M

(Al + 1)−1 � χ ,

|k̄l (χ)| sin εl (χ) ≈ 3

2 (l − 1)
Al τM χ. (90)

Scaling laws (88) and (89) mimic, up to constant factors, the frequency-dependencies of
| J̄ (χ)| sin δ(χ) = −Im[ J̄ (χ)] at high and low frequencies, correspondingly, see Eq. (83).

Expression (90) however shows a remarkable phenomenon inherent only in the tidal lag-
ging, and not in the lagging in a sample of material. The |k̄l (χ)| sin εl (χ) factor changes
its behaviour drastically on close approach to the zero frequency. Having reached a finite
maximum at about χ = τ−1

M
(Al + 1)−1, the said factor begins to scale linearly in χ as χ

approaches zero. This way, |k̄l (χ)| sin εl (χ) decreases continuously on close approach to a
resonance and goes through nil together with the frequency. So neither the tidal torque nor
the tidal force explodes in resonances. In a somewhat heuristic manner, this change in the
frequency-dependence was pointed out, for l = 2, in Efroimsky and Williams (2009).
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Fig. 1 Tidal response of a homogeneous spherical Andrade body, set against the decadic logarithm of the
forcing frequency χ (in Hz). The blue curve renders the decadic logarithm of the absolute value of the quad-
rupole complex Love number, lg k2 = lg |k̄2(χ)|. The green and red curves depict the logarithms of the real
and the negative imaginary parts of the Love number: lg Re[k̄2(χ)] = lg(k2 cos ε2) and lg{−Im[k̄2(χ)]} =
lg(−k2 sin ε2), accordingly. The change in the slope of the red curve (the “elbow”), which takes place to the
right of the maximum, corresponds to the switch from viscosity dominance at lower frequencies to anelasticity
dominance at higher frequencies. The parameters A2 and τM were given values appropriate to a homogeneous
Moon with a low viscosity, as described in Sect. 5.7. The plots were generated for an Andrade body with
ζ = 1 at all frequencies. Setting the body Maxwell at lower frequencies will only slightly change the shape
of the “elbow” and will have virtually no effect on the maximum

In that paper, we also tried to describe, through semi-qualitative reasoning, the frequency-
dependence of the Love number k2. We concluded that it should be proportional to the cosine
of the phase lag. Accurate treatment shows that for the Kelvin–Voigt model this is true over
all frequencies. For the Maxwell model, this relation works in the low-frequency limit. For
details, see the Electronic Supplementary Material 5 “The behaviour of kl(χ) ≡ |k̄l(χ)| in
the limit of vanishing tidal frequency χ , within the Andrade and Maxwell models”.

5.5 Example

Figure 1 shows the absolute value, k2 ≡ |k̄2(χ)|, the real part, k2 cos ε2 = Re
[
k̄2(χ)

]
, and

the negative imaginary part, k2 sin ε2 = −Im
[
k̄2(χ)

]
, of the quadrupole Love number. Each

quantity’s decadic logarithm is plotted against the decadic logarithm of the frequency χ (in
Hz). The curves were obtained by insertion of formulae (83–84) into (64). As an example,
the case of −Im

[
k̄2(χ)

]
is worked out in Appendix C.2, formulae (168–170).

Both in the high- and low-frequency limits, the negative imaginary part of k̄2(χ) (the red
curve in Fig. 1) approaches zero. Accordingly, in the low- and high-frequency bands the real
part (the green curve) virtually coincides with the absolute value (the blue curve).

While on the left and on the close right of the peak, dissipation is mainly due to viscosity,
friction at higher frequencies is mainly due to anelasticity. This switch corresponds to the
change of the slope of the red curve at high frequencies (for our choice of parameters, at
around 10−5 Hz). This change of the slope is often called the elbow.

Figure 1 was generated for A2 = 80.5 and τM = 3.75×105 s. The value of A2 corresponds
to the Moon modeled by a homogeneous sphere of rigidity μ = 0.8×1011 Pa. Our choice of
the value of τM ≡ η/μ corresponds to a homogeneous Moon with the said value of rigidity
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and with viscosity set to be η = 3.75 × 105 Pa s. The reason why we consider an example
with such a low value of η will be explained in Sect. 5.7. Finally, it was assumed for simplicity
that ζ = 1, i.e., that τA = τM . Although unphysical at low frequencies, this simplification
only slightly changes the shape of the “elbow” and exerts virtually no influence upon the
maximum of the red curve, provided the maximum is located well into the viscosity zone.

5.6 Crossing a resonance—with a chance for entrapment

In the expansion for the tidal torque, factors (88–90) appear in the company of sgn ω. For
example, the factor (90) enters the lmpq term of the torque as

|k̄l (χlmpq )| sin εl (χlmpq ) sgn ωlmpq

≈ 3

2 (l − 1)
Al τM χlmpq sgn ωlmpq = 3

2 (l − 1)
Al τM ωlmpq . (91)

Naturally, this term depends on ωlmpq , not on χlmpq = |ωlmpq |. Together with ωlmpq , the
term goes continuously through zero, and changes its sign as the lmpq resonance is crossed.
This gets along with the physically evident fact that the principal (i.e., 2200) term of the tidal
torque should vanish as the secondary approaches the synchronous orbit.

An lmpq term of the torque changes its sign and thus creates a chance for entrapment. As
the value of an lmpq term of the torque is much lower than that of the principal, 2200 term,
a perfectly spherical body will never get stuck in a resonance other than 2200. (The latter is,
of course, the 1 : 1 resonance in which the principal term of the torque vanishes.) However,
the presence of the triaxiality-generated torque is known to contribute to the probabilities
of entrapment into other resonances (provided the eccentricity is not zero). Typically, in the
literature they consider a superposition of the triaxiality-generated torque with the principal
tidal term. We would point out that the “trap” shape of the lmpq term (91) makes this term
relevant for the study of entrapment in the lmpq resonance. In some situations, one has to
take into account also the non-principal terms of the tidal torque.

5.7 Comparison with the LLR results

As we mentioned above, fitting of the LLR data to the power law has resulted in a very
small negative exponential p = −0.19 (Williams et al. 2001). As the measurements of the
lunar damping described in Williams et al. (2001) rendered information on the tidal and not
seismic dissipation, those results can and should be compared to the scaling law (88–90). As
the small negative exponential was devised from observations over periods of a month to a
year, it is natural to presume that the appropriate frequencies were close to or slightly below
the frequency 1

τM (A2 + 1)
at which the factor k2 sin ε2 has its peak, as in Fig. 1:

3 × 106 s ≈ 0.1 year = τM (A2 + 1) ≈ τM A2 = η

μ
A2 = 57 η

8 π G (ρ R)2 . (92)

Hence, were the Moon a uniform viscoelastic body, its viscosity would be only

η = 3 × 1016 Pa s. (93)

Hence the lower lunar mantle contains a high percentage of partial melt, a fact which goes
along with the model by Weber et al. (2011), and which was anticipated in Williams et al.
(2001) and Williams and Boggs (2009) following an earlier work by Nakamura et al. (1974).
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6 The polar component of the tidal torque acting on the primary

Let vector r = (r, λ, φ) point from the centre of the primary toward a point-like secondary
of mass Msec. Associating the coordinate system with the primary, we reckon the latitude
φ from the equator. Setting the coordinate system to corotate, we determine the longitude λ

from a fixed meridian. The tidally induced component of the primary’s potential, U , can be
generated either by this secondary itself or by some other secondary of mass M∗

sec located at
r∗ = (r∗, λ∗, φ∗). In either situation, the tidally induced potential U generates a tidal force
and a tidal torque wherewith the secondary of mass Msec acts on the primary.

The scope of this paper is limited to low i. When the role of the primary is played by a
planet, the secondary being its satellite, i is the satellite’s inclination. When the role of the
primary is played by the satellite, the planet acting as its secondary, i denotes the satellite’s
obliquity. Similarly, when the planet is regarded as a primary and its host star is treated as its
secondary, i is the obliquity of the planet. In all these cases, the smallness of i indicates that the
tidal torque acting on the primary is reduced to its polar component. The other components
of the torque will be neglected in this approximation.

The polar component of the torque acting on the primary is the negative of the partial
derivative of the tidal potential, with respect to the primary’s sidereal angle:

T (r) = −Msec
∂U (r)

∂θ
, (94)

θ standing for the primary’s sidereal angle. The formula is convenient when the tidal potential
U is expressed through the secondary’s orbital elements and the primary’s sidereal angle.13

Here and hereafter we deliberately refer to a primary and a secondary in lieu of a planet
and a satellite. The preference stems from our intention to extend the formalism to setting
where a moon is playing the role of a tidally-perturbed primary, the planet being its tide-pro-
ducing secondary. Similarly, when addressing the rotation of Mercury, we interpret the Sun
as a secondary that is causing a tide on the effectively primary body, Mercury.

7 The tidal potential

7.1 Darwin (1879) and Kaula (1964)

The potential produced at point R = (R, λ, φ) by a secondary body of mass M∗, located at
r∗ = (r∗, λ∗, φ∗) with r∗ ≥ R, is given by (1). When a tide-raising secondary located at
r∗ distorts the shape of the primary, the potential generated by the primary at some exterior
point r acquires an amendment given by (2). Insertion of (1) into (2) entails

13 Were the potential written down in the spherical coordinates associated with the primary’s equator and
corotating with the primary, the polar component of the tidal torque could be calculated with aid of the
expression

T (r) = Msec
∂U (r)

∂λ

derived, for example, in Williams and Efroimsky (2012). That the expression agrees with (94) can be seen
from the formula

λ = −θ + � + ω + ν + O(i2) = −θ + � + ω + M + 2 e sin M + O(e2) + O(i2),

e, i, ω, �, ν and M being the eccentricity, inclination, argument of the pericentre, longitude of the node, true
anomaly, and mean anomaly of the tide-raising secondary.
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U (r) = − GM∗
sec

∞∑

l=2

kl R
2l+1

r
l+1

r∗l+1

l∑

m=0

(l − m)!
(l + m)!

× (2 − δ0m)Plm(sin φ)Plm(sin φ∗) cos m(λ − λ∗). (95)

A more practical formula was offered by Kaula (1961, 1964), who switched from the spheri-
cal coordinates to the Kepler elements ( a∗, e∗, i∗, �∗, ω∗, M∗ ) and ( a, e, i, �, ω, M )

of the secondaries located at r∗ and r. Application of this technique to (95) results in

U (r) = −
∞∑

l=2

kl

(
R

a

)l+1
G M∗

sec

a∗

(
R

a∗

)l l∑

m=0

(l − m)!
(l + m)! (2 − δ0m)

l∑

p=0

Flmp(i
∗)

∞∑

q=−∞
Glpq(e∗)

l∑

h=0

Flmh(i)
∞∑

j=−∞
Glhj (e) cos

[(
v∗

lmpq − mθ∗) − (
vlmhj − mθ

)]
,

(96)

where

v∗
lmpq ≡ (l − 2p)ω∗ + (l − 2p + q)M∗ + m �∗, (97)

vlmhj ≡ (l − 2h)ω + (l − 2h + j)M + m �, (98)

θ = θ∗ being the sidereal angle, Glpq(e) signifying the eccentricity functions,14 and Flmp(i)
denoting the inclination functions (Gooding and Wagner 2008).

Being equivalent for a planet with an instant response of the shape, (95) and (96) disagree
when friction-caused delays come into play. Kaula’s expression (96), as well as its truncated,
Darwin’s, version,15 is capable of accommodating separate phase lags for each mode:

U (r) = −
∞∑

l=2

kl

(
R

a

)l+1
G M∗

sec

a∗

(
R

a∗

)l l∑

m=0

(l − m)!
(l + m)! (2 − δ0m)

l∑

p=0

Flmp(i
∗)

∞∑

q=−∞
Glpq(e∗)

l∑

h=0

Flmh(i)
∞∑

j=−∞
Glhj (e) cos

[(
v∗

lmpq −mθ∗)−(
vlmhj −mθ

)−εlmpq

]
,

(99)

where

εlmpq = [
(l − 2p) ω̇∗ + (l − 2p + q) Ṁ∗ + m (�̇∗ − θ̇∗)

]
�tlmpq

= ω∗
lmpq �tlmpq = ±χ∗

lmpq �tlmpq (100)

is the phase lag. The tidal mode ω∗
lmpq introduced in (100) is

ω∗
lmpq ≡ (l − 2p) ω̇∗ + (l − 2p + q) Ṁ∗ + m (�̇∗ − θ̇∗), (101)

while the positively-defined quantity

14 Functions Glhj (e) coincide with the Hansen polynomials X
(−l−1), (l−2p)

(l−2p+q)
(e). In the Electronic Supple-

mentary Material 2 “The eccentricity functions”, we present a table of the Glhj (e) functions, which are needed

for expanding the tides up to terms with e6, inclusively.
15 While the treatment by Kaula (1964) entails the infinite Fourier series (96), the development by Darwin
(1879) renders its partial sum with |l|, |q|, | j | ≤ 2. For introduction into Darwin’s method see Ferraz-Mello
et al. (2008). Be mindful that these authors’ convention on the notations r and r∗ is opposite to ours.
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χ∗
lmpq ≡ | ω∗

lmpq | = | (l − 2p) ω̇∗ + (l − 2p + q) Ṁ∗ + m (�̇∗ − θ̇∗) | (102)

is the actual physical lmpq frequency excited by the tide in the primary. The corresponding
positively-defined time delay �tlmpq = �tl(χlmpq) depends on this physical frequency, the
functional forms of this dependence being different for different materials.

In neglect of the apsidal and nodal precession and also of Ṁ0, the above formulae look:

ωlmpq = (l − 2p + q) n − m θ̇ , (103)

χlmpq ≡ | ωlmpq | = | (l − 2p + q) n − m θ̇ |, (104)

εlmpq ≡ ωlmpq �tlmpq = [
(l − 2p + q) n − m θ̇

]
�tlmpq (105a)

= χlmpq �tl(χlmpq) sgn
[
(l − 2p + q) n − m θ̇

]
, (105b)

Formulae (96) and (99) constitute the pivotal result of Kaula’s theory of tides. Importantly,
this theory imposes no a priori constraint on the form of frequency-dependence of the lags.

8 The Darwin torque

The popular model of entrapment into the 1:1 resonance, developed by Goldreich (1966),
rests on the MacDonald torque and thus implies an unphysical rheology of the satellite’s
material (Williams and Efroimsky 2012). The rheology is given by (75) with α = −1. More
realistic is the dissipation law (76). An even more accurate and practical formulation of
the damping law, stemming from the Andrade formula for the compliance, is rendered by
(88–90). These formulae should be inserted into the Darwin-Kaula theory of tides.

8.1 The secular and oscillating parts of the Darwin torque

8.1.1 The general formula

Direct differentiation of (99) with respect to −θ will result in the expression16

T = −
∞∑

l=2

(
R

a

)l+1
G M∗

sec Msec

a∗

(
R

a∗

)l l∑

m=0

(l − m)!
(l + m)! 2 m

l∑

p=0

Flmp(i
∗)

∞∑

q=−∞
Glpq(e∗)

l∑

h=0

Flmh(i)
∞∑

j=−∞
Glhj (e)kl sin

[
v∗

lmpq − vlmhj − εlmpq

]
. (106)

If the tidally-perturbed and tide-raising secondaries are the same body, then Msec = M∗
sec,

and all the elements coincide with their counterparts with an asterisk. Hence the differences

v∗
lmpq − vlmhj

= (l − 2p + q) M∗ − (l − 2h + j) M + m (�∗ − �) + l (ω∗ − ω) − 2 pω∗ + 2 hω

(107)

get simplified to

v∗
lmpq − vlmhj = (2 h − 2 p + q − j) M∗ + (2 h − 2 p) ω∗, (108)

16 For justification of this operation, see Sect. 6 in Efroimsky and Williams (2009).
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an expression containing both short-period contributions proportional to the mean anomaly,
and long-period contributions proportional to the argument of the pericentre.

8.1.2 The secular, the purely-short-period, and the mixed-period parts of the torque

Now we see that the terms entering series (106) can be split into three groups:

(1) The terms with p = h and q = j constitute a secular part of the torque, as in such terms
vlmhj cancel with v∗

lmpq . This M- and ω-independent part is furnished by

T =
∞∑

l=2

2 GM
2
sec

R
2l+1

a
2 l+2

l∑

m=0

(l − m)!
(l + m)! m

l∑

p=0

F
2
lmp(i)

∞∑

q=−∞
G

2
lpq(e) kl sin εlmpq .

(109)

(2) The terms with p = h and q �= j constitute a purely short-period part of the torque:

T̃ = −
∞∑

l=2

2 GM
2
sec

R
2l+1

a
2l+2

l∑

m=0

(l − m)!
(l + m)! m

l∑

p=0

F
2
lmp(i)

∞∑

q=−∞

∞∑

j=−∞
j �=q

Glpq(e) Glpj (e) kl sin
[
(q − j) M − εlmpq

]
. (110)

(3) The terms with p �= h, make a mixed-period part comprised of both short- and long-
period terms:

T
mixed = −

∞∑

l=2

2 GM
2
sec

R
2l+1

a
2l+2

l∑

m=0

(l − m)!
(l + m)! m

l∑

p=0

Flmp(i)
l∑

h=0
h �=p

Flmh(i)

∞∑

q=−∞

∞∑

j=−∞
Glhq(e) Glpj (e) kl sin

[
(2h − 2p + q − j) M∗

+(2h − 2p)ω∗ − εlmpq
]
. (111)

8.1.3 The l = 2 and l = 3 terms in the O(i2) approximation

For l = 2, index m will take the values 0, 1, 2 only. Although the m = 0 terms enter the
potential, they add nothing to the torque, because differentiation of (99) with respect to −θ

furnishes the m multiplier in (106). To examine the remaining terms, we should consider the
inclination functions with subscripts (lmp) = (220), (210), (211) only:

F220(i) = 3 + O(i2), F210(i) = 3

2
sin i + O(i2), F211(i) = −3

2
sin i + O(i2), (112)

all the other F2mp(i) being of order O(i2) or higher. So for p = h (i.e., both in the secular and
short-period parts) it is sufficient, in the O(i2) approximation, to keep only the terms with
F2

220(i), ignoring those with F2
210(i) and F2

211(i). We see that in the O(i2) approximation
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– among the l = 2 terms, both in the secular and purely short-period parts, only the terms
with (lmp) = (220) are relevant.

For p �= h, i.e., in the mixed-period part, the terms of the leading order in inclination are:
Flmp(i)Flmh(i) = F210(i)F211(i) and Flmp(i)Flmh(i) = F211(i) F210(i), which happen to be
equal to one another, and to be of order O(i2). This way, in the O(i2) approximation,

– the mixed-period part of the l = 2 component may be omitted.

The functions Flmp = F310, F312, F313, F320, F321, F322, F323, F331, F332, F333 are of order
O(i) or higher. The terms containing the squares or cross-products of the these functions may
thus be dropped. Specifically, the smallness of the cross-terms tells us that

– the mixed-period part of the l = 3 component may be omitted.

What remains is the terms containing the squares of functions

F311(i) = −3

2
+ O(i2) and F330(i) = 15 + O(i2). (113)

In other words,

– among the l = 3 terms, both in the secular and purely short-period parts, only the terms
with (lmp) = (311) and (lmp) = (330) are important in the O(i2) approximation.

All in all, for l = 2, 3, the mixed-period part of the torque may be dropped in the O(i2)
approximation. The secular and the short-period parts will be developed up to e6, inclusively.

8.2 Approximation for the secular and short-period parts of the tidal torque

As we saw, the secular and short-period parts of the torque may be approximated with

T = T
l=2

+ T
l=3

+ O
(
ε (R/a)9)

= T
(lmp)=(220)

+
[
T

(lmp)=(311)
+ T

(lmp)=(330)

]
+ O(ε i2) + O

(
ε (R/a)9), (114)

and

T̃ = T̃
l=2

+ T̃
l=3

+ O
(
ε (R/a)9 )

= T̃
(lmp)=(220)

+
[
T̃

(lmp)=(311)
+ T̃

(lmp)=(330)

]
+ O(ε i2) + O

(
ε (R/a)9), (115)

where the l = 2 and l = 3 inputs are of the order (R/a)5 and (R/a)7, accordingly, while the
l = 4, 5, . . . inputs constitute O(ε (R/a)9).

Expressions for T
(lmp)=(220)

, T
(lmp)=(311)

, and T
(lmp)=(310)

are presented in the Elec-
tronic Supplementary Material 3 “The l = 2 and l = 3 terms of the secular part of the
torque”. As an example, here we provide one of these components:
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T
(lmp)=(220)

= 3

2
G M2

sec R5 a−6
[

1

2304
e6 k2 sin |ε

220−3
| sgn (−n − 2 θ̇ )

+
(

1

4
e2 − 1

16
e4 + 13

768
e6

)
k2 sin |ε

220−1
| sgn (n − 2 θ̇ )

+
(

1 − 5 e2 + 63

8
e4 − 155

36
e6

)
k2 sin |ε

2200
| sgn (n − θ̇ )

+
(

49

4
e2 − 861

16
e4 + 21975

256
e6

)
k2 sin |ε

2201
| sgn (3 n − 2 θ̇ )

+
(

289

4
e4 − 1955

6
e6

)
k2 sin |ε

2202
| sgn (2 n − θ̇ )

+ 714025

2304
e6 k2 sin |ε

2203
| sgn

(
5n − 3θ̇

)
]

+ O(e8 ε) + O(i2 ε). (116)

Here each term changes its sign on crossing the appropriate resonance. The change of the
sign takes place smoothly, as the value of the term goes through zero—this can be seen from
formula (91) and from the fact that the tidal mode ωlmpq vanishes in the lmpq resonance.

Expressions for T̃
(lmp)=(220)

, T̃
(lmp)=(311)

, and T̃
(lmp)=(330)

are given in the Electronic
Supplementary Material 4 “The l = 2 and l = 3 terms of the short-period part of the torque”.
Although the average of the short-period part of the torque vanishes, this part does con-
tribute to dissipation. Oscillating torques contribute also to variations of the surface of the
tidally-distorted primary, the latter fact being of importance in laser-ranging experiments.

The modes n(q− j) of the short-period torque are integers of n and thus are commensurate
with the spin rate θ̇ near an A/B resonance, A and B being integer. It may be interesting
to explore numerically the role of this torque when q − j = 1 and A/B = N is integer.
The possible role of the short-period torque in the entrapment and libration dynamics has
never been discussed so far, as the previous studies employed expressions for the tidal torque,
which were obtained through averaging over the period of the secondary’s orbital motion.

9 Marking the minefield

Our expressions for the secular and purely short-period parts of the tidal torque look cumber-
some when compared to the compact and simple formulae employed in the literature hitherto.
It will therefore be important to explain why those simplifications are impractical.

9.1 Perils of the conventional simplification

Insofar as the quality factor is large and the lag is small (i.e., insofar as sin ε can be approxi-
mated with ε), the {lmp} = {220} part of the torque assumes a simpler form:

(Q > 10)
T

l=2
= 3

2
G M2

sec R5a−6k2

3∑

q=−3

G
2

20q
(e) ε

220q + O(e6 ε) + O(i2 ε) + O(ε3),

(117)

where the error O(ε3) originates from sin ε = ε + O(ε3).
The simplification conventionally used in the literature ignores the frequency-dependence

of the Love number and attributes the overall frequency-dependence to the lag. It also ignores
the difference between the tidal lag ε and the lag in the material, δ. This way, the conventional
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simplification makes the tidal lag ε obey the scaling law (75b). At this point, most authors
also set α = −1. Here we shall explore this approach, though shall keep α arbitrary. From
the formula 17

�t
lmpq

= E
−α

χ
−(α+1)

lmpq
(118)

derived by Efroimsky and Lainey (2007) in the said approach, we see that the time lags are
related to the principal-frequency lag �t

2200
via:

�t
lmpq

= �t
2200

(
χ

2200

χ
lmpq

)α+1

. (119)

When the despinning is still going on and θ̇ � n, the corresponding phase lags are:

ε
lmpq

≡ �t
lmpq

ω
lmpq

= −�t
2200

χ
lmpq

(
χ

2200

χ
lmpq

)α+1

= −ε
2200

(
χ

2200

χ
lmpq

)α

, (120)

which helps us to cast the secular part of the torque into the following convenient form18:

(Q > 10)
T

l=2
= Z

[
−θ̇

(
1 + 15

2
e2 + 105

4
e4 + O(e6)

)
+ n

(
1 +

(
15

2
− 6α

)
e2

+
(

105

4
− 363

8
α

)
e4 + O(e6)

)]
+ O(i2/Q) + O(Q−3) + O(αe2 Q−1n/θ̇)

(121a)

≈ Z
[
−θ̇

(
1 + 15

2
e2

)
+ n

(
1 +

(
15

2
− 6 α

)
e2

)]
, (121b)

where the overall factor reads as:

Z = 3G M
2
seck2�t2200 R5

a6 = 3n2 M
2
seck2�t2200 R5

(Mprim + Msec)a3

= 3 n M
2

sec k2 R5

Q2200(Mprim + Msec)a3

n

χ2200
, (122)

17 Let 1
sin ε

= ( Eχ)α , where E is an empirical parameter of the dimensions of time, while ε is small enough,
so sin ε ≈ ε. In combination with ε

lmpq
≡ ω

lmpq
�t

lmpq
and χ

lmpq
= |ω

lmpq
|, this yields (118).

18 For θ̇ � 2n, all the modes ω
220q

are negative, so ω
220q

= −χ
220q

. Then, keeping in mind that n/θ̇ � 1,

we process (120), for q = 1, as

�t
2200

χ
2200

(
χ

2200
χ

2201

)α

= −�t
2200

2|n − θ̇ |
(

2|n − θ̇ |
| − 2θ̇ + 3n|

)α

= −�t
2200

2(θ̇ − n)

[

1 + α

2

n
�
θ

+ O
(
(n/θ̇)2

)]

and similarly for the other values of q, and then plug the results into (117).
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Mprim and Msec being the primary’s and secondary’s masses.19 Dividing (122) by the pri-
mary’s principal moment of inertia ξ Mprimar y R2, we obtain the contribution that this com-
ponent of the torque brings into the angular deceleration rate θ̈ :

θ̈ = K
{
− �

θ

[
1 + 15

2
e2 + 105

4
e4 + O(e6)

]
+ n

[
1 +

(
15

2
− 6α

)
e2

+
(

105

4
− 363

8
α

)
e4 + O(e6)

]}
+ O(i2/Q) + O(Q−3) + O(αe2 Q−1n/θ̇)

(123a)

≈ K
[
− �

θ

(
1 + 15

2
e2

)
+ n

(
1 +

(
15

2
− 6 α

)
e2

) ]
, (123b)

the factor K being given by

K ≡ Z
ξ Mprim R2 = 3 n2 M

2
sec k2 �t2200

ξ Mprim (Mprim + Msec)

R
3

a3

= 3 n M
2
sec k2

ξ Q
2200

Mprim (Mprim + Msec)

R
3

a3

n

χ
2200

, (124)

where ξ is a multiplier emerging in the expression ξ Mprimar y R2 for the primary’s principal
moment of inertia (ξ = 2/5 for a homogeneous sphere).

In the special case of α = −1, the above expressions enjoy agreement with the appropriate
result stemming from the corrected MacDonald model—except that our (121–123) contain
�t2200 , Q2200 , χ2200 instead of �t , Q, χ standing in formulae (44–47) from Williams and
Efroimsky (2012). Formula (123b) says that the secular part of the tidal torque vanishes for

�
θ − n = −6 n e2 α. (125)

For α = −1, this coincides with the result obtained in Rodríguez et al. (2008, eqn. 2.4),
Correia et al. (2011, eqn. 20), and Williams and Efroimsky (2012, eqn. 49). The coincidence
however should not be taken at its face value, because it is occasional or, possibly better to
say, exceptional. Formulae (121–122) were obtained by insertion of the expressions for the
eccentricity functions and the phase lags into (117), and by assuming that n � |θ̇ |. The latter
caveat is a crucial element, not to be overlooked by the users of formulae (121–122) and of
their corollary (123–124) for the tidal deceleration rate.

The case of α = −1 is special, in that it permits derivation of (121–125) without assum-
ing that n � |θ̇ |. However for α > −1 the condition n � |θ̇ | remains mandatory, so

formulae (121–124) become inapplicable when
�
θ reduces to values of about several n.

Although formulae (121a) and (123a) contain an absolute error O(αe2 Q−1n/θ̇), this does

not mean that for
�
θ close to n the absolute error becomes O(αe2 Q−1) and the relative one

becomes O(αe2). In reality, for
�
θ comparable to n, the entire approximation falls apart,

because formulae (119–120) were derived from expression (118), which is valid for Q � 1

19 To arrive at the right-hand side of (122), we recalled that χlmpq �tlmpq = |εlmpq | and that Q−1
lmpq

=
|εlmpq | + O(ε3) = |εlmpq | + O(Q−3), according to formula (12).

123



Bodily tides near spin–orbit resonances 315

only (unless α = −1). So these formulae become inapplicable in the vicinity of a commen-
surability. By ignoring this limitation, one can easily encounter unphysical paradoxes.20

Thence, in all situations, except for the unrealistic rheology α = −1, limitations of the
approximation (121–124) should be kept in mind. This approximation remains acceptable
for n � |θ̇ |, but becomes misleading on approach to the physically-interesting resonances.

9.2 An oversight in a popular formula

The form in which our approximation (121–124) is cast may appear awkward. Specifically,
expression (124) for the despinning rate θ̈ is written as a function of θ̇ and n, multiplied by
the factor K. This form would be reasonable, were K a constant. That it is not—can be seen
from the presence of the multiplier n/χ2200 = n

2 | �
θ −n|

on the right-hand side of (124).

Still, when written in this form, our result is easy to juxtapose with an appropriate for-
mula from Correia and Laskar (2004, 2009). There, the expression for the despinning rate
looks similar to ours, up to an important detail: the overall factor is a constant, because it
lacks the said multiplier n

χ2200
. The multiplier was lost in those two papers, because the

quality factor was introduced there as 1/(n �t), see the line after formula (9) in Correia and
Laskar (2009). In reality, the quality factor Q should, of course, be a function of the tidal
frequency χ , because Q serves the purpose of describing the tidal damping at this frequency.
Had the quality factor been taken as 1/(χ �t), it would render the corrected MacDonald
model (α = −1), and the missing multiplied would be there. Being unphysical,21 the model
is mathematically convenient, because it enables one to write down the secular part of the
torque in a compact form, avoiding the expansion into a series (Williams and Efroimsky
2012). The model was pioneered by Singer (1968) and employed by Mignard (1979, 1980);
Hut (1981) and other authors.

Interestingly, in the special case of the 3:2 spin–orbit resonance, we have χ = n. Still,
the difference between χ and n in the vicinity of the resonance may alter the probability of
entrapment of Mercury into this rotation mode. The difference between χ and n becomes even
more considerable near the other resonances of interest. So the probabilities of entrapment
into those resonances must be recalculated.

10 Conclusions

The goal of this paper was to lay the ground for a model of tidal entrapment into spin–orbital
resonances. To this end, we approached the tidal theory from the first principles of solid-state
mechanics. Starting from the expression for the material’s compliance in the time domain,
we derived the frequency-dependence of the Fourier components of the tidal torque. The
other torque, one caused by the triaxiality of the rotator, is not a part of this study and will
be addressed elsewhere.

– We base our work on the Andrade rheological model, providing arguments in favour of its
applicability to the Earth’s mantle, and therefore, very likely, to other terrestrial planets
and moons. The model is also likely to apply to the icy moons (Castillo-Rogez et al.

20 For example, in the case of α > −1, formulae (118–120) render infinite values for �tlmpq and εlmpq on
crossing the commensurability, i.e., when ωlmpq goes through zero.
21 To be exact, the model is unphysical everywhere except in the closest vicinity of the resonance—see
formulae (88–90).
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2011). We have reformulated the model in terms of a characteristic anelastic timescale
τA (the Andrade time). The ratio of the Andrade time to the viscoelastic Maxwell time,
ζ = τA/τM , serves as a dimensionless free parameter of the rheological model.
The parameters τA , τM , ζ cannot be regarded constant, though their values may be chang-
ing very slowly over vast bands of frequency. The shapes of these frequency-dependencies
may depend on the dominating dissipation mechanisms and, thereby, on the magnitude
of the load, as different damping mechanisms get activated under different loads.
The main question here is whether, in the low-frequency limit, anelasticity becomes much
weaker than viscosity. (That would imply an increase of τA and ζ as the tidal frequency
χ goes down.) The study of ices under weak loads, with friction caused mainly by lat-
tice diffusion (Castillo-Rogez et al. 2011; Castillo-Rogez and Choukroun 2010) has not
shown such a decline of anelasticity. However, Karato and Spetzler (1990) point out that it
should be happening in the Earth’s mantle, where the loads are much higher and damping
is caused mainly by unpinning of dislocations. According to Karato and Spetzler (1990),
in the Earth, the decrease of the role of anelasticity happens abruptly as the frequency
falls below the threshold χ0 ∼1 year−1. We then may expect a similar switch in the other
terrestrial planets and the Moon, though there the threshold may be different as it is sen-
sitive to the temperature of the mantle. The question, though, remains if this statement is
valid also for the small bodies, in which the tidal stresses are weaker and dissipation may
be dominated by lattice diffusion.

– We have derived the frequency dependencies of the factors kl sin εl emerging in the tidal
theory. Naturally, the obtained dependencies of these factors upon the tidal frequency
χlmpq (or, more exactly, upon the tidal mode ωlmpq ) mimic the frequency-dependence of
the imaginary part of the complex compliance. They scale as ∼ χ−α with 0 < α < 1, at
higher frequencies; and as ∼ χ−1 at lower frequencies. However in the zero-frequency
limit the factors kl sin εl demonstrate a behaviour inherent in the tidal lagging and absent
in the case of lagging in a sample: in a close vicinity of the zero frequency, these factors
(and the appropriate components of the tidal torque) become linear in the frequency. This
way, kl sin εl first reaches a finite maximum, then decreases continuously to nil as the
frequency approaches to zero, and then changes its sign. So the resonances are crossed
continuously, with neither the tidal torque nor the tidal force diverging there. For example,
the leading term of the torque vanishes at the synchronous orbit.
The continuous traversing of resonances was pointed out in a heuristic manner by Efroim-
sky and Williams (2009). Now we have derived this result directly from the expression
for the compliance of the material of the rotating body. Our treatment however has a flaw:
the frequency, below which the factors kl sin εl and the appropriate components of the
torque change their frequency-dependence to linear, is very low (lower than 10−10 Hz, if
we take our formulae literally). The reason for this is that we kept using the known value
of the Maxwell time τM all the way down to the zero frequency. Possible changes of the
Maxwell time in the zero-frequency limit may broaden the region of linear dependence.

– We have offered an explanation of the “improper” frequency-dependence of dissipation in
the Moon, discovered by LLR. The main point of our explanation is that the LLR measures
the tidal dissipation whose frequency-dependence is different from that of the seismic
dissipation. Specifically, the “wrong” sign of the exponential in the power dissipation
law may indicate that the frequencies at which tidal friction was observed were below the
frequency at which the lunar k2 sin ε2 has its peak. Taken the relatively high frequencies
of observation (corresponding to periods of order month to year), this explanation can be
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accepted only if the lunar mantle has a low mean viscosity. This may be the case, taken
the presumably high concentration of the partial melt in the low mantle.

– We have developed a detailed formalism for the tidal torque, and have singled out its
oscillating component.
The studies of entrapment into spin–orbit resonances, performed in the past, took into
account neither the afore-mentioned complicated frequency-dependence of the torque in
the vicinity of a resonance, nor the oscillating part of the torque.
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Appendix

A Interconnection between the quality factor and the phase lag

The power P exerted by a tide-raising secondary on its primary can be written as

P = −
∫

ρ V · ∇W d3x (126)

ρ, V, and W signifying the density, velocity, and tidal potential in the small volume d3x of

the primary. Since ∇ · (ρ V) + ∂ρ
∂t = 0, the dot product takes the form of

ρ V · ∇W = ∇ · (ρ V W ) − ρ W ∇ · V − V W ∇ρ. (127)

Under the realistic assumption of the primary’s incompressibility, the term with ∇ · V may
be omitted. To get rid of the term with ∇ρ, one has to accept a much stronger approximation
of the primary being homogeneous. Then the power will be rendered by

P = −
∫

∇ · (ρ V W ) d3x = −
∫

ρ W V · n d S, (128)

n being the outward normal and d S being an element of the surface area of the primary. This
expression for the power (pioneered, probably, by Goldreich 1963) enables one to calculate
the work through radial displacements only, in neglect of horizontal motion.

Denoting the radial elevation with ζ , we write the power per unit mass, P ≡ P/M , as:

P =
(

−∂W

∂r

)
V · n =

(
−∂W

∂r

)
dζ

dt
. (129)

A harmonic external potential

W = W0 cos(ωlmpq t), (130)

applied at a point of the primary’s surface, will elevate this point by

ζ = h2
Wo

g
cos

(
ωlmpq t − εlmpq

)
= h2

Wo

g
cos

(
ωlmpq t − ωlmpq �tlmpq

)
, (131)

with g being the surface gravity acceleration, and h2 denoting the Love number.
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In formula (131), ωlmpq is one of the modes (101) showing up in the Darwin–Kaula
expansion (99). The quantity εlmpq = ωlmpq �tlmpq is the corresponding phase lag, while
�tlmpq is the positively defined time lag at this mode. Although the tidal modes ωlmpq can
assume any sign, both the potential W and elevation ζ can be expressed via the positively
defined forcing frequency χlmpq = | ωlmpq | and the absolute value of the phase lag:

W = W0 cos(χ t), (132)

ζ = h2
Wo

g
cos(χ t − | ε |), (133)

subscripts lmpq being dropped here and hereafter for brevity.
The vertical velocity of the considered element of the primary’s surface will be

dζ

dt
= −h2χ

Wo

g
sin(χ t − |ε|) = −h2χ

Wo

g
(sin χ t cos |ε| − cos χ t sin |ε|) . (134)

Introducing the notation A = h2
W0
g

∂W0
∂r , we write the power per unit mass as

P =
(

−∂W

∂r

)
dζ

dt
= A χ cos(χ t) sin(χ t − |ε|), (135)

and express the work w per unit mass, performed over a time interval (t0, t), as:

w|t
t0

=
t∫

t0

P dt = A

χ t∫

χ t0

cos(χ t) sin(χ t − |ε|)d(χ t)

= A cos |ε|
χ t∫

χ t0

cos z sin z dz − A sin |ε|
χ t∫

χ t0

cos2 z dz

= − A

4
[cos(2χ t − |ε|) + 2 χ t sin |ε| ]t

t0
. (136)

Being cyclic, the first term in (136) renders the elastic energy stored in the body. The second
term, being linear in time, furnishes the energy damped. This clear interpretation of the two
terms was offered by Stan Peale (2011, personal communication).

The work over a time period T = 2π/χ is equal to the energy dissipated over the period:

w|t=T

t=0 = �Ecycle = −A π sin |ε|. (137)

The peak work is obtained over the time span from π to |ε| and assumes the value

E
(work)

peak
= A

2

[
cos |ε| − sin |ε|

(π

2
− |ε|

)]
, (138)

whence the appropriate quality factor is given by:

Q−1
work

= −�Ecycle

2 π E
(work)

peak

= tan |ε|
1 −

(
π
2 − |ε|

)
tan |ε|

. (139)

To calculate the peak energy stored in the body, we would note that the first term in (136)
is maximal when taken over the span from χ t = π/4 + |ε|/2 through χ t = 3π/4 + |ε|/2:

E
(energy)

peak
= A

2
, (140)
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and the corresponding quality factor is:

Q−1
energy

= −�Ecycle

2 π E
(energy)

peak

= sin |ε|. (141)

Goldreich (1963) suggested to employ the span χ t = (0, π/4). The absolute value of
the resulting power, denoted by Goldreich as E∗, is equal to

E∗ = A

2
cos |ε| (142)

and is neither the peak value of the energy stored, nor that of the work performed. Goldreich
(1963) however employed it to define a quality factor, which we shall term QGoldreich :

Q−1
Goldreich

= −�Ecycle

2 π E∗ = tan |ε|. (143)

The quality factor Qenergy defined through (141) is preferable, as the expansion of tides
contains terms proportional to kl(χlmpq ) sin εl(χlmpq ). Since the long-established tradition
suggests to substitute sin |ε| with 1/Q, it is advisable to define the Q exactly as (141), and
also to call it Ql , to distinguish it from the seismic quality factor (Efroimsky 2012).

B The correspondence principle (elastic-viscoelastic analogy)

B.1 The correspondence principle, for nonrotating bodies

While the static Love numbers depend on the static rigidity μ through (3), it is not imme-
diately clear if a similar formula interconnects also k̄l(χ) with μ̄(χ). To understand why
and when the relation should hold, recall that formulae (3) originate from the solution of a
boundary-value problem for a system incorporating two equations:

σβν = 2μ uβν ,

0 = ∂σβν

∂xν

− ∂p

∂xβ

− ρ
∂(W + U )

∂xβ

, (144a)

the latter being simply the equation of equilibrium written for a static viscoelastic medium,
in neglect of compressibility and heat conductivity. The notations σβν and uβν stand for the

deviatoric stress and strain, p ≡ −1
3 Sp S is the pressure (set to be nil in incompressible

media), while W and U are the perturbing and perturbed potentials. By solving the system,
one arrives at the static relation Ul = kl Wl , with the customary static Love numbers kl

expressed via ρ, R, and μ by (3).
Generalise (144a–144a) to the case of time-dependent loading of a nonrotating body:

S = 2 μ̂ U, (145a)

ρ ü = ∇S − ∇ p − ρ ∇(W + U ) (145b)

or, in terms of components:

σβν = 2μ̂ uβν , (146a)

ρ üβ = ∂σβν

∂xν

− ∂p

∂xβ

− ρ
∂(W + U )

∂xβ

. (146b)
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In the frequency domain, this will look:

σ̄βν (χ) = 2 μ̄(χ) ūβν (χ), (147a)

ρ χ2 ūβν (χ) = ∂σ̄βν (χ)

∂xν

− ∂ p̄(χ)

∂xβ

− ρ
∂

[
W̄ (χ) + Ū (χ)

]

∂xβ

, (147b)

where a bar denotes a spectral component for all functions except μ—recall that μ̄ is a
spectral component not of the kernel μ(τ) but of its time-derivative μ̇(τ ).

Unless the frequencies are extremely high, we can neglect the body-fixed acceleration term
χ2 ūβν (χ) in the second equation, in which case our system of equations for the spectral
components will mimic (144). Thus we arrive at the so-called correspondence principle (also
known as the elastic-viscoelastic analogy), which maps a solution of a linear viscoelastic
boundary-value problem to a solution of a corresponding elastic problem with the same initial
and boundary conditions. As a result, the algebraic equations for the Fourier (or Laplace)
components of the strain and stress in the viscoelastic case mimic the equations connecting
the strain and stress in the appropriate elastic problem. So the viscoelastic operational moduli
μ̄(χ) or J̄ (χ) obey the same algebraic relations as the elastic parameters μ or J .

In the literature, there is no consensus on the authorship of this principle. For example,
Haddad (1995) mistakenly attributes it to several authors who published in the 1950s and
1960s. In reality, the principle was pioneered almost a century earlier by Darwin (1879), for
isotropic incompressible media. The principle was extended to more general types of media
by Biot (1954, 1958), who also pointed out some limitations on its applicability.

B.2 The correspondence principle, for rotating bodies

Consider a body of mass Mprim , which is spinning at a rate ω and is also performing some
orbital motion (for example, is orbiting, with its partner of mass Msec, around their mutual
centre of mass). Relative to some inertial coordinate system, the centre of mass of the body
is located at xC M , while a small parcel of its material is positioned at x. Relative to the centre
of mass of the body, the parcel is located at r = x − xC M . The body being deformable, we
can decompose r into its average value, r0, and an instantaneous displacement u:

x = xC M + r
r = r0 + u

}
�⇒ x = xC M + r0 + u. (148)

Denote with D/Dt the time-derivative in the inertial frame. The symbol d/dt and overdot
will be reserved for the time-derivative in the body frame, so dr0/dt = 0. Then

Dr
Dt

= dr
dt

+ ω × r and
D2r
Dt2 = d2r

dt2 + 2ω × dr
dt

+ ω × (ω × r) + ω̇ × r. (149)

Together, the above formulae result in

D2x
Dt2 = D2xC M

Dt2 + D2r
Dt2 = D2xC M

Dt2 + d2r
dt2 + 2ω × dr

dt
+ ω × (ω × r) + ω̇ × r

= D2xC M

Dt2 + d2u
dt2 + 2ω × du

dt
+ ω × (ω × r) + ω̇ × r. (150)

The equation of motion for a small parcel of the body’s material will read as

ρ
D2x
Dt2 = ∇S − ∇ p + Fsel f + Fext , (151)
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where Fext is the exterior gravity force per unit volume, while Fsel f is the “interior” gravity
force per unit volume, i.e., the self-force wherewith the rest of the body is acting upon the
selected parcel of medium. Insertion of (150) in (151) furnishes:

ρ

[
D2xC M

Dt2 + U + 2ω× �
u +ω × (ω × r) + ω̇ × r

]
= ∇S − ∇ p + Fsel f + Fext . (152)

At the same time, for the primary body as a whole, we can write:

Mprim
D2xC M

Dt2 =
∫

V

Fext d3r, (153)

the integration being carried out over the volume V of the primary. (Recall that Fext is a force
per unit volume.) Combined together, the above two equations will result in

ρ
[
U + 2 ω× �

u +ω × (ω × r) + ω̇ × r
]

= ∇S − ∇ p + Fsel f + Fext − ρ

Mprim

∫

V

Fext d3r. (154)

For a spherically-symmetrical (not necessarily radially-homogeneous) body, the integral on
the right-hand side removes the Newtonian part of the force, leaving the harmonics intact:

Fext − ρ

Mprim

∫

V

Fext d3r = ρ

∞∑

l=2

∇Wl , (155)

where the harmonics are given by

Wl(r, r∗) = −GMsec

r∗
( r

r∗
)l

Pl(cos γ ), (156)

r∗ being the vector pointing from the centre of mass of the primary to that of the secondary,
and γ being the angle between r and r∗, subtended at the centre of mass of the primary.

In reality, a tiny extra force F , the tidal force per unit volume, is left over due to the body
being slightly distorted:

Fext − ρ

Mprim

∫

V

Fext d3r = ρ

∞∑

l=2

∇Wl + F, (157)

where F is the density multiplied by the average tidal acceleration experienced by the body
as a whole. In neglect of F , we arrive at

ρ
[
U + 2 ω× �

u +ω × (ω × r) + U × r
]

= ∇S − ∇ p − ρ

∞∑

l=2

∇(Ul + Wl). (158)

Here, to each disturbing term of the exterior potential, Wl , corresponds a term Ul of the
self-potential, the self-force thus being expanded into Fsel f = −∑∞

l=2 ∇Ul .
Equation (158) could as well have been derived in the body frame.
Denoting the tidal frequency with χ , we see that the terms on the left-hand side have the

order of ρ χ2 u, ρ ω χ u, ρ ω2 r , and ρ χ̇ ω r , correspondingly. In realistic situations, the first
two terms, thus, can be neglected, and we end up with
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0 = ∇S − ∇ p − ρ

∞∑

l=2

∇(Ul + Wl) − ρ ω × (ω × r) − ρ ω̇ × r, (159)

the term −∇ p vanishing in an incompressible media.

B.3 The centripetal term and the zero-degree Love number

The centripetal term in (159) can be split into a purely radial part and a part that can be
incorporated into the W2 term of the tide-raising potential, as was suggested by Love (1909,
1911). Introducing the colatitude φ ′ through cos φ ′ = ω

|ω| · r
|r| , we can write:

ω × (ω × r)=ω (ω · r) − r ω2 =∇
[

1

2
(ω · r)2− 1

2
ω2 r 2

]
=∇

[
1

2
ω2 r2 (

cos2 φ ′−1
)
]
.

The definition P2(cos φ ′) = 1
2

(
3 cos2 φ ′ − 1

)
renders: cos2 φ ′ = 2

3 P2(cos φ ′) + 1
3 ,

whence:

ω × (ω × r) = ∇
[

1

3
ω2 r2 [

P2
(
cos φ ′) − 1

]
]
. (160)

We see that the centripetal force splits into a second-harmonic and purely-radial parts:

− ρ ω × (ω × r) = −∇
[ρ

3
ω2 r2 P2

(
cos φ ′)] + ∇

[ ρ

3
ω2 r2

]
, (161)

where we assume the body to be homogeneous. The second-harmonic part can be incorpo-
rated into the external potential. The response to this part will be proportional to the degree-2
Love number k2.

The purely radial part of the centripetal potential generates a radial deformation. This
part of the potential is often ignored, the associated deformation being tacitly included
into the equilibrium shape of the body. Compared to the main terms of the equation of
motion, this radial term is of the order of 10−3 for the Earth, and is smaller for most other
bodies. As the rotation variations of the Earth are of the order of 10−5, this term leads
to a tiny change in the geopotential and to an associated displacement of the order of a
micrometer.22

However, for other rotators the situation may be different. For example, in Phobos, whose
libration magnitude is large (about 1 degree), the radial term may cause an equipotential-
surface variation of about 10 cm. This magnitude is large enough to be observed by future
missions and should be studied in more detail.23 The emergence of the purely radial defor-
mation gives birth to the zero-degree Love number (Dahlen 1976; Matsuyama and Bills
2010). Using Dahlen’s results, Yoder (1982, eqns 21–22) demonstrated that the contribution
of the radial part of the centripetal potential to the change in mean motion of Phobos is about
3%, which is smaller than the uncertainty in our knowledge of Phobos’ k2/Q. It should be
mentioned, however, that the calculations by Dahlen (1976) and Matsuyama and Bills (2010)
were performed for steady (or slowly changing) rotation, and not for libration. So Yoder’s
application of Dahlen’s result to Phobos requires extra justification.

What is important for us here is that the radial term does not interfere with the calcula-
tion of the Love numbers of non-zero degree. Being independent of the longitude, this term
generates no tidal torque either, provided the obliquity is neglected.

22 Tim Van Hoolst, private communication.
23 Tim Van Hoolst, private communication.

123



Bodily tides near spin–orbit resonances 323

B.4 The toroidal term

The inertial term −ρ ω̇ × r in the equation of motion (159) can be cast into the form

− ρ ω̇ × r = ρ r × ∇(ω̇ · r), (162)

whence we see that this term is of a toroidal type. Being almost nil for a despinning primary,
this force becomes important for a librating object.

In spherically-symmetric bodies, the toroidal force (162) generates toroidal deformation
only. The latter produces neither radial uplifts nor variations of the gravitational potential.
Hence its presence does not influence the expressions for the Love numbers associated with
vertical displacement (hl ) or the potential (kl ). As this deformation yields no change in the
gravitational potential of the tidally-perturbed body, it generates no tidal torque either. Being
divergence-free, this deformation entails no contraction or expansion, i.e., it is purely shear.
Still, this deformation contributes to dissipation. Besides, since the toroidal forcing yields
toroidal deformation, it can, in principle, be associated with a “toroidal Love number”.

To estimate the dissipation caused by the toroidal force, Yoder (1982) introduced an equiv-
alent effective torque. He pointed out that the force gets important when the magnitude of the
physical libration is comparable to that of the optical libration. According to Yoder (1982),
the toroidal force contributes to the change of Phobos’ mean motion about 1.6%, which is
less than the input from the purely radial part.

C The Andrade and Maxwell models at different frequencies

C.1 Response of a sample obeying the Andrade model

Within the Andrade model, the tangent of the phase lag demonstrates the so-called “elbow
dependence”. At high frequencies, the tangent of the lag obeys a power law with an exponent
equal to −α, where 0 < α < 1. At low frequencies, the tangent of the lag once again obeys a
power law, this time though with an exponent −(1 − α). This model fits well the behaviour
of ices, metals, silicate rocks, and many other materials.

However the applicability of the Andrade law may depend on the intensity of the load
and, accordingly, on the damping mechanisms involved. Situations are known, when, at low
frequencies, anelasticity becomes much less efficient than viscosity, and the Andrade model
approaches the Maxwell model.

C.1.1. The high-frequency band

At high frequencies, expression (85b) gets simplified. In the numerator, the term with z−α

dominates: z−α � z−1 ζ , which is equivalent to z � ζ

1
1−α . In the denominator, the constant

term dominates: 1 � z−α , or simply: z � 1. To know which of the two conditions, z � ζ

1
1−α

or z � 1, is stronger, we recall that at high frequencies anelasticity beats viscosity. So the
α-term in (81) is large enough. In other words, the Andrade timescale τA should be smaller
(or, at least, not much higher) than the viscoelastic time τM . Accordingly, at high frequen-
cies, ζ is smaller (or, at least, not much higher) than unity. Hence, within the high-frequency

band, either the condition z � 1 is stronger than z � ζ

1
1−α or the two conditions are about

equivalent. This, along with (86) and (87) enables us to write:
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tan δ ≈ (χ τA )
−α

sin
(α π

2

)
�(α + 1) for χ � τ−1

A
= τ−1

M
ζ−1. (163)

The tangent being small, the expression for sin δ looks identical:

sin δ ≈ (χ τA )
−α

sin
(α π

2

)
�(α + 1) for χ � τ−1

A
= τ−1

M
ζ−1. (164)

C.1.2. The intermediate region

In the intermediate region, the behaviour of the phase lag δ depends upon the frequency-
dependence of ζ . For example, if there happens to exist an interval of frequencies over which

the conditions 1 � z � ζ

1
1−α are obeyed, then over this interval we shall have: 1 � z−α

and z−α � ζ z−1. Applying these inequalities to (85b), we see that over such an interval of

frequencies tan δ will behave as z−2α tan
(

α π
2

)
.

C.1.3 The low-frequency band

At low frequencies, the term z−1 ζ becomes leading in the numerator of (85b): z−α � z−1 ζ ,

which requires z � ζ

1
1−α . In the denominator, the term with z−α becomes the largest:

1 � z−α , whence z � 1. Since at low frequencies the viscous term in (81) is larger
than the anelastic term, we expect that for these frequencies ζ is larger (at least, not much
smaller) than unity. Thence the condition z � 1 becomes sufficient. Its fulfilment ensures

the fulfilment of z � ζ

1
1−α . Thus we state:

tan δ ≈ (χ τA )
−(1−α) ζ

cos
(

α π
2

)
�(α + 1)

for χ � τ−1
A

= τ−1
M

ζ−1. (165)

The appropriate expression for sin δ will be:

sin δ ≈ 1 − O
(
(χ τA )2(1−α) ζ−2

)
for χ � τ−1

A
= τ−1

M
ζ−1, (166)

It would be important to emphasise that the threshold τ−1
A

= τ−1
M

ζ−1 standing in (163)
and (164) is different from the threshold τ−1

A
= τ−1

M
ζ−1 showing up in (165) and (166),

even though these two thresholds are given by the same expression. The reason for this is
that the timescales τA and τM are not fixed constants. While the Maxwell time is likely to be
a very slow function of the frequency, the Andrade time may undergo a faster change over
the transitional region: τA must be larger than τM at low frequencies (so anelasticity yields
to viscosity), and must become shorter than or of the order of τM at high frequencies (so
anelasticity becomes stronger). This way, the threshold τ−1

A
standing in (165–166) is lower

than the threshold τ−1
A

standing in (163–164). The gap between these thresholds is the region
intermediate between the two pronounced power laws (163) and (165).

C.1.4 The low-frequency band: a special case, the Maxwell model

Suppose that, below some threshold χ0 , anelasticity quickly becomes much less efficient than
viscosity. This would imply a steep increase of ζ (equivalently, of τA ) at low frequencies.
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Then, in (85b), we shall have: 1 � z−α and z−α � ζ z−1. This means that, for frequencies
below χ0 , the tangent will behave as

tan δ ≈ z−1 ζ = (χ τM )−1 for χ � χ0 . (167)

the well-known viscous scaling law for the lag.
The study of ices and minerals under weak loads (Castillo-Rogez et al. 2011; Castillo-

Rogez and Choukroun 2010) has not shown such an abrupt vanishing of anelasticity. However,
Karato and Spetzler (1990) point out that this should be happening in the Earth’s mantle,
where the loads are much higher and anelasticity is caused by unpinning of dislocations.

C.2 The behaviour of |kl (χ)| sin εl (χ) = −Im
[
k̄l (χ)

]
within the Andrade and Maxwell

models

As we explained in Sect. 4.1, products kl (χlmpq ) sin εl (χlmpq ) enter the lmpq term of the
Darwin–Kaula series for the tidal potential, force, and torque. Hence the importance to know
the behaviour of these products as functions of the tidal frequency χlmpq .

C.2.1 Prefatory algebra

It ensues from (64) that

k̄l (χ)= 3

2 (l − 1)

(
Re

[
J̄ (χ)

])2+(
Im

[
J̄ (χ)

])2+ Al J Re
[
J̄ (χ)

] +i Al J Im
[
J̄ (χ)

]

(
Re

[
J̄ (χ)

] + Al J
)2+(

Im
[
J̄ (χ)

])2 ,

(168)

whence

|k̄l (χ)| sin εl (χ) = −Im
[
k̄l (χ)

] = 3

2 (l − 1)

−Al JIm
[
J̄ (χ)

]

(
Re

[
J̄ (χ)

] + Al J
)2 + (

Im
[
J̄ (χ)

])2 ,

(169)

J = J (0) ≡ 1/μ = 1/μ(0) being the unrelaxed compliance (the inverse of the unrelaxed
shear modulus μ). For an Andrade material, the compliance J̄ in the frequency domain is
rendered by (82). Its imaginary and real parts are given by (83–84). It is then easier to rewrite
(169) as

|k̄l (χ)| sin εl (χ) = 3 Al

2 (l − 1)

×
ζ z−1 + z−α sin

(
α π
2

)
�(α + 1)

[
Al + 1 + z−α cos

(
α π
2

)
�(α + 1)

]2 +
[
ζ z−1 + z−α sin

(
α π
2

)
�(1 + α)

]2 ,

(170)

where

z ≡ χ τA = χ τM ζ (171)

and

ζ ≡ τA/τM . (172)
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For β → 0, i.e., for τA → ∞, (170) coincides with the appropriate expression for a spherical
Maxwell body.

C.2.2 The high-frequency band

Within the upper band, the term with z−α dominates the numerator, while Al + 1 dominates

the denominator. The dominance of z−α in the numerator requires that z � ζ

1
1−α , which is:

χ τM � ζ

α
1−α

.

The dominance of Al + 1 in the denominator means: z � (Al + 1)
−1/α

, which is the same
as

χ τM � ζ−1 (Al + 1)
−1/α

.

The dominance of Al + 1 also demands that ζ z−1 � (Al + 1), which is:

χ τM � (Al + 1)−1.

Simultaneous fulfilment of all these conditions entails:

|k̄l (χ)| sin εl (χ)≈ 3

2 (l − 1)

Al

(Al + 1)2 sin
(α π

2

)
�(α + 1) ζ−α

(
τM χ

)−α
, for χ � χH I ,

(173a)

where the boundary between the high and intermediate frequencies, χH I , is defined as the

quantity largest among τ−1
M

ζ

α
1−α , τ−1

M
ζ−1 (Al + 1)

−1/α
, and τ−1

M
(Al + 1)−1.

For small terrestrial objects, Al � 1 (Efroimsky 2012). As at high frequencies anelas-
ticity beats viscosity, ζ may be of order unity or slightly less than unity (not by orders of

magnitude, likely). Hence for small bodies and small terrestrial planets χH I = τ−1
M

ζ

α
1−α .

For solid bodies much larger than the Earth, Al � 1 (see Efroimsky 2012). Hence for
large terrestrial exoplanets χH I = τ−1

M
ζ−1.

C.2.3 The intermediate band

Within the intermediate band, the term ζ z−1 takes over in the numerator, while Al + 1
still dominates in the denominator. The dominance of ζ z−1 in the numerator implies that

z � ζ

1
1−α , which is equivalent to

χ τM � ζ

α
1−α

.

The dominance of Al + 1 in the denominator requires, as we just saw:

χ τM � ζ−1 (Al + 1)
−1/α

and

χ τM � (Al + 1)−1.
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We are considering the band where the efficiency of viscosity is either comparable or exceeds
that of anelasticity. Accordingly, ζ is about or larger than unity. Then, of the two above-written
inequalities, the latter is stronger, for any Al . Thus we obtain:

|k̄l (χ)| sin εl (χ)≈ 3

2 (l − 1)

Al

(Al + 1)2

(
τM χ

)−1
, for τ−1

M
ζ

α
1−α �χ �τ−1

M
(Al +1)−1.

(173b)

C.2.4 The low-frequency band

For frequencies lower than τ−1
M

(Al +1)−1, a self-gravitating Andrade body renders the same
frequency-dependency as a self-gravitating Maxwell body:

|k̄l (χ)| sin εl (χ) ≈ 3

2 (l − 1)
Al τM χ, for τ−1

M
A−1

l
� χ. (173c)
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