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Abstract The aim of this paper is to study the global geometry of non-planar 3-body
motions in the realms of equivariant Differential Geometry and Geometric Mechanics. This
work was intended as an attempt at bringing together these two areas, in which geomet-
ric methods play the major role, in the study of the 3-body problem. It is shown that the
Euler equations of a three-body system with non-planar motion introduce non-holonomic
constraints into the Lagrangian formulation of mechanics. Applying the method of undeter-
mined Lagrange multipliers to study the dynamics of three-body motions reduced to the level
of moduli space M̄ subject to the non-holonomic constraints yields the generalized Euler-
Lagrange equations of non-planar three-body motions in M̄ . As an application of the derived
dynamical equations in the level of M̄ , we completely settle the question posed by A. Wintner
in his book [The analytical foundations of Celestial Mechanics, Sections 394–396, 435 and
436. Princeton University Press (1941)] on classifying the constant inclination solutions of
the three-body problem.

Keywords Three-body problem · Kinematic geometry ·
Non-holonomic mechanical systems · Generalized Euler-Lagrange equations ·
Constant inclination solutions

1 Introduction

Mechanics is quite obviously geometric, yet the traditional approach to the subject is based
mainly on differential equations. This approach was recently augmented using modern geo-
metric methods such as differential geometry and the theory of Lie groups and Lie algebras
to reveal qualitative aspects of the theory; the newborn field is known as geometric mechan-
ics. In particular, classical and celestial mechanics, as the oldest branches of science, have
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undergone a long evolution since 1687, the year of publication of Newton’s Principia math-
ematica.

In his study of mechanics around 1840, Jacobi initiated a geometric approach by refor-
mulating Lagrange’s least action principle; but, due to the lack of necessary mathematical
tools at that time such as topology, fiber bundles, Lie groups, etc., the approach was eventu-
ally abandoned by Jacobi himself who switched over to the new Hamiltonian approach
and developed the theory jointly with Hamilton. However, his original ideas were not for-
gotten because modern topology and differential geometry grew out of Jacobi’s geomet-
ric approach a few decades later when Riemann and Poincaré developed the ideas in a
more general mathematical setting, which continued into the twentieth century. But Jacobi’s
original approach, as applied to the 3-body problem, has somehow been overlooked. In recent
years, work of Hsiang and Straume (2007, 2008) has revitalized the Riemannian geomet-
ric approach to the 3-body problem—in the framework of modern equivariant differential
geometry.

In this paper, our purpose is to bring together the frameworks of equivariant differential
geometry and geometric mechanics in the study of the general 3-body problem. For non-
planar 3-body motions, we derive the generalized Euler-Lagrange equations in the level of
moduli space M̄ . As an application of the derived dynamical equations, a problem raised by
Wintner (1941) on the classification of constant inclination solutions of the 3-body problem
is answered.

According to Wintner’s description of the 3-body problem in space, the equations of
motions can be written as a three-degrees-of-freedom non-autonomous Hamiltonian sys-
tem, where the variables are the three mutual distances, their conjugate momenta, and
time which is taken as the inclination ψ of the plane of motion (i.e., the plane of the m-
triangle formed by the three bodies) with respect to the invariable plane (i.e., the plane
passing through the center of mass and perpendicular to the angular momentum vector).
This program has been carried out by Wintner (1941). If the inclination ψ = ψ(t) is
not constant along a solution curve, then the time can be eliminated from the Hamilto-
nian, giving rise to an autonomous Hamiltonian system with three degrees of freedom by
having the inclination as the time. This makes it important to classify all the solutions
of the three-body problem for which the inclination is constant. An obvious case is that
of planar motions, where ψ = 0. But ψ(t) = constant is possible for some non-pla-
nar motions as well, namely two classes of isosceles three-body motions with ψ = π/2:
those having the line of the angular momentum (which lies on the plane of motion with
this inclination) and the other having the line of nodes (i.e., the line of intersection of the
plane of motion and the invariable plane) as the symmetry axis of the isosceles triangles.
In his study of constant inclination solutions, Cabral (1990) proved that those isosceles
solutions are the only ones with ψ = π/2, while leaving the question of whether or not
there exist solutions with constant inclination between 0 and π/2 as an interesting open
problem.

We study the problem of existence of these constant inclination solutions in Sect. 4; in
fact, we show that the planar solutions and the two types of non-planar isosceles ones are the
only constant inclination solutions of the Newtonian three-body problem.

2 The setting

Let �3 denote the Euclidean 3-space. We consider three bodies of massesmi, i = 1, 2, 3, in
�3 and study their motions under Newtonian attraction.

123



Global geometry of non-planar 3-body motions 467

2.1 The local and global characterization of 3-body trajectories

The classical 3-body problem in Celestial Mechanics studies the local and global geometry
of trajectories of a 3-body system as a conservative system with potential energy −U , where

U =
∑

i<j

mimj

rij
(1)

is the Newtonian potential function and rij = ∣∣ai − aj
∣∣ are the mutual distances. Heremi > 0

are the masses, and ai = (xi, yi, zi) are the position vectors in Euclidean 3-space with respect
to an inertial frame. Then the trajectories are locally characterized by Newton’s equations

mi äi = ∂U

∂ai
= mimj

r3
ij

(
aj − ai

) + mimk

r3
ik

(ak − ai ) , {i, j, k} = {1, 2, 3} . (2)

This equation is a 2-order ODE in Euclidean space �9, and hence a trajectory is completely
determined by the initial positions and velocities of the particles—in agreement with the
deterministic laws of classical mechanics.

The basic kinematic quantities are

I =
∑

mi |ai |2 , T = 1

2

∑
mi |ȧi |2 , � =

∑
mi (ai × ȧi ) (3)

which are, respectively, the total (polar) moment of inertia, kinetic energy, and the angular
momentum. Their interactions with the potential functionU play a major role in the dynamics
of the 3-body problem. In fact, it is fairly easy to deduce the classical conservation laws from
the system (2), namely the invariance of the linear momentum

∑
mi ȧi , that of the angular

momentum vector �, and of the total energy

h = T − U. (4)

On the other hand, the trajectories can be globally characterized using the basic action prin-
ciples in mechanics due to Lagrange and Hamilton. These principles are quite different but
somehow dual to each other. In either case, trajectories can be determined as solutions of
a suitable boundary value problem—namely that for a given pair of points P, Q, what the
trajectories

γ (t) , t0 ≤ t ≤ t1

with γ (t0) =P and γ (t1) = Q are. The solutions are extrema of an action integral J (γ )
of any of the following two types:

Lagrange: J1 (γ ) =
∫

γ

T dt, fixed energy h (5)

Hamilton: J2 (γ ) =
∫

γ

(T + U) dt, fixed time interval [t0, t1] . (6)

Now, as usual, one can utilize the invariance of linear momentum by choosing the origin
of the inertial frame at the center of mass. This reduces the study of 3-body trajectories to
that of the associated time parametrized curves

γ (t) = (a1 (t) , a2 (t) , a3 (t))

in the 6-dimensional Euclidean configuration space

123



468 M. K. Salehani

M =
{
(a1, a2, a3) ;

∑
miai = 0

} ∼= �6. (7)

The geometric reduction method that will be used in this project dates back to Jacobi (1840),
who geometrized classical mechanics by reformulating Lagrange’s least action principle. It
is in fact worth noting that in the action integral J1 (γ ) (as in (5)), time is allowed to vary,
i.e., the limit of integration is not fixed. This awkwardness led Jacobi to suggest that the time
differential be eliminated from J1 (γ ). He introduced the kinematics metric on M

ds2 = 2T dt2 =
∑

mi
(
dx2

i + dy2
i + dz2

i

)
(8)

which represents the kinetic energy. Then, for a fixed energy level h, he considered the
modified dynamical metric

ds2
h = (U + h) ds2 (9)

and observed that
√

2J1 (γ ) = √
2

∫

γ

T dt =
∫

γ

√
U + h ds =

∫

γ

dsh

is the arc-length of the virtual motion γ inM with the Riemannian metric (9). Consequently,
trajectories of Newton’s equations at a fixed energy level h are precisely the geodesics in
M with respect to the metric ds2

h (for further information on this geometric approach, see
Hsiang and Straume 2007, 2008).

2.2 SO (3)-symmetry and reduction to the congruence moduli and shape space level

In order to contribute to Hsiang-Straume’s setting (see e.g., Hsiang and Straume 2007),
we shall assume the following setup. An oriented m-triangle is a pair (X,n), where X =
(a1, a2, a3) represents the position of the 3-body system and n is a unit normal vector (i.e.,
ai · n = 0 for all i). An m-triangle is called degenerate if the three masses are aligned. A
non-degenerate m-triangle is said to be positively (resp. negatively) oriented if (a1, a2,n) is
a right-handed (resp. left-handed) frame at every instant of time. The squared norm of X with
respect to the kinematic metric is the moment of inertia |X|2 = I = ρ2, so ρ is the natural
size function for m-triangles. The rotation group SO (3) acts naturally on m-triangles, and
the SO (3)-orbit of an m-triangle is its congruence class in the usual geometric sense.

It is convenient to replace the Euclidean spaceM in (7) by the space of all orientedm-tri-
angles having the obvious induced action of SO (3) and an invariant kinematic Riemannian
structure. Then, there is the map projection

π : M → M̄ = M/SO (3) ∼= �3 (10)

which identifies the orbit space M̄ , called the congruence moduli space, with the usual
3-space. This fits in such a fashion that the equatorial plane z = 0 represents congruence
classes of degenerate triangles, and the semi-space z > 0 (resp. z < 0) represents positively
(resp. negatively) oriented m-triangles. It turns out that M̄ is homeomorphic to �3, as indi-
cated in (10), and they are also diffeomorphic away from the origin (ρ = 0). Naturally, the
subset M∗ = (ρ = 1) or unit sphere of M̄ represents similarity classes of m-triangles and
is, therefore, called the shape space. Namely, a point in M∗ represents a homothety class
of a triangle (of size ρ > 0), and it is an important fact that the shape space is actually the
2-sphere

M∗ ∼= S2 : x2 + y2 + z2 = ρ4 = 1. (11)
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Global geometry of non-planar 3-body motions 469

However, with the induced metric dσ 2 = ds̄2|M∗ , the shape space is actually a round
sphere of radius 1/2

(
M∗, dσ 2) = S2 (1/2) .

Therefore, as a Riemannian cone overM∗, the kinematic metric on the moduli space M̄ can
be expressed as

ds̄2 = dρ2 + ρ2dσ 2 = dρ2 + ρ2

(
dϕ2 + sin2 ϕdθ2

)

4
, (12)

where (ρ, ϕ, θ) are the spherical coordinates on M̄ ∼= �3, and (ϕ, θ) is any choice of the
spherical polar coordinates on M∗ ∼= S2.

A motion of m-triangles is a parametrized curve t → γ (t) in the 6-dimensional con-
figuration space M . Such a curve may, for example, be a solution of Newton’s equations
and hence represents a solution (or trajectory) of the 3-body problem. The above reduction
technique can replace γ (t) by either its moduli curve or shape curve

γ̄ (t) = (ρ (t) , ϕ (t) , θ (t)) , γ ∗ (t) = (ϕ (t) , θ (t)) (13)

respectively in the 3-dimensional space M̄ = �3 and its 2-sphere M∗ = S2. The kinetic
energy T̄ of γ̄ (t) is encoded by the above metric (12), namely

ds̄2 = 2T̄ dt2, T̄ = T − T ω, (14)

where T ω is the purely rotational kinetic energy of the motion γ (t), which can be determined
explicitly from γ (t) and the angular momentum vector �. The reconstruction of the motion
γ (t) from the knowledge of the curve γ̄ (t), with a given constant angular momentum vector
�, is a purely mechanical lifting procedure in (10), which yields a unique curve γ (t) up to
congruence.

2.3 Kinematics in the configuration space and the Euler equations of motion

The size of an m-triangle X, which is naturally measured by its Euclidean length in the
configuration space M , can also be given by the following mass-dependent inner product

X · Y = m1a1 · b1 +m2a2 · b2 +m3a3 · b3, (15)

where X = (a1, a2, a3) and Y = (b1,b2,b3); this construction is due to Jacobi. For conve-
nience, we define

ω × X = (ω × a1, ω × a2, ω × a3) , ω ∈ �3, (16)

X × Y =
∑

miai × bi ,

for which we have the scalar triple product (also called the mixed product) identity

ω × X · Y = ω · X × Y, ω ∈ �3. (17)

The infinitesimal generators of the SO(3)-action on M are the rotational (or Killing) vector
fields

X → ω × X, ω ∈�3 	 so(3)
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of fixed angular velocity ω. These vectors are tangent to the SO(3)-orbits. Thus, at each X
the tangent space TXM 	 M has an orthogonal decomposition into vertical and horizon-
tal vectors, where the vertical ones are the above Killing vectors ω × X and the horizontal
vectors Y are characterized by X × Y = 0, due to (17).

For any virtual motion X(t) in M , the velocity vector at every instant of time t has the
above-mentioned type of splitting, namely

Ẋ = d

dt
X = Ẋω + Ẋh = (ω × X)+ Ẋh, (18)

where ω = ω(t) is commonly referred to as the (instantaneous) angular velocity of the
motion. Correspondingly, kinetic energy splits as the sum

T = 1

2
|ω × X|2 + 1

2

∣∣∣Ẋh
∣∣∣
2 = T ω + T h (19)

of purely rotational and horizontal kinetic energy, respectively. The motion is called hori-
zontal if the velocity is always horizontal.

Using (17) we can also deduce the following relationship between the angular momentum
and angular velocity of a virtual motion, namely

� = X × Ẋ = X × Ẋω = X × (ω × X). (20)

Indeed, to each m-triangle X, there correspond the inertia operator

IX : �3 → �3, ω 
→ X × (ω × X) (21)

relating the two vectors ω and �, and the inertia tensor

BX (u, v) = (u × X) · (v × X) =
∑

mi (u × ai ) · (v × ai ) , u, v ∈ �3 (22)

which is a bilinear symmetric form on Euclidean 3-space satisfying

BX (u, v) = IX (u) · v.

In the orthogonal splitting (18) of the velocity of a virtual motion X(t), the horizontal com-
ponent can further split into two summands

Ẋh = Ẋρ + Ẋσ = ρ̇

ρ
X + Ẋσ (23)

representing the change in size and shape, respectively. Correspondingly, the total kinetic
energy splits as

T = T ω + T h = T ω + (
T ρ + T σ

) = 1

2
|ω × X|2 +

(
1

2
ρ̇2 + T σ

)
. (24)

Let (X,n) be a non-degenerate oriented m-triangle. It is possible to choose eigenvectors
of the inertia tensor (22) that constitute a positive orthonormal frame

(u1,u2,n) ∈ SO(3),
where u1,u2 lie in the plane of motion spanned by the position vectors of the bodies and
u1 × u2 = n.

By definition, BX (n,n) = I (which explains the name of BX) and

BX (u1,u1) = λ1, BX (u2,u2) = λ2, BX (u1,u2) = 0, (25)

where the two eigenvalues λi can be expressed (Hsiang and Straume 2007) as
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{λ1, λ2} = 1

2

(
I ±

√
I 2 − 16m1m2m3�2

)
= I

2
(1 ± sin ϕ) , (26)

using spherical polar coordinates (ϕ, θ) on the 2-sphere M∗, in which Δ is the area of the
non-degenerate oriented m-triangle (X,n). The eigenvalue in the normal direction ±n is the
largest one

λ3 = λ1 + λ2 = I = ρ2.

To a continuous motion of oriented m-triangles, there corresponds a moving orthonormal
eigenframe

F(t) = {u1(t),u2(t),n(t)} . (27)

In particular, t 
→ F(t) is a parametrized curve in SO(3).
For non-planar 3-body motions, the normal vector n = n (t) of the m-triangles formed

by the three bodies moving along γ (t) = (a1, a2, a3) describes a curve on the 2-sphere S2.
Therefore, the whole 3-body motion is essentially encoded into two spherical curves γ ∗ (t)
and n (t) together with the size function ρ (t).

Let F be the chosen moving intrinsic orthonormal frame along γ (t), where u1,u2 point
in the principal inertia directions in the plane of the m-triangle, and the associated principal
moments of inertia that depend solely on the moduli curve γ̄ (t) be

λ1 = I

2
(1 + sin ϕ) , λ2 = I

2
(1 − sin ϕ) , λ3 = I = λ1 + λ2.

Then the coordinates of the conserved angular momentum vector � relative to the moving
frame F, namely

g1 = � · u1, g2 = � · u2, g3 = � · n, (28)

satisfy the following system of ODEs

ġ1 = g2

[(
1

λ3
− 1

λ2

)
g3 + 1

2
θ̇ cosϕ

]

ġ2 = g1

[(
1

λ1
− 1

λ3

)
g3 − 1

2
θ̇ cosϕ

]
(29)

ġ3 = g1g2

(
1

λ2
− 1

λ1

)
,

which will be referred to as the kinematic Euler equations of motion (Hsiang and Straume
2008). This is a first order system on the 2-sphere of radius |�| and is in fact a natural
generalization of the classical Euler equations for a rigid body (see e.g., Arnold 1978).

We now turn to the angular momentum

� = X × Ẋω = X × (ω × X)

which is usually assumed to be a fixed vector along the z-axis. The expansion

� = g1u1 + g2u2 + g3n (30)

defines its (time-dependent) coordinate vector (g1, g2, g3) relative to the moving frame F(t).
The inner product of � with a vector v may be written as

� · v = (X × ω)× X · v = (X × ω) · (X × v) = BX (ω, v) .
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Hence, by letting v = vi be any of the vectors from F,

gi = � · vi = BX (ω, vi ) = λiω · vi , i = 1, 2, 3,

and the angular velocity reads

ω = g1

λ1
u1 + g2

λ2
u2 + g3

I
n. (31)

It follows from (29)–(31) that

� · ω × n = ġ3, (32)

which may provide an elegant and suggestive viewpoint in the study of non-planar 3-body
motions in general.

In particular, the rotational kinetic energy can be expressed as

T ω = 1

2

∣∣Ẋω
∣∣2 = 1

2
BX(ω, ω) = 1

2

(
g2

1

λ1
+ g2

2

λ2
+ g2

3

I

)
. (33)

2.4 Geometry of shape curves with a shape potential function

Since shape curves play a major role in this paper, it is convenient to collect some basic
formulas concerning their differential geometry and those concerning their shape potential
function.

For a given oriented shape curve γ ∗, let τ ∗ (resp. ν∗) be the unit tangent vector (resp. unit
normal vector) in the positive direction such that (τ ∗, ν∗) is a positively oriented frame of
the 2-sphereM∗. We consider a (regular) time, parametrized curve γ ∗(t) = (ϕ(t), θ(t)) and
set s = s(t) ≥ 0 to be the arc-length along the curve. Then,

τ ∗ = dγ ∗

ds
= 1

v

(
ϕ̇
∂

∂ϕ
+ θ̇

∂

∂θ

)
, ν∗ = 1

v

(
−θ̇ sin ϕ

∂

∂ϕ
+ ϕ̇

1

sin ϕ

∂

∂θ

)
, (34)

where the velocity vector field of the curve is

dγ ∗

dt
= vτ ∗, v =

√
ϕ̇2 + (sin2 ϕ)θ̇2. (35)

For an arc-length parametrized curve x(s) = (x(s), y(s), z(s)), the geodesic curvature func-
tion K∗ can be calculated by

K∗(s) = (
x(s)× x′(s)

) · x′′(s),

where x′(s) = dx
ds

, etc. Applying the above formula for the shape curve γ ∗(s) = x(s) with
x = sin ϕ cos θ, y = sin ϕ sin θ, and z = cosϕ yields

K∗ = (cosϕ)θ ′(1 + ϕ′2)+ sin ϕ(ϕ′θ ′′ − θ ′ϕ′′) (36)

= 1

v3

{
(cosϕ)θ̇(v2 + ϕ̇2)+ sin ϕ(ϕ̇θ̈ − θ̇ ϕ̈)

}
.

2.5 The Newtonian (shape) potential function

Let U∗ be the restriction of the Newtonian potential function U in (1) to the unit sphereM∗.
Hsiang and Straume (2007) showed that U can be defined at the moduli space level M̄ in
terms of spherical coordinates

(
ρ2, ϕ, θ

)
, and consequently
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U = 1

ρ
U∗(ϕ, θ)

which is due to the homogeneity of the potential function U . Therefore, the shape potential
function reads

U∗ =
3∑

i=1

m̂
3/2
i

(
m∗
i

)−1/2

√
1 − sin ϕ cos (θ − θi)

, (37)

where m̂i = mjmk,m
∗
i = 1

2 (1 − mi), and (θ1, θ2, θ3) = (0, β3,−β2), which are given by

βi = arccos
(
m̂i−mi
m̂i+mi

)
, for {i, j, k} = {1, 2, 3}.

Recall that the induced metric of the shape spaceM∗ = S2(1) from the Euclidean 3-space
is that of the round sphere of radius one (cf. (12)): dϕ2 + sin2 ϕdθ2.

Thus, the gradient field of U∗ = U∗ (ϕ, θ) on the shape space
(
M∗, dϕ2 + sin2 ϕdθ2

)
is

the following vector field

∇U∗ = U∗
ϕ

∂

∂ϕ
+ U∗

θ

sin2 ϕ

∂

∂θ
. (38)

It follows that the tangential and normal derivatives of U∗ along the shape curve γ ∗ are,
respectively

U∗
τ = ∂U∗

∂τ ∗ = ∇U∗ · τ ∗ = 1

v

(
ϕ̇U∗

ϕ + θ̇U∗
θ

)
, (39)

U∗
ν = ∂U∗

∂ν∗ = ∇U∗ · ν∗ = 1

v

(
−θ̇ sin ϕU∗

ϕ + ϕ̇
1

sin ϕ
U∗
θ

)
. (40)

3 Dynamics in the moduli space and intrinsic geometry of the shape curve

Recall that for non-planar 3-body motions, the rotational kinetic energy can be expressed by
(33) as

T ω = 1

2

(
g2

1

λ1
+ g2

2

λ2
+ g2

3

λ3

)

where

λ1 = ρ2

2
(1 + sin ϕ) , λ2 = ρ2

2
(1 − sin ϕ) , λ3 = λ1 + λ2 = ρ2

and the coordinates of the angular momentum vector � in (30) read

g2
1 + g2

2 + g2
3 = |�|2 .

Setting

T̄ := T − T ω, Ū := U − T ω, (41)

we can define the Lagrangian of our dynamical mechanical system on the level of moduli
space M̄ , which reads L̄ = T̄ + Ū .
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From (12), (14) and (24), it follows that the Lagrangian L̄ on M̄ is given by

L̄ = (
T ρ + T σ

) + (
U − T ω

) = 1

2
ρ̇2 + ρ2

8

(
ϕ̇2 + sin2 ϕθ̇2)

+U
∗

ρ
− 1

2

{
g2

1

(
1

λ1
− 1

λ3

)
+ g2

2

(
1

λ2
− 1

λ3

)
+ |�|2

λ3

}
. (42)

In the study of the general three-body problem, the inclination angle of the plane of motion
ψ = ψ (t) with respect to the plane passing through the center of mass and perpendicular to
the angular momentum vector � is allowed to vary in [0, π/2]. Thus gi’s are not constant.

Therefore, the configurations of our dynamical system can be specified by the generalized
coordinates q = (q1, q2, q3, q4, q5) = (ρ, ϕ, θ, g1, g2) in which g1, g2 are referred to as
the kinematical coordinates and are subject to the following constraints (cf. (29)):

Cα =ġ1 + g2g3

(
1

λ2
− 1

λ3

)
− g2 cosϕ

2
θ̇ = 0,

Cβ =ġ2 + g1g3

(
1

λ3
− 1

λ1

)
+ g1 cosϕ

2
θ̇ = 0.

(43)

Since the constraints Cα and Cβ are functions of both the generalized coordinates q and
the generalized velocities q̇, they are non-holonomic. Comparing Cα and Cβ with the stan-
dard form of linearly non-holonomic constraints (see e.g., Whittaker 1937), we can rewrite
them as

Cα =
5∑

i=1

(aαi q̇i )+ bα = 0

Cβ =
5∑

i=1

(
aβi q̇i

) + bβ = 0,

where

aα1 = 0 = aα2, aα3 = −g2 cosϕ

2
, aα4 = 1, aα5 = 0

aβ1 = 0 = aβ2, aβ3 = g1 cosϕ

2
, aβ4 = 0, aβ5 = 1.

As the constraints are non-holonomic, the equations expressing them are non-integrable
and so it is not possible to express the kinematical coordinates (i.e., g1, g2) in terms of
the others. Therefore, in order to derive the dynamical equations on the level of M̄ , it is
convenient to apply the method of undetermined Lagrange multipliers.

It is evident that since Cα = 0 = Cβ ,

λαCα + λβCβ = 0

where λα, λβ are Lagrange multipliers.
The dynamical equations resulting from the extension of Hamilton’s principle to our

non-holonomic system (see e.g., Whittaker 1937) read

d

dt

(
∂L̄

∂q̇i

)
− ∂L̄

∂qi
= λαaαi + λβaβi ; i = 1, . . . , 5 (44)

123



Global geometry of non-planar 3-body motions 475

It follows immediately that

d

dt

(
∂L̄

∂ρ̇

)
− ∂L̄

∂ρ
= 0 = d

dt

(
∂L̄

∂ϕ̇

)
− ∂L̄

∂ϕ

d

dt

(
∂L̄

∂θ̇

)
− ∂L̄

∂θ
= −λα g2 cosϕ

2
+ λβ

g1 cosϕ

2
(45)

d

dt

(
∂L̄

∂ġ1

)
− ∂L̄

∂g1
= g1

(
1

λ1
− 1

λ3

)
= λα

d

dt

(
∂L̄

∂ġ2

)
− ∂L̄

∂g2
= g2

(
1

λ2
− 1

λ3

)
= λβ.

By the last two equations in (45), the Lagrange multipliers read

λα = g1

ρ2

(
1 − sin ϕ

1 + sin ϕ

)
, λβ = g2

ρ2

(
1 + sin ϕ

1 − sin ϕ

)
. (46)

Substituting the Lagrange multipliers into (45) yields

d

dt

(
∂L̄

∂ρ̇

)
− ∂L̄

∂ρ
= 0

d

dt

(
∂L̄

∂ϕ̇

)
− ∂L̄

∂ϕ
= 0 (47)

d

dt

(
∂L̄

∂θ̇

)
− ∂L̄

∂θ
= 2

(
g1g2

ρ2

)
tan ϕ

and then, by straightforward calculations using (42), we obtain the generalized Euler-
Lagrange equations of non-planar 3-body motions on the level of the moduli space M̄:

ρ̈ − ρ

4

(
ϕ̇2 + sin2 ϕθ̇2) + U∗

ρ2 − 1

ρ3

{
g2

1

(
1 − sin ϕ

1 + sin ϕ

)
+ g2

2

(
1 + sin ϕ

1 − sin ϕ

)
+ |�|2

}
= 0

ϕ̈ + 2

(
ρ̇

ρ

)
ϕ̇ − 1

2
θ̇2 sin (2ϕ)− 4

ρ3U
∗
ϕ − 4 cosϕ

ρ4

(
g2

1

(1 + sin ϕ)2
− g2

2

(1 − sin ϕ)2

)
= 0

θ̈ + 2

(
ρ̇

ρ
+ ϕ̇ cot ϕ

)
θ̇ −

(
4

ρ3 sin2 ϕ

)
U∗
θ − 16g1g2

ρ4 sin (2ϕ)
= 0.

3.1 Geodesic curvature function of the shape curve

Substituting ϕ̈ and θ̈ from the last two equations of the above system of generalized Euler-
Lagrange equations of motion into (36) gives

K∗ = 1

ρ3

(
4U∗

ν

υ2

)
+ 1

ρ4

(
2G

υ3

)
, (48)

whereυ = | dγ ∗
dt

| =
√
ϕ̇2 + (sin2 ϕ)θ̇2 is the speed of shape curve,U∗

ν is the normal derivative
of the shape potential U∗ along γ ∗ as in (40), and
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G =
(

4g1g2

cosϕ

)
ϕ̇ − θ̇ sin(2ϕ)

(
g2

1

(1 + sin ϕ)2
− g2

2

(1 − sin ϕ)2

)
, (49)

the latter of which will be referred to as the G-f unction.

4 Constant inclination 3-body motions

As an application of the system of generalized Euler-Lagrange equations, in this section, we
shall prove a conjecture of Wintner (1941) on classifying the constant inclination solutions
of the three-body problem.

By a constant inclination solution we mean a three-body motion whose plane of motion
makes a constant inclination angleψ ∈ [

0, π2
]

with respect to a fixed reference plane passing
through the center of mass. Planar 3-body motions that include vanishing angular momentum
motions are those with zero inclination. Cabral (1990) proved that the only constant inclina-
tion solutions with ψ = π

2 are the two types of non-planar isosceles solutions: one with the
line of the angular momentum (which lies on the plane of motion with this inclination) as
the symmetry axis of the isosceles triangles and the other with the line of intersection of the
plane of motion and the reference plane as the symmetry axis.

In this section we will be concerned only with existence of solutions with constant incli-
nation 0 < ψ < π

2 . For non-planar motions, the fixed reference plane is called the invariable
plane, which is perpendicular to the (non-zero) angular momentum vector �. Hence, the
constant inclination ψ is the angle between � and the unit normal vector n of the plane of
motion, the latter being an eigenvector of the moving eigenframe F(t) = {u1(t),u2(t),n(t)}
defined in Sect. 2.

Theorem There exists no solution of the three-body problem with constant inclination
0 < ψ < π

2 .

Proof of Theorem On the contrary, suppose that there is a solutionγ (t) of the 3-body problem
with constant inclination ψ ∈ (0, π/2).

Recall that the coordinates (g1, g2, g3) of � with respect to the moving eigenframe F(t)
satisfy the kinematic Euler equations (29).

Since the inclination angle ψ is constant,

g3 = � · n = Constant,

and hence

0 = ġ3 = g1g2

(
1

λ2
− 1

λ1

)
.

It follows that g1g2 = 0 (note that λ1 = λ2 just amounts to the fact that the solution curve γ is
a shape invariant one: m-triangles always have the constant shape of an equilateral triangle,
i.e., the associated shape curve γ ∗ only consists of the North pole (ϕ = 0) on the shape
sphere; it follows that the motion is planar, and so ψ = 0).

There is no loss of generality in assuming 0 = g2 = � · u2. Hence, u2⊥�, and conse-
quently u2 lies along the line of intersection of the plane of motion and the invariable plane,
which is known as the line of nodes (see e.g., Saari 1984). It follows that � ∈ Span� {n,u1}
(see Fig. 1), which implies
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Fig. 1

g1 = |�| cos
(π

2
− ψ

)
= |�| sinψ > 0,

g3 = |�| cosψ > 0.

By the kinematic Euler equations (29),

0 = ġ2 = g1

[(
1

λ1
− 1

λ3

)
g3 − 1

2
θ̇ cosϕ

]
,

which yields the following first integral

θ̇ = 2

(
cosϕ

(1 + sin ϕ)2

) ( |�| cosψ

ρ2

)
. (50)

Geometrically speaking, the first integral (50) says that to the solution curve γ (t) with
constant inclination 0 < ψ < π/2 there corresponds on the 2-sphere M∗ a shape curve
γ ∗ (ϕ(t), θ(t)) for which θ̇ is positive whenever γ ∗ is on the upper-hemisphere and is neg-
ative on the lower-hemisphere; therefore θ̇ = 0 whenever γ ∗ meets the equator, and hence
the shape curve does so orthogonally.

It is worth pointing out that changing the orientation of m-triangles formed by the three
bodies moving along a given solution curve γ amounts to replacing ϕ by (π−ϕ) and fixing θ
along the associated shape curve γ ∗(ϕ, θ) on the 2-sphereM∗, i.e., changing the orientation
of m-triangles of a three-body motion γϕ to which the shape curve γ ∗

ϕ is associated yields
another solution curve γ(π−ϕ) whose associated shape curve γ ∗

(π−ϕ) ⊂ M∗ is the reflec-
tional image of γ ∗

ϕ in the equatorial plane. Note that, throughout the proof, all the geometric
quantities of the above-mentioned curves are labeled with indexes ϕ or (π−ϕ) appropriately.

Our original system of Euler-Lagrange equations on the level of M̄ coupled with the first
integral in (50) gives us an over-determined system of ODEs by which the moduli curve γ̄ (t)
associated to our solution curve must also be given since γ̄ (t) is a solution of the original
system of ODEs (47) on M̄ . Therefore, we may study the behavior of any geometric quan-
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tities of γ̄ as a solution of the original system of ODEs (47) regardless of the first integral
(50).

By (36), (40) and assuming that γ ∗ is the associated shape curve of γ̄ as a solution of the
original system (47), it is immediate that

K∗
(π−ϕ) = −K∗

ϕ, (51)
(
U∗
ν

)
(π−ϕ) = − (

U∗
ν

)
ϕ
. (52)

On the other hand, for the constant inclination solution γ with ψ ∈ (0, π/2) and its
associated moduli curve γ̄ as the solution of the above-mentioned over-determined system
of ODEs, we can rewrite K∗ in (48) as

K∗ − 1

ρ3

(
4U∗

ν

υ2

)
= 1

ρ4

(
2G

υ3

)
(53)

in which the G-function (49) now reads

G = −4
g2

1g3

ρ2

(
sin ϕ cos2 ϕ

(1 + sin ϕ)4

)
≤ 0, (54)

which follows by substituting the first integral (50) into (49). Hence, it is clear that

G(π−ϕ) = Gϕ. (55)

From (51), (52) and (55), it follows that changing the orientation ofm-triangles formed by
the three bodies moving along the solution curve γ (t) changes only the sign of the left-hand
side of (53) while keeping the other side invariant. Therefore, G in (54) must be identically
0.

There are only two ways this quantity can be zero: either

(A) sin ϕ cosϕ ≡ 0, or
(B) g1g3 = |�|2 sinψ cosψ = 0.

First, if (sin ϕ cosϕ) ≡ 0, then either ϕ ≡ 0 or ϕ ≡ π
2 . Suppose that ϕ ≡ 0. This asserts

that λ1 = λ2 and the solution curve γ (t) is shape invariant, and so the inclination ψ = 0 /∈
(0, π/2). If ϕ ≡ π

2 then from (50) it follows that θ̇ ≡ 0, and hence θ is constant. Thus, the
associated shape curve γ ∗ consists of only a single eclipse point (i.e., a point on the equator
of the 2-sphere M∗) given by the constant ϕ and θ , which implies that the solution curve is
shape invariant and so ψ = 0 /∈ (0, π/2).

Next suppose that (|�|2 sinψ cosψ) = 0, which implies that either ψ = 0 or ψ = π
2 ;

contrary again to the assumption that ψ ∈ (
0, π2

)
.

This finishes the proof of the theorem.

Corollary The planar solutions (ψ = 0) and the two types of non-planar isosceles solu-
tions (withψ = π/2) are the only constant inclination solutions of the Newtonian three-body
problem.

This answers the question raised by Wintner (1941) on classifying the constant inclination
solutions of the three-body problem.
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