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Abstract The aim of this research work is to compare the reliability of several variational
indicators of chaos in mappings. The Lyapunov Indicator; the Mean Exponential Growth
factor of Nearby Orbits (MEGNO); the Smaller Alignment Index (SALI); the Fast Lyapunov
Indicator (FLI); the Dynamical Spectra of stretching numbers and the corresponding Spectral
Distance and the Relative Lyapunov Indicator (RLI), which is based on the evolution of the
difference between two close orbits, have been included. The experiments presented herein
allow us to reliably suggest a group of chaos indicators to analyze a general mapping. We
show that a package composed of the FLI and the RLI (to analyze the phase portrait globally)
and the MEGNO and the SALI (to analyze orbits individually) is good enough to make a
description of the systems’ dynamics.

Keywords Chaos indicators · Mappings · Dynamical systems · Chaos · MEGNO · SALI ·
FLI · RLI · Sticky chaotic orbits

1 Introduction

A key element in the analysis of the behavior of a given dynamical system lies in the possi-
bility to accurately determine the regular or chaotic nature of its trajectories. However, such
characterization often proves to be a rather subtle and complicated problem. Therefore, any
technique that allows us to locate regions where chaotic motion is probable is very useful.
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Several of such techniques (chaos indicators, hereafter CIs) have been developed during the
last few years.

Since the early work of Hénon and Heiles (1964), the development of CIs has grown
exponentially. In the case of two degrees of freedom, the basic tool is the graphical treatment
through the Poincaré Surfaces of Section. This approach has been extended to systems with
three degrees of freedom (Froeschlé 1970a, 1972). It is known that it has severe restrictions
when dealing with systems with more degrees of freedom, though. Therefore, it is important
to have at hand techniques that do work irrespective of the dimension of the problem.

The early non graphical methods for the detection of chaos were based on the concept
of exponential divergence. Then, the introduction of the Lyapunov Characteristic Exponents
(LCEs) and their numerical implementation (Benettin et al. 1980; Skokos 2010) was one of
the first major contributions towards the search for chaos. In other words, the understanding
of the dynamical behavior of some regions of the phase space relies, e.g., on the computation
of at least the largest Lyapunov Characteristic Exponent (lLCE) for a large number of orbits.
This might be a time-consuming process. Moreover, we can only reach a truncated value
for the lLCE, because the integration time is finite. Therefore, it is interesting to define new
algorithms at least as reliable as the truncated version of the lLCE (i.e. Lyapunov Indicators,
hereafter LIs, Benettin et al. 1976), but cheaper in computational time. Many new techniques
are now available: the Mean Exponential Growth factor of Nearby Orbits (MEGNO) devel-
oped by Cincotta and Simó (2000)1; the Smaller Alignment Index (SALI) by Skokos (2001)2;
the Fast Lyapunov Indicator (FLI) introduced by Froeschlé et al. 1997)3; the Spectral Dis-
tance (D) by Voglis et al. (1999) and the Spectra of Stretching Numbers (SSN)4 or sometimes
called Local Lyapunov Characteristic Numbers (LLCN)5. Finally, we include the Relative
Lyapunov Indicator (RLI, Sándor et al. 2000; Széll et al. 2004; Sándor et al. 2004; Sándor et
al. 2007), which is not a variational indicator like the others, but is based on the evolution of
two different but very close orbits.

These techniques are just a sample of all the indicators used in the study of dynamical sys-
tems. The introduction of spectral indicators, such as the Frequency Map Analysis (FMA)
by Laskar (e.g. Laskar 1990; Papaphilippou and Laskar 1996, 1998), and updates of the
above techniques will be addressed in future reasearch works. Such updates will include
the Generalized Alignment Index (GALI, Skokos et al. 2007) as a generalization of the
SALI; the Orthogonal Fast Lyapunov indicator (OFLI, Fouchard et al. 2002) and the OFLI2

T T
(Barrio 2005), which are improvements of the FLI. The Average Power Law Exponent (APLE,
Lukes-Gerakopoulos et al. 2008) will also be considered.

The analysis is performed over two different 4D mappings: a variant of Froeschlé’s sym-
plectic mapping, hereafter vFSM (Froeschlé 1972; Contopoulos and Giorgilli 1988; Skokos
et al. 1997; Skokos 2001), and a system comprising two coupled standard mappings.

The work is organized as follows: the reliability of the thresholds is studied in Sect. 2. We
compute the number of chaotic orbits given by every CI with their concomitant threshold and
examine the variation of the chaotic component by means of a small change in the critical
value.

1 See also Cincotta et al. (2003); Giordano and Cincotta (2004); Goździewski et al. (2005); Gayon and Bois
(2008); Lemaître et al. (2009); Hinse et al. (2010); Maffione et al. (2011).
2 See also Skokos et al. (2007); Széll et al. (2004); Bountis and Skokos (2006); Carpintero (2008); Antonopou-
los et al. (2010).
3 See also Guzzo et al. (2002); Froeschlé et al. (2006); Paleari et al. (2008); Todorović et al. (2008);
Lega et al. (2010).
4 See Voglis and Contopoulos (1994); Contopoulos and Voglis (1996, 1997); Voglis et al. (1998).
5 See Froeschlé et al. (1993, 2006); Todorović et al. (2008).
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Once the analysis of the thresholds is done, the speed of convergence and the resolving
power of the techniques can be accurately determined. Therefore, in Sect. 3, we use the infor-
mation gathered from the time evolution curves to compare the performances of the indicators
based on these two fundamental characteristics. The small size of the sample allows for this
kind of analysis.

In Sect. 4, those characteristics are further analyzed by considering the information com-
ing only from the final values of the techniques. Thus, big samples of orbits can be studied
(the one selected for this work consists of 106 orbits). The previous experiments of Sect. 3
show the performances of the CIs with orbits that behaved well.

We are also concerned with the study of the CIs under very complex scenarios. Hence, in
Sect. 5 we study the techniques over two very complex schemes: inside a stochastic layer in
the main resonance and in a region populated with sticky chaotic orbits.

Finally, in Sect. 6 we study the dependence of the D and the RLI on their free-parameters.
They are the only techniques from the package that need a previous user-choice procedure
to configure the algorithms for their computation. We discuss the results in Sect. 7.

Although we have applied the CIs to two 4D dimensional mappings, every technique
considered herein could be applied to any ND mapping but the D. The D is not suitable for
2D mappings (see, e.g., Skokos 2001).

2 The reliability on the thresholds

The speed of convergence, the sensitivity to hyperbolicity and stability levels (or resolving
power), a reliable threshold and the computing time might be the most important character-
istics that make a CI suitable for a given study.

We will deal with the CIs’ thresholds first, because they are fundamental to study properly
the other main characteristics. The following study is accomplished on the vFSM adopting
a sample of 106 initial conditions.

The vFSM is defined by the following equations (mod2π):

x ′
1 = x1 + x2

x ′
2 = x2 − ν · sin(x1 + x2) − μ · [1 − cos(x1 + x2 + x3 + x4)]

x ′
3 = x3 + x4

x ′
4 = x4 − κ · sin(x3 + x4) − μ · [1 − cos(x1 + x2 + x3 + x4)].

The parameters used for the mapping are ν = 0.5, κ = 0.1 and μ = 10−3 (see Skokos
2001 for further details).

We use the following configuration for the computation of the experiments unless stated
otherwise: four numbers of iterations, i.e., 103, 5 × 103, 104 and 105 iterations. The initial
separation taken for the calculation of the RLI is 10−12 (see Sándor et al. 2004). The D is
computed over intervals of 100 iterations and the number of cells considered for the gen-
eration of the histograms for the SSN is 103. The initial deviation vectors are: (1,1,1,1),
(1,0,0,0), (0,1,0,0), (0,0,1,0). Froeschlé et al. (1997) and Froeschlé et al. (1997a) showed that
the first part of the computation of the lLCE is enough to discriminate between chaotic and
regular orbits, and introduced the FLI. However, as Froeschlé et al. stated, on using such
techniques during short times, some dependence on the initial conditions of the deviation
vectors may be found. Therefore, it is important to keep the same initial deviation vectors for
the whole sample along the individual experiments (Froeschlé and Lega 2000). The version
of the MEGNO here considered is the MEGNO(2,0) (see Cincotta et al. 2003).
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Table 1 Thresholds for the
LI, the RLI, the MEGNO(2,0),
the SALI and the FLI

CI Threshold

LI ln(N )/N

RLI 10−12

MEGNO(2,0) 0.5

SALI 10−4

FLI N

We applied the time-dependent threshold of the LI (Table 1) with N being the number
of iterations. It is known that an empirical adjustment of the LI’s theoretical threshold is
strongly advisable. Yet, our choice here is to avoid this fine tunning and to consider the raw
theoretical estimation for the sake of a fair comparison. The critical value used for the RLI
(Table 1) was computed following Sándor et al. (2004) and the remarks discussed herein in
Sect. 6. The way to determine the time-dependent threshold for the D is not known yet. In
the case of the MEGNO(2,0), the threshold is a fixed value (Table 1) which also needs an
empirical adjustment. However, as we did for the LI, we will use the theoretical fixed value.
For the SALI there are two thresholds commonly used, namely, 10−12 and 10−4 (see e.g.
Skokos et al. 2004). In between, the orbits are called “sticky chaotic”. Nevertheless, we will
consider them also as chaotic orbits. Then, the threshold to analyze is 10−4 which separates
regular from chaotic and sticky chaotic orbits. Once again, this is our choice to avoid any
advantages in taking more than one critical value. The threshold associated with the FLI
(sometimes used with two thresholds also, see Paleari et al. 2008) is time-dependent and
has the formulae presented on Table 1 (hereafter in the computation of the FLI, we do not
consider the logarithm which is usually used in its definition, see e.g. Todorović et al. 2008).

In Table 2 we show the CIs’ values for the last iteration (or final values) for the array of
106 initial conditions and four Ns: 103, 5×103, 104 and 105 iterations. There, we resume the
time evolution of the percental variation of the chaotic component for three different values
of the associated threshold. The third column displays the value of the threshold whereas
the fourth column of Table 2 (“Chaos (%)”) corresponds to the percentage of chaotic orbits
which use the raw estimate of the (theoretical or empirical) threshold. The last two columns
are the percentages of the chaotic component according to a change in the threshold by ±1%
(a change by +1% is labeled A and a change by −1% is labeled B on last column), emulating
the fine tunning of the critical value.

It is interesting to notice that after 5 × 103 iterations and despite the adjustments of the
thresholds, all the indicators but the MEGNO(2,0) mostly agree in the percental variation of
the chaotic orbits (last three columns of Table 2), i.e. between 68 and 75%. The MEGNO(2,0)
shows a very high fraction of chaotic orbits either if we adopt the theoretical fixed threshold
(fourth column) or the modified threshold of the last column (B). On the other hand, if we
use a threshold closer to 0.505 (fifth column, A), the MEGNO(2,0) shows a better approach
to the prevailing percentage of chaos. Both facts tell us that not only the theoretical fixed
threshold of the MEGNO(2,0) needs to be carefully adjusted, but also that its threshold is
the most sensitive to an experimental rearrangement.

In Fig. 1 we show the time evolution of the difference between the percentages of chaotic
orbits found in A and the percentages of chaotic orbits found in B (fifth and last columns of
Table 2). Then, the weakness of the theoretical fixed threshold for the MEGNO(2,0) becomes
evident (curve with the highest values). This is a consequence of the asymptotic nature of
the threshold. It becomes clear that the theoretical threshold of the MEGNO(2,0) is just an
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Table 2 Evolution in time of the percental variation of the chaotic component for three different values of
the associated thresholds (see text for details)

CI N Threshold Chaos (%) Chaos (%) A Chaos (%) B

LI 103 6.9077555E-03 69.4299 68.7814 70.0918

5 × 103 1.7034386E-03 73.2632 72.7674 73.8041

104 9.2103402E-04 73.5061 72.9797 74.0848

105 1.1512925E-04 73.8847 73.2543 74.5822

RLI 103 10−12 49.9296 49.7875 50.0667

5 × 103 10−12 71.7731 71.7542 71.7912

104 10−12 72.0777 72.0617 72.0961

105 10−12 72.34 72.3255 72.3549

MEGNO(2,0) 103 0.5 85.9964 78.8211 87.7021

5 × 103 0.5 91.4468 77.0322 94.7615

104 0.5 91.8992 75.0808 95.8364

105 0.5 92.7217 71.6947 98.2398

SALI 103 10−4 14.7913 14.8604 14.7232

5 × 103 10−4 68.3665 68.3676 68.3658

104 10−4 68.8171 68.8187 68.8168

105 10−4 69.778 69.7786 69.7776

FLI 103 103 69.7826 69.6846 69.8806

5 × 103 5 × 103 73.3382 73.2752 73.4007

104 104 73.571 73.5102 73.6329

105 105 73.9327 73.8734 73.9905

estimation of the value to be used. On the other hand, we find that the RLI and the SALI
have very reliable thresholds, despite their empirical nature (curves with the lowest values
on Fig. 1). The SALI has the robustest threshold according to Fig. 1. However, the media
of the percentages for the chaotic component (see Table 2, last three columns) is below the
medias given by the LI, the RLI or the FLI if the N is above 5 × 103. Thus, among the latter
CIs, the RLI shows the most reliable threshold in the experiment.

3 Study of some representative orbits through the CIs’ time evolution

In this section, we study other aspects of a CI: the speed of convergence and the sensitivity
to distinguish different kinds of motions. We use the time evolution curves because of the
reduced size of the sample selected. This first sample consists of ten orbits, five of them
are chaotic orbits and five are regular orbits according to a convergent LI (the N chosen to
guarantee the convergence of the LI is 105 iterations which is much longer than the actual
convergent time).

On a (x1, x2) space, the projections of every chaotic orbit of the sample fulfill the con-
nected chaotic component (see e.g. Fig. 3 in Skokos 2001); they are not ergodic, though. The
chaotic orbit with initial condition x2 = −0.5 is the only one with an amount of stickiness
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Fig. 1 Time evolution
of the difference between
the percentage of chaotic
orbits using an adjusted
threshold by +1% and an
adjusted threshold by −1%
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Table 3 Initial conditions for the
chaotic orbit and the regular orbit

Nature of the orbit x1 x2 x3 x4

Chaotic orbit 3 −0.5 0.5 0

Regular orbit 2 0 0.5 0

(see e.g. Kovács and Érdi 2009; Contopoulos and Harsoula 2010) around the main stability
island. In the case of the regular component, we have invariant curves. An examination of
the plots on a (x1, x2) space, shows that the regular orbit with initial condition x1 = 2 is very
closed to a stochastic layer and therefore presents some characteristics of a stochastic orbit.
The chaotic orbit with initial condition x2 = −0.5 and the regular orbit with initial condition
x1 = 2 are selected for further study. We present their initial conditions in Table 3.

In Fig. 2 we plot the time evolution of the LI, the RLI, the D, the MEGNO(2,0), the SALI
and the FLI techniques for the selected orbits. The chaotic orbit is depicted in solid black
and the regular orbit, in solid gray color. We also use dashed curves to plot the thresholds
adopted to separate chaotic from regular motion.

Regarding the speed of convergence, the LI characterizes the chaoticity of the orbit before
103 iterations according to its theoretical threshold (i.e. ln(N )/N ), but the constancy of the
LI is only evident in some iterations after 103. In the case of the regular orbit, if we follow the
time-dependent threshold, the determination of its nature is made from the beginning (see
top left panel of Fig. 2). However, the separation from the chaotic orbit is made later by the
N above-mentioned.

The RLI increases its value for the chaotic orbit above the threshold of 10−12 from the
beginning and freezes itself around 10−4 close to 104 iterations. Thus, its performance is
similar to that of the LI. The proximity of the regular orbit to a stochastic layer turns out to
be a problem in the classification of the RLI and needs to be carefully examined. According
to the RLI, this orbit, which is classified by a convergent LI as regular, should be labeled as
chaotic. Since it oscillates above 10−12 (around the value 5 × 10−12, see top right panel of
Fig. 2). Nevertheless, this value is very different from those of the chaotic orbits (the five
chaotic orbits used in the initial sample have convergent values between 10−2 and 10−4).
Therefore, the orbits with low values but above the threshold should be evaluated separately
due to a probable level of instability in their dynamics.
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Fig. 2 Time evolution of the CIs for chaotic and regular orbits on the vFSM. The thresholds are also shown
like dashed curves. From top left to bottom right panels we present the LI, the RLI, the D, the MEGNO(2,0),
the SALI and the FLI, respectively. Note the different X-axis scales used for the two bottom panels

The D does not have a determined threshold, like the other CIs, to establish a more precise
estimation of the speed of convergence. Moreover, the behavior of both kinds of motions
is very similar in the transitory regime because the D shows a decrease in its values inde-
pendently of the nature of the orbit (with different time rates, though). As the tendency of
the chaotic orbit to decrease appears before 103 iterations, the speed of convergence for this
CI seems to be greater than that obtained by the LI and the RLI. However, considering the
similar behavior and the lack of a certain threshold, it is advisable to look at the behavior
of the regular orbit. We find that the identification of its nature is made at the end of the
interval (∼105) when an almost constant value is reached, i.e. much later than the other
CIs (middle left panel of Fig. 2, see Contopoulos and Voglis 1996; Contopoulos et al. 1997;
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Voglis et al. 1998 for further details on the SSN, which is the basis of the D, and Voglis et al.
1999 to review the main aspects of the D). Ergo, the statistical basis of the D, which leads to
a later constancy in the regular orbit, and the absence of a different behavior in the transitory
regime of the chaotic and regular orbits might delay some eventual classification.

The MEGNO(2,0) tends to a theoretically deduced fixed value for the regular component,
namely 0.5, which makes it very simple to identify regular orbits and levels of stability. And it
grows exponentially for the chaotic component (see Cincotta et al. 2003). This different way
of identifying both kinds of motions helps to improve the speed of convergence dramatically.
The chaotic orbit shows its nature around 103 iterations, like the LI and the RLI, whereas
the regular orbit shows an oscillatory behavior of decreasing amplitude around the threshold
since the very beginning of the iterative process (see middle right panel of Fig. 2).

The SALI fluctuates in the interval (0, 2) for regular orbits, or alternatively decays expo-
nentially at a rate related to the LCEs involved (see Skokos et al. 2007 for a complete
analysis). The chaotic orbit crosses the threshold of 10−4 after 103 iterations, revealing its
nature. Moreover, before 104 iterations the SALI reaches the computer precision and the
computation is stopped. The regular orbit oscillates in the above-mentioned interval, around
the value ∼0.05 (bottom left panel of Fig. 2).

Finally, the FLI grows exponentially for chaotic motion (see e.g. Froeschlé et al. 1997a;
and Froeschlé and Lega 2006) and, consequently, the chaotic orbit crosses the time-depen-
dent threshold (N ) before 103 iterations. This fact proves that its threshold is very efficient
in the case of the shorter Ns. Since a saturation number is needed to avoid overflow in the
computations, we choose the value 1020, which is reached by the chaotic orbit before 104

iterations (as in the SALI). The regular orbit grows with a power law instead (bottom right
panel of Fig. 2).

Although the N needed to characterize the motion (i.e. the speed of convergence) does
not vary much from one indicator to the other, the resolving power deepens the differences
between them. By ∼105 iterations the stickiness in the selected chaotic orbit becomes evident
by the LI because of a sudden increase in its final values (see top left panel of Fig. 2). The
MEGNO(2,0) gives similar results. Such orbit can be distinguished from the rest of the cha-
otic orbits because it reaches the highest final value, after an incipient increase close to 105

iterations. These coincident behaviors are the result of the close relation between the MEGNO
and the LI (it is much faster to compute the LI through the MEGNO than the LI through the
classical algorithm by Benettin et al. 1980; see e.g. Cincotta et al. 2003). Although neither the
RLI and the SALI nor the FLI could distinguish this sticky behavior, the regular orbit close
to a stochastic layer could be distinguished from the rest of the regular orbits of the sample
by all the studied CIs. The LI, as well as the MEGNO(2,0), the SALI and the FLI, show the
difference in the amplitude of the oscillations, which are bigger than in the other ordered
orbits. The RLI for this regular orbit shows the highest convergent value among the regular
orbits, which is more than one order of magnitude larger (notice the previous discussion of
the RLI about this particular example). Finally, the D has the lowest convergent value for
this orbit among the regular orbits of the sample. However, there is no solid basis to separate
it from two other regular orbits of the sample which have similar low final values and are not
close to any stochastic structure.

In order to end the comparison on a small group of chaotic and regular orbits, we study
their corresponding SSNs. Taking different chaotic orbits from the sample does not change
the corresponding SSN. Therefore, these chaotic orbits belong to a connected domain which
is not a direct result for the CIs previously considered. If we analyze the regular sample, the
SSN changes for different initial conditions or even for different initial deviation vectors.
This allows us to separate chaotic from regular motion (see Contopoulos and Voglis 1996;
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Contopoulos et al. 1997; Voglis et al. 1998; Froeschlé et al. 2006 and Todorović et al. 2008 for
details). However, the regular orbit with initial condition x1 = 2 has almost identical SSN
profiles even when varying the initial deviation vectors. Thus it resembles a chaotic orbit
because the orbit moves close to weak (and unconnected) chaotic domains inside the main
stability island. Even though this unstable behavior is also observed in the aforementioned
indicators, only the SSN seems to present an inaccurate result at first sight.

Finally, in this experiment in which we make use of the time evolution of the different
CIs to study single orbits, the LI and the MEGNO(2,0) seem to be the most appropriate ones
since they correctly identify not only the influence of the stochastic domain on the regular
orbit, as the other CIs do, but also the sticky behavior of the chaotic orbit.

4 Study of a sample of orbits through the CIs’ final values

In the last section we studied the speed of convergence and the measurement of the hyperbo-
licity levels by means of the time evolution of each indicator. Such analysis provides detailed
information only for a few orbits because of the common restrictions on computing times.
However, as the understanding of a dynamic system is generally enhanced by the size of the
studied sample, the time evolution is no longer efficient.

In this section we only use the information provided by the CIs’ final values to test their
speed of convergence and resolving power.

The sample used for this analysis consists of 106 initial conditions (the same as in
Sect. 2). The parameters for the computation of the CIs, including the thresholds (see Table 1)
are the same adopted in previous sections. Let us say that the D is not considered in the first
part of the current study since it lacks a well-defined threshold.

We begin by considering the speed of convergence of the CIs. In this direction, we com-
pute the percentages of chaotic orbits of the sample for the four aforementioned Ns. The
results are presented in the fourth column of Table 2, in Sect. 2.

We compute the differences between the certified stable percentage of chaotic orbits by
105 iterations and the percentages by the other values of N , namely, 103, 5 × 103 and 104.
The concomitant results are shown in Table 4.

According to Table 4, the best approach to the final distribution of the motion by 103

iterations is the one given by the FLI while the worst is that corresponding to the SALI. Since
both CIs have similar behavior for chaotic orbits, the difference in the convergence must
be in the threshold. The time-dependent threshold used for the FLI seems to be much more
efficient than the time-independent one used for the SALI. Nevertheless, we notice that this
difference shrinks very rapidly as the iteration number increases.

After the first transient, in quasi stable regimes the RLI has the best performance due to
the speed of convergence. Although the FLI starts with the highest rate of convergence, the

Table 4 Differences between the certified stable percentage of chaotic orbits by 105 iterations and the
percentages by the other Ns: 103, 5 × 103 and 104 for the several CIs

N LI (%) RLI (%) MEGNO(2,0) (%) SALI (%) FLI (%)

103 4,4548 22,4104 6,7253 54,9867 4,1501

5 × 103 0,6215 0,5669 1,2749 1,4115 0,5945

104 0,3786 0,2623 0,8225 0,9609 0.3617
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Fig. 3 LI and RLI mappings on color-scale plots composed of 106 initial conditions, for 103 (top panels) and
104 (bottom panels) iterations. On the left, the LI; on the right, the RLI, in logarithmic scale

RLI seems to be more suitable in more stable regimes. However, both the FLI and the LI
follow the RLI closely.

The remaining CIs, i.e. the MEGNO(2,0) and the SALI, have both unpaired results in the
characterization of the phase portrait, as we saw in Sect. 2.

Thus, we reinforce the fact (already pointed out in Sect. 2) that, for big sample of orbits,
the RLI shows the most reliable speed of convergence due to its well-suited threshold.

Let us now turn to the study of the resolving power of the CI’s through their final values
on the sample of 106 initial conditions.

In Fig. 3 we present the mappings corresponding to the LI (left panels) and the RLI (right
panels). These plots show snapshots at two different Ns: 103 iterations (top panels) and
104 iterations (bottom panels). On the top left panel of Fig. 3, by 103 iterations, we reach
a noisy and incomplete but promising phase space portrait by the LI. Although the lack of
structures like the stochastic layer inside the main stability island suggests larger Ns, the
main resonances are clearly shown. In fact, by 5×103 iterations, not only does such stochas-
tic layer finally appear (the concomitant figure is not included) but some structures inside
the islands at the bottom are also shown. Moreover, the level of description does not change
significantly by doubling the N to 104 iterations (bottom left panel of Fig. 3) which means
that the LI has already reached stable values for the chaotic orbits of the sample. The main
difference between both Ns lies in the improvement of the description of the sticky chaotic
orbits (e.g. in the border of the main resonance), revealing their actual chaotic nature. Finally,
by 105 iterations the LI does not give extra information.
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The RLI mapping corresponding to N = 103 (top right panel of Fig. 3) presents a very
noisy phase space portrait (which is confirmed by smaller samples of 104 orbits). Again, it
is clear that these few iterations are not enough to separate many of the orbits in the chaotic
domain from those on the regular domain (at least with the threshold selected). As regards
the other number of iterations, the results do not differ very much from the results given
for the LI in the previous paragraph. The level of description is similar to the one shown by
the LI, and by 5 × 103 iterations the phase space portrait seems to present a stable picture.
Increasing the number of iterations helps to resolve the sticky chaotic orbits (bottom right
panel of Fig. 3) but no further advantage is observed. The level of separation of the chaotic
orbits belonging to the stochastic layer inside the main resonance and the regular orbits that
surround them is greater than the one shown by the LI by 5 × 103 and 104 iterations, thus
favoring their detection. Again, some kind of structure is seen in the high-order resonances
at the bottom of the figures.

On the left panels of Fig. 4, we present the behavior of the MEGNO(2,0) for the vFSM,
for 106 initial conditions and after 103 and 104 iterations (on top and at the bottom, respec-
tively). We observe the same characteristics shown by the LI or the RLI. The main difference
is due to its theoretically fixed asymptotic threshold for the regular orbits. This particular
characteristic of the MEGNO plays a key role when studying the time evolution of single
orbits, as the regular motion and the stability levels can be easily identified by inspecting how
the orbit converges to that fixed value (an advantage pointed out in many previous works;
see Sect. 3). However, on working only with the final values, all the regular orbits have just
one value, that of the threshold. Therefore, no further description is shown in any regular
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Fig. 5 SALI and FLI mappings on color-scale plots of 106 initial conditions, for 103 (top panels) and 104

(bottom panels) iterations. On the left, the SALI; on the right, the FLI, in logarithmic scale

structure (e.g. in the secondary islands). The level of description in the case of the chaotic
component is kept, since the MEGNO increases with N .

The indicator D (right panels of Fig. 4) has a very noisy portrait for 103 iterations (top
panel) and it does not present a great improvement when multiplying N by a factor of five
or even ten (bottom panel). Only after 105 iterations the D clearly shows the stochastic layer
inside the main stability island. Thus, the D seems to delay a reliable description of the phase
space portrait of the vFSM.

The SALI (left panels of Fig. 5) and the FLI (right panels of Fig. 5) show the same level
of description as the other CI’s. Although 103 iterations do not suffice to have a clean phase
space portrait (top panels of Fig. 5), 5 × 103 iterations do. However, as a result of the SALI
and the FLI extremely high speed of convergence for the chaotic component, the logical
consequence is the lack of information on the chaoticity levels. That is, most of their final
values coincide with the saturation value when N is large enough. Thus, the more suitable the
selection of the N , the richer the description of the chaotic domain. By 104 iterations, there
is not a significant improvement (bottom panels of Fig. 5) and with an N ten times larger
than the former, there is no difference at all. The SALI and the FLI reveal similar structures
within the secondary islands.

In Fig. 6, 103 equidistant initial conditions (x1, x2 = −3, x3 = 0.5, x4 = 0) and
105 iterations have been considered to describe the performance of the CIs along a line that
crosses the high-order resonances mentioned earlier in this section. This figure clearly shows
that the RLI and the D are the indicators that best reveal some kind of structure inside these
high-order resonances. The LI and the MEGNO(2,0) do not clearly show the structures.
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left) for 103 equidistant initial conditions and for 105 iterations along the line x2 = −3, in logarithmic scale

The SALI and the FLI give some extra information, but not as detailed as that of the RLI or
the D. Nevertheless, as it can be seen from the right panels of Fig. 4, the D is a rather noisy
technique. Thus, the structures shown in Fig. 6 by such indicator might be partially spurious
(when comparing the structures shown by the RLI and the D on the top left and right panels
of Fig. 6, many important differences are observed). Therefore, the RLI proves to be the most
accurate indicator to describe this large array of initial conditions.

In conclusion, the time evolution is not efficient to analyze a large number of orbits and the
appropriate way to gather information is through the final values of the CIs. In this scenario,
among the CIs tested and within the vFSM, the RLI appears to be the most reliable indicator.
It has a very sensitive resolving power and shows good performance in speed of convergence
(partly due to a well-behaved threshold; see Sect. 2).

5 Testing the CIs’ main features under complex scenarios

To test the resolving power under complex conditions using the final values of every CI, we
selected two regions of the vFSM that seem to be appropriate for the task. The first one is
the small stochastic layer inside the main stability island (see the orange stripe on the bottom
right panel of Fig. 3). The second one is the sticky region adjacent to such island.

5.1 The chaotic region inside the main stability island

In this section we will study the resolving power of the different CIs in the acknowledged
chaotic region and its immediate surroundings. We take 80 orbits with initial conditions
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Fig. 7 We show the profiles of the embedded chaotic region crossed along the identity line (x1 = x2 and
x1 ∈ [−0.6490531,−0.6242345]) for the different CIs. From top left to bottom right panels: the LI, the RLI,
the D, the MEGNO(2,0), the SALI and the FLI, respectively. In the case of the SALI (bottom left panel), the
initial condition x1 = x2 = −0.6437124 (depicted in red color) and the threshold (depicted in green color)
are included as well. In logarithmic scale

x1 = x2 and x1 ∈ [−0.6490531,−0.6242345] that cross the stochastic layer inside the main
stability island along the identity line to have a first approach of the distribution of the motion.
In Fig. 7 we present such chaotic region and its neighborhood described by the CIs. The N
used for the experiment is 105.

The LI, the RLI and the MEGNO(2,0) present a high level of coincidence in the descrip-
tion of the embedded chaotic zone (top left, top right and middle right panels of Fig. 7,
respectively). However, the D (middle left panel of Fig. 7) shows a structure that does not
resemble the one shown by the other indicators.

The FLI has no information about hyperbolicity levels (bottom right panel of Fig. 7)
because of its high speed of convergence and the concomitant saturation value. The SALI,
which has a similar rate of convergence, does display structures for the region. However, some
of such structures might be spurious (bottom left panel of Fig. 7). The SALI has very small
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values for chaotic orbits, very close to the computer precision which might favor artificial
formations.

Regardless of the dependence of the SALI and the FLI on the saturation values (i.e. 10−16

for the SALI and 1020 for the FLI), it is possible to recover a measure of chaoticity by
a quantity related to their final values. Let us consider the SALI, though the application
can be extended to the FLI. A logical alternative to determine the hyperbolicity levels of
chaotic orbits is the number of iterations with which the CI saturates, Nsat (Skokos et al.
2007 have already used this idea to distinguish between chaotic and regular motions for
the GALI3 and the GALI4). This is clearly seen when we follow the time evolution of the
indicator for chaotic orbits. They reach the saturation value (the computer precision) at dif-
ferent numbers of iterations allowing us to distinguish one from the other. We make a plot
using the two parameters that can be extracted from the SALI computation. The SALI does
not saturate with the regular component and thus, the expected structures are successfully
described by the SALI final values. Yet, in the case of the chaotic component, we retain the
value Nsat as a measure of the hyperbolicity levels since the SALI reaches the computer
precision.

In Fig. 8, we present a zoom of the surroundings of the main stability island in the vFSM
given by the final values of the SALI (left panel) and by the quantity Nsat (right panel). There-
fore, the regular component is described by the SALI final values and the chaotic component
is described by the Nsat .

Considering both quantities obtained from a single computation of the SALI, namely, the
final values and the Nsat , improve the analysis of statistical samples.

Finally, there is an orbit with initial condition x1 = x2 = −0.6437124 (the one marked on
the bottom left panel in Fig. 7, located just above the threshold 10−4, which is also shown)
that every technique but the SALI classifies as chaotic. This orbit has a high level of stick-
iness (which is seen by the time evolution curves), probably because of the proximity to a
high-order resonance. Therefore, a rearrangement of the threshold of the SALI is needed.
The time-independent threshold empirically given by Skokos et al. (2004) and used in this
work, is an excellent estimation for statistical studies. However, such threshold should be
carefully chosen when dealing with small samples in complex dynamics.

The results for the D did not perform as well as those of the other indicators.
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Table 5 Table of initial
conditions for a group of orbits
in the region adjacent to the main
resonance

Nature of the orbit x1 = x2 x3 x4

Chaotic –1.021646 0.5 0

Chaotic (sticky) –0.966354 0.5 0

Regular –0.8896991 0.5 0

5.2 The sticky region adjacent to the main stability island

There is a region densely populated by sticky chaotic orbits adjacent to the main resonance.
This kind of orbits are the most difficult to characterize by any indicator. In order to study
the resolving power in this sticky region, we take a group of ∼760 orbits that cross the sur-
roundings of the main stability island along the identity line, within the interval (–1.03, –0.8)
(see Table 5 for initial conditions of three representative orbits). The N used for the analysis
is 105.

In Fig. 9, the sticky region enclosed in the interval (–1.03, –0.8) is shown through the
final values of the different CIs by 105 iterations. We also pointed out the final values corre-
sponding to the three selected orbits of Table 5, two chaotic orbits (one of them sticky) and
a regular orbit. The known thresholds are also included in the plots.

We observed that the peaks and valleys shown in Fig. 9 correspond to stochastic layers
and resonances (the phase space portraits confirm this fact). Then, all indicators have good
performances while revealing, globally, the phase space structure of the region.

The description of the LI is presented on the top left panel of Fig. 9. The final values of
the orbits inside the chaotic sea are close to the value 10−2 (on the left side of the panel
where we find the selected chaotic orbit). The sticky region is shown as a complex structure
of alternate peaks and valleys (a difference between the chaotic and the sticky chaotic orbit
can be clearly observed). And finally, on the right side of the panel, the quasi constant value
around 10−4 (consistent with the associated treshold though an empirical adjustment would
be advisable) corresponds to the regular orbits inside the main resonance (where we have
the representative regular orbit). Some small resonances of high-order are also shown in this
region (e.g. x1 = x2 ∼ −0.85).

We present the description of the RLI on the top right panel of Fig. 9. The main dif-
ference with the LI is the range of the values of the CI. The values of the LI lie between
10−4 and 10−2. In the case of the RLI, this interval is extended from values lower than
10−12 (which is the preferred threshold for the RLI to separate chaotic from regular motion)
to above 10−3 because of the indicator’s high speed of convergence. This fact might seem
appropriate to unzip the information within the interval, but the high speed of convergence
also decreases the quality of information in the chaotic component. Some sticky and chaotic
orbits have similar final values which hide the different levels of hyperbolicity (such is the
case of the representative chaotic and sticky chaotic orbits), this is not the case for the LI.
However, the RLI has a good performance and quickly reveals the global characteristics of
the system.

As for the D, the classification for the highlighted orbits (middle left panel of Fig. 9)
coincides with the results obtained with the other indicators, but the spectra of final values
is not so clean as for the other CIs. The reason is that the D has a lower ability to separate
instability levels. The distinction of the sticky region is rather confuse and the regular com-
ponent associated to the main resonance (right side of the panel) shows big oscillations from
one orbit to another.
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Fig. 9 Zoom of the sticky region inside the interval (–1.03, –0.8). The known thresholds are depicted in green
color. In logarithmic scale except for the MEGNO(2,0). See text for details

The MEGNO(2,0)’s results agree with those of the LI about the chaotic and the sticky
chaotic orbits (middle right panel of Fig. 9). In the case of the regular component, the orbits
have values very close to the fixed threshold of 0.5, due to the MEGNO asymptotic behav-
ior. The levels of stability that can be revealed by the MEGNO time evolution (see Sect. 3)
are completely erased using only the final values, so no sub-structures are seen inside the
high-order resonances.

The SALI and the FLI achieve similar profiles (bottom left panel of Fig. 9 for the SALI
and bottom right panel of Fig. 9 for the FLI). The chaotic orbits in the chaotic sea, on the
left side of the corresponding figures, reach the corresponding saturation values, i.e. the level
of accuracy of the computer: 10−16 for the SALI, or the value 1020 for the FLI. The final
values of the SALI as well as the final values of the FLI for the chaotic orbit and the sticky
chaotic orbit are the same because both orbits reach the related saturation value. For a better
separation of the regular component, an adjustment of the threshold of the FLI might be
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appropriate (to see this, compare the location of the representative regular orbit from the
corresponding threshold for both CIs).

When dealing with the final values of the sticky chaotic orbits the high speed of con-
vergence becomes a disadvantage in their classification, because it allows them to saturate
like chaotic orbits do (bottom panels of Fig. 9). Nevertheless, the Nsat allows the SALI and
the FLI to avoid such disadvantage. Some previous knowledge of the region is required for
a better description of the system dynamics, e.g. through time evolution curves of a small
sample of orbits to estimate the largest saturation time for chaotic orbits. Therefore, larger sat-
uration times than those of such chaotic orbits would imply an amount of growing stickiness
in the orbit.

The LI and the MEGNO(2,0) show a simple way to distinguish sticky chaotic orbits by
means of their final values while the RLI, the SALI and the FLI do not. But the SALI and
the FLI can recover the information with the help of the time of saturation.

6 Dependence on the parameters: the D and the RLI

The only CIs from the package that depend strongly on “user-choice” parameters are the D
and the RLI. The D needs the arrangement of histograms to be computed, and the RLI needs
an initial separation between the basis orbit and its “shadow” (Sándor et al. 2004). Therefore,
these dependencies deserve greater analysis.

In the articles of Voglis et al. (1999) and Skokos (2001), there is a discrepancy in the
performance of the D that is worthy of some review. They analyze a dynamical system com-
prising two coupled standard mappings where there exists a well-known case of weak chaos
(orbit A3 as the authors called it in Voglis et al. 1999).

The equations for the mapping are:

x ′
1 = x1 + x ′

2

x ′
2 = x2 + K

2π
sin[2π · x1] − β

π
sin[2π(x3 − x1)]

x ′
3 = x3 + x ′

4

x ′
4 = x4 + K

2π
sin[2π · x3] − β

π
sin[2π(x1 − x3)]

with K = 3, and β = 0.1 or β = 0.3051.
Herein, the orbits A2 (regular) and A3 (weakly chaotic, see Voglis et al. 1999 for details)

are studied by means of the whole package of CIs. We use the same initial deviation vectors
and the same N used by Voglis et al. (1999).

The result of the D matches that provided by the authors; i.e., it seems to be the fastest
indicator to distinguish the weakly chaotic orbit from the regular orbit. However, in Skokos
(2001), where the author studies the same set of orbits, the conclusion is rather different
(compare Fig. 5 from Voglis et al. 1999 and bottom left panel of Fig. 9 from Skokos 2001).
On the left panel of Fig. 10, we have the orbits A2 and A3 computed with two pairs of initial
deviation vectors, namely, the pair taken by Voglis et al. (1999): (1,1,1,1) and (2,2,1,1); and
the one chosen by Skokos (2001): (1,1,1,1) and (1,2,1,2). It is easy to see that the particular
choice of Voglis et al. (1999) improves the distinction of the orbits by the D in almost two
orders of magnitude (notice the arrows that point out the separations corresponding to each
choice of initial deviation vectors). However, for the purposes of our study, the best way to
compare the performances of the indicators is to use a random choice of initial deviation
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in black color, for orbits A2 and A3. The separation of the orbits is depicted with an arrow (left panel).
Variation of the D with the Nbin parameter for orbits A2 and A3 on the right panel

vectors. In fact, on doing so, the D has a similar rate of convergence to that of the rest of the
CIs in the package.

As we have seen, the D seems to provide valuable information if some free parameters
could be efficiently adjusted, e.g. the initial deviation vectors. Such adjustment is not easy
and prior knowledge of the expected results is sometimes required. Therefore, it is important
to quantify this sensitivity of the D with some other parameters involved in its computation.

The Nbin is the number of cells used to build the histograms for the determination of
the SSN and the D. A high sensitivity to the variation of Nbin is observed not only with
the CPU times, but also on the right panel of Fig. 10. An earlier separation of the regular
and weakly chaotic orbits A2 and A3, respectively, is reached when decreasing the Nbin
parameter. The smaller the Nbin taken for the determination of the histograms, the faster
the distinction between regular and chaotic motion is shown. We have more points in each
cell; thus, the differences between the curves are amplified. The experiments carried out give
us an idea that 102 points per cell is a fair estimate for the Nbin parameter (thus, e.g., for
105 iterations, Nbin = 103 is a reasonably value, and it is the one used to reproduce the
results of Voglis et al. 1999 and Skokos 2001).

The RLI has a free parameter also: the initial separation of the two orbits (see Sándor
et al. 2004). Therefore, it might be of interest to evaluate the sensitivity of the indicator to
this parameter as we did with the D.

The initial separation does not significantly affect the RLI final values for chaotic orbits,
but it does in the case of the regular component.

The way the initial separation parameter affects the RLI final values for the regular orbits
considered agrees with the analysis made by Sándor et al. (2004), where they conclude that
the correspondence is linear. However, other orbits may require a slightly different approach.

In Fig. 11, we present the variation of the RLI final values for two regular orbits, a
quasiperiodic orbit on the left, and a regular orbit close to a hyperbolic object on the right,
and for four different values of N .

In both cases, the N influences slightly the slope of the curves if the initial separation is
small, i.e., below the value 10−12. However, if a threshold has to be determined, the proximity
to a hyperbolic object affects the indicator in an order of magnitude (compare both Figs. 11).
That is, if we decide to start the computation with an initial separation of 10−12, the relation
shown in the left panel of Fig. 11 tells us that a good estimate for the threshold is 10−13.
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Fig. 11 RLI values as a function of the initial separation for a pair of regular orbits and different Ns. On the
left, a quasiperiodic orbit, and on the right a regular orbit close to a hyperbolic object

Then, every orbit with a RLI final value above 10−13 would be classified as chaotic. On the
other hand, if we consider the relation shown for the regular orbit with a certain level of
instability (right panel of Fig. 11), the associated threshold for an initial separation of 10−12

is 10−12. That is, only those orbits with RLI final values above 10−12 will be considered as
chaotic. Thus, taking the first threshold, 10−13, might lead to a misclassification of the nature
of “unstable” regular orbits.

The linear relationship between the threshold for the RLI and the initial separation param-
eter within the interval suggested by Sándor et al. (2004) should be done by computing
the RLI value for an orbit (or group of orbits) known, a priori, to be regular but close to a
hyperbolic object.

In our case, the threshold selected and used in the previous experiments was 10−12 and
the performance of the indicator was rather good. Nevertheless, in Sect. 3, top left panel
of Fig. 2, we found a regular orbit above the threshold. This can be explained by its great
proximity to a stochastic layer. The higher the accuracy level required, the more careful the
selection of the initial separation parameter should be; therefore, an iterative process might
be advisable.

7 Discussion

As every method has advantages and drawbacks, it is advisable to use different methods.
Nevertheless, the aim of this work is finding, if possible, a “CIs’ function” (hereafter, CIsF)
which means a function of the CIs that represents the most efficient way to gather dynamical
information from a mapping. Thus, we summarise here the procedure to study the phase
space portrait of the vFSM using the most appropriate methods and explain the reasons of
our choices.

In order to employ the good performances shown by the RLI for large arrays of orbits
and large N , we first need to calibrate the relationship between the initial separation param-
eter and its threshold. It is important to have different kinds of motion, from quasiperiodic
to chaotic orbits. To have a good number of regular orbits with some amount of hyperbo-
licity is strongly advisable because they are the most influential type of orbits when fitting
such relation (see Sect. 6). Consequently, we need their location. Then, a fast overview of
the whole phase portrait of the system is desirable and an expeditious CI with a theoretical
threshold (which plays the role of an accurate guideline; an empirical threshold might not be
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so accurate) seems to be the best choice. According to Sect. 2, the FLI has a theoretical time-
dependent reliable threshold which seems to serve efficiently for a quick survey of the phase
space portrait (see also the remarks about the speed of convergence in Sect. 4, where the FLI
shows very good results with a small N , due mainly to the versatility of its time-dependent
threshold). Using the theoretical threshold of the FLI is advisable as a first attempt to locate
individual orbits which will help to calibrate the empirical threshold of the RLI, as such CI
has a better perfomance for big samples of orbits and larger values of N .

After a quick glance at the phase space portrait with the FLI using a few iterations, it is
possible to select some test orbits from different scenarios to calibrate the empirical thresh-
old of the RLI. We chose some orbits close to the stochastic layer inside the main resonance
(to select some regular orbits with an amount of hyperbolicity), and in the sticky region
surrounding such resonance (in order to fix the parameters to distinguish them from the rest
of the chaotic orbits and improve the description of the chaotic component). The preferred
CIs for single studies are the MEGNO(2,0) and the SALI. Both CIs have different ways to
identify chaotic or regular motion (see Sect. 3) and make the process of distinguishing the
motions easier and faster. Besides, both CIs provided good results while revealing the true
nature of sticky chaotic orbits. The Nsat for the SALI is fundamental for the task (see Sect. 4
and Sect. 5).

Finally, with this test orbits analyzed and an initial separation parameter for the RLI of
10−12 (which is a reliable choice for most dynamical situations, see Sándor et al. 2004), the
calibration of the RLI can be done (see Sect. 6). A first good approach for the threshold of the
RLI turns out to be 10−12 (an iterative process can continue until the desired level of accu-
racy). Therefore, applying the RLI to larger N provides a more accurate global overview of
the phase space portrait. The RLI seems to be the best choice because of its robust threshold
and a well-suited power of resolution when dealing with big samples of orbits (see Sect. 2
and Sect. 4). It has not a level of saturation for chaotic orbits, so the hyperbolicity levels are
rather preserved independently of the N (this can be better accomplished by the Nsat of the
FLI or the SALI). And the level of description for the regular component with the final values
is higher than that obtained with the other methods revisited in this work (see Sect. 4).

Summing up, the CIsF for the vFSM (and probably a good first approach for any mapping)
is made up of:

1 The FLI final values (with the concomitant Nsat ) to quickly identify the regions where
test orbits can be selected in order to calibrate the other methods;

2 The MEGNO(2,0) and the SALI (with the corresponding Nsat ) are appropriate to analyze
the test orbits or further interesting cases through the time evolution curves;

3 The RLI final values to study globally the phase space portrait of the system on more
stable regimes.

Two clear restrictions for the preceeding CIsF are: the iterative nature of the mappings
and the number of indicators considered. Therefore, this work is nowadays being extended
to deal with Hamiltonian flows and to encompass in the comparison not only the indicators
tested so far, i.e.: the LI, the RLI, the MEGNO, the D, the SSN, the SALI, and the FLI, but
the GALI and the OFLI as well. All these CIs are being included in a code from which the
user can select the appropriate CIsF from a variety of CIs.

The introduction of both the APLE and the OFLI2
T T to complete the group of variational

indicators will be considered in a future paper. Also, the FMA—an example of spectral indi-
cator—will be tested against variational indicators in order to complete the comparison of
CIs.
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As a preliminary result of the investigation currently under way, we may state that a com-
bination of the OFLI and the GALI seems to improve the choice of the FLI, the SALI and
the RLI in the CIsF.
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