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Abstract The paper deals with the study of a satellite attracted by n primary bodies, which
form a relative equilibrium. We use orthogonal degree to prove global bifurcation of planar
and spatial periodic solutions from the equilibria of the satellite. In particular, we analyze
the restricted three body problem and the problem of a satellite attracted by the Maxwell’s
ring relative equilibrium.

Keywords Global bifurcation · Orthogonal degree · Restricted n-body problem ·
Ring configuration · Restricted three-body problem

1 Introduction

The restricted n-body problem is the study of the movement of a satellite attracted by n
primary bodies which are moving, at a constant angular speed, around an axis. Since the
mass of the satellite is small, one assumes that the satellite does not perturb the trajectories
of the primaries. We shall suppose that these trajectories form a relative equilibrium and, as
such, are in a plane, let us say the (x, y)-plane. In this paper, the primaries are assumed to
be point masses or, equivalently, homogeneous spheres.

The purpose of this paper is to prove the existence of a global bifurcation of periodic
solutions for the satellite, starting from the relative equilibria of the satellite. These solutions
will form a continuum in the plane of the primaries and we shall also prove that there are other
global branches of solutions out of that plane. The proof is based on the use of a topological
degree for maps that commute with some symmetries and are orthogonal to the infinitesimal
generators for these symmetries. We give results for a general situation and applications to
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218 C. García-Azpeitia , J. Ize

some special cases such as the restricted three body problem and the Maxwell’s Saturn ring,
that is when there are n primaries, of the same mass, forming a regular polygon, and a central
larger mass, as a classical model for Saturn and one ring around it. However, for the general
result the primaries may have different masses and may be located at any relative equilibrium.

The study of relative equilibria for the restricted n-body setting is a classical problem and
there is a vast literature for it. For instance, in the case of the restricted three-body problem,
the local bifurcation of planar periodic orbits from the Lagrange points is well known (see
Marchal (1990); Meyer and Hall (1991)). There is a huge number of numerical explorations
for this restricted three-body problem, under a variety of hypotheses, such as the bifurcation
near L4, where the mass of the primary is the bifurcation parameter above Routh’s number,
Bardin (2002); Sicardy (2010), with a period doubling cascade. Sandor et al. (2000) has a
study of the phase space for solutions near L4 and Érdi et al. (2009) treats the elliptic case
where one has four periods for solutions close to L4. The stability of the orbits close to L4 is
studied in Efthymiopoulos (2005) and the connection from E3 to L4 is explored in Pinotsis
(2009). A very complete numerical study, Doedel et al. (2007), using AUTO, shows the many
different types of periodic orbits and the connections between the Lagrange points and also
the secondary bifurcations along the curves in the x, y, μ space, where μ is the mass of one
of the primaries. From a very applied point of view, one may cite Kasdin et al. (2005) and
Gómez et al. (2000).

In the case of the Maxwell ring, besides the theoretical results of Siegel and Moser (1971)
and Meyer (1999), one has also many numerical results, such as Pinotsis (2005), where the
author studies numerically some families of solutions around the central body and around
the ring for a low number of peripherals, with a theoretical approximation for the case of a
satellite far from the ring. A theoretical study, with averaging techniques is given in Llibre and
Stoica (2011) for orbits far from the set of primaries (comets) and close to one of the prima-
ries (Hill solutions). Similarly Mavraganis and Kalvouridis (2007) proposes a regularization
for collision orbits. Closer to the spirit of the present paper, we mention some of the more
recent papers in the bibliography, in particular Arribas and Elipe (2004); Bang and Elmabsout
(2004); Kalvouridis (2008) and Barrio et al. (2008), where a numerical classification of the
different types of orbits is done.

The paper which is closer to ours, in the sense that is based on topological arguments
similar to ours and giving global results for the possible connections between the relative
equilibria is Maciejewski and Rybicki (2004), for the restricted three-body problem.

A final introductory comment, about topological methods, in particular in bifurcation
problems, may be useful: the degree arguments, coupled with group representation ideas,
give global information, i.e., an indication of where the bifurcation branches could go. Also,
since the results are valid for problems which are deformation of the original problem, the
method does not require high order computations and they may be applied in some degen-
erate cases (for instance it is not necessary that the bifurcation parameter crosses a critical
value with non-zero speed; it is enough that it crosses eventually). However, knowledge of
some generic property, like a Morse condition, implies an easy application of the argument.
This may be not the case for problems with more parameters (see however Ize (1995)). An
immediate drawback of this approach is that topological methods do not provide a detailed
information on the local behavior of the bifurcating branch, such as stability or the exis-
tence of other type of solutions, like KAM tori. Other methods, such as normal forms or
special coordinates, should be used for these purposes, but they only provide local informa-
tion near the critical point. In a similar way, our degree arguments give only partial results
on resonances and other tools should be used. Topological methods provide an interesting
complement of information.
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Global bifurcation of planar and spatial periodic solutions 219

2 Setting the problem

Newton’s equations describing the movement of a satellite, in rotating coordinates and with
angular speed equal to 1, are

ẍ + 2 J̄ ẋ = ∇V (x) with

V (x) :=
∥
∥ Ī x

∥
∥

2

2
+

n
∑

j=1

m jφα(
∥
∥x − (a j , 0)

∥
∥),

where x ∈ R
3 is the position of the satellite and (a j , 0) is the position of a primary body with

mass m j . The function φα represents the attraction between the bodies, where we suppose
that φ′

α = −1/xα , and we include the gravitational potential for α = 2. The matrices Ī and
J̄ are defined by

Ī = diag(I, 0) and J̄ = diag(J, 0),

where J and I are the symplectic and identity 2 × 2 matrices.
Here we assume that the primary bodies form a relative equilibrium. Because of the homo-

geneity of the potential, we may rescale the space so that the angular velocity is 1. As all
relative equilibria are planar for the n-body problem, thus the positions of the primary bodies
a j ∈ R

2 must satisfy the relation

ai =
n

∑

j=1 ( j �=i)

m j
ai − a j

∥
∥ai − a j

∥
∥α+1 .

The equilibria of the satellite are just the critical points of the potential V . From the
potential we can prove that all equilibria are planar. Now, we wish to find the Hessian of the
potential at a planar equilibrium.

Proposition 1 Let d j be the distance between x0 = (x, y, 0) and the primary body (a j , 0) =
(x j , y j , 0). The Hessian matrix of the potential is

D2V (x0) =
⎛

⎝I +
n

∑

j=1

m j A j ,−
n

∑

j=1

m j/dα+1
j

⎞

⎠ ,

where the matrices A j are defined by

A j = (α + 1)

dα+3
j

(

(x − x j )
2 (x − x j )(y − y j )

(x − x j )(y − y j ) (y − y j )
2

)

− I

dα+1
j

. (1)

Proof Since the function φα(d j ) has Hessian

D2φα(d j ) = α + 1

dα+3
j

⎛

⎝

(x − x j )
2 (x − x j )(y − y j ) 0

(x − x j )(y − y j ) (y − y j )
2 0

0 0 0

⎞

⎠ − I

dα+1
j

,

hence D2φα(d j ) = diag(A j ,−1/dα+1
j ). From this fact we get the Hessian of V . ��

Now we want to estimate the number of equilibria provided that the potential is a Morse
function, which is more than a reasonable condition. This is a generic condition, which is
met in our applications, but which could not hold in some cases. As a matter of fact, we only
need that the critical points should be isolated. Because all equilibria are in the plane, we
may restrict the potential to planar points.
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Proposition 2 Let us assume that the potential of the satellite is in the plane with α ∈ [1,∞).
Then the potential does not have maximum points. In addition, if the potential is a Morse
function, then

#saddle points = n − 1 + # minimum points.

Moreover, since the potential has a global minimum, there are at least n saddle points.

Proof The potential in the plane has Hessian D2V (x0) = I + ∑n
j=1 m j A j , and the trace of

D2V (x0) is

T = 2 + (α − 1)

n
∑

j=1

m j

dα+1
j

. (2)

Consequently, the potential does not have maximum points as the trace is positive for
α ∈ [1,∞). Moreover, we know that V (x) is positive and that V (x) → ∞ as x →
{∞, a1, . . . , an}, then V has at least a global minimum in Ω . Since the gradient of V (x)

is dominated by the identity, for large ‖x‖, the critical points are bounded.
Let us define the set Ω as a ball of radius ρ, minus small balls of radii ρ−1 with centers

at a j . Since the gradient ∇V points outward in ∂Ω provided ρ is big enough, then by the
Poincaré–Hopf theorem the degree of ∇V (x) is equal to 1 − n. Furthermore, since V (x) is a
Morse function, that is the critical points are non-degenerate, then this degree is the sum of
the local indices. Each of these indices is the sign of the determinant of the Hessian matrix,
that is 1 for a minimum and −1 for a saddle point. Then

1 − n = degΩ ∇V = #minimum points − #saddle points

��

3 Bifurcation theorem

In order to explain our results, we may give a short description of the steps to prove the
bifurcation theorem.

We wish to remark that we follow the ideas from the book (Ize and Vignoli 2003), where
more general bifurcation theorems are proven. In addition, in the thesis (García-Azpeitia
2010) one may find a systematic application to different Hamiltonian systems and situations.

3.1 The bifurcation operator

Our aim is to find bifurcation of periodic solutions from the equilibria of the satellite. First,
we make the change of variables from t to t/ν. Hence, the 2π/ν-periodic solutions of the
differential equations are the 2π -periodic solutions of

−ν2 ẍ − 2ν J̄ ẋ + ∇V (x) = 0.

Let H2
2π (Rn) be the Sobolev space of 2π -periodic functions, with the corresponding regu-

larity. We define the collision points as the set Ψ = {a1, . . . , an} and the collision-free paths
as the set

H2
2π (R3\Ψ ) = {x ∈ H2

2π (R3) : x(t) �= a j }.
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Global bifurcation of planar and spatial periodic solutions 221

Recall that functions in this space are continuous. Hence, we define the bifurcation operator
f : H2

2π (R3\Ψ ) × R
+ → L2

2π as

f (x, ν) = −ν2 ẍ − 2ν J̄ ẋ + ∇V (x).

In view of the definitions, the collision-free 2π -periodic solutions are zeros of the bifurcation
operator f (x, ν). Furthermore, the operator f is well defined and continuous.

Now, we define the actions of the group Z2 × S1 on H2
2π (R3\Ψ ) as

ρ(κ)x = Rx(t) and ρ(ϕ)x = x(t + ϕ),

where R = diag(1, 1,−1) is just the reflection which fixes the plane.
Since V (x) is invariant with respect to the reflection, the gradient ∇V is a Z2-equivariant

map. Moreover, since the equation is autonomous and R commutes with the matrix J̄ , then

f (ρ(κ, ϕ)x) = ρ(κ, ϕ) f (x).

Therefore f (x) is a Z2 × S1-equivariant map.
Now, the generator of the group S1 on the space H2

2π is Dϕ(ρ(ϕ)x)ϕ=0 = ẋ . As the
operator f (x) satisfies the equality

〈 f (x), ẋ〉L2
2π

= (−ν2 |ẋ |2 /2 + V (x))|2π
0 = 0,

then the operator f (x) is orthogonal to the generator ẋ in L2
2π . Given this condition we say

that the operator f (x) is a Z2 × S1-orthogonal map. The orthogonality corresponds to the
conservation of energy.

Finally, since all the equilibria are planar, the isotropy subgroup of an equilibrium x0 is
Z2 × S1. This means that all equilibria are fixed by the action of Z2 × S1.

3.2 The Lyapunov-Schmidt reduction

We want to use the orthogonal degree in order to prove bifurcation, but since this degree
is defined only in finite dimensions, we need to reduce the bifurcation operator to finite
dimensions. To achieve this, let us set the Fourier series of the bifurcation operator as

f (x) =
∑

l∈Z

(

l2ν2xl − 2ilν J̄ xl + gl
)

eilt ,

where xl and gl are the Fourier modes of x and ∇V (x), respectively. Since l2ν2 I − 2ilν J̄
is invertible for all l’s except a finite number, we can make a Lyapunov-Schmidt reduction
to a finite space. In fact, we perform a global reduction, using the global implicit function
theorem, with the right bounds taking care of the collision points Ψ .

In that way, we get that the zeros of the bifurcation operator are the zeros of the bifurcation
function

f (x1, x2(x1, ν), ν) =
∑

|l|≤p

(l2ν2xl − 2ilν J̄ xl + gl)e
ilt ,

where x1 corresponds to the 2p + 1 modes and x2 to the complement.
Consequently, the linearized bifurcation function at an equilibrium x0 is

f ′(x0, ν)x1 =
∑

|l|≤p

(

l2ν2 I − 2ilν J̄ + D2V (x0)
)

xle
ilt .
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222 C. García-Azpeitia , J. Ize

In fact, ∇V (x) = D2V (x0)(x − x0) + · · ·, close to x0 and the Fourier components of
x − x0 are xl for l �= 0 and we rename the stationary mode as x0.

So the linearized bifurcation equation has blocks M(lν) for l ∈ {0, . . . , p}, where the
block M(λ) is

M(λ) = λ2 I − 2iλ J̄ + D2V (x0).

3.3 Irreducible representations

In the following part, we analyze the symmetries of the group Z2 × S1. Since the action of
(κ, ϕ) ∈ Z2 × S1 on Fourier modes eilt xl is

ρ(κ, ϕ)(eilt xl) = Reilϕ(eilt xl),

then the action on the block M(lν) is given by ρ(κ, ϕ)xl = Reilϕxl .
Now, as the action of Z2 on C

3 is ρ(κ) = diag(1, 1,−1), the space C
3 has two irreducible

representations: V0 = C
2 × {0} and V1 = {0} × C. That is, the group Z2 acts on V0 as

ρ(κ) = 1 and on V1 as ρ(κ) = −1. Hence, by Schur’s lemma we know that the matrix M(λ)

must satisfy

M(λ) = diag(M0(λ), M1(λ)).

Actually, from the explicit Hessian D2V (x0) we have

M1(λ) = λ2 −
n

∑

j=1

m j/dα+1
j and (3)

M0(λ) = λ2 I − 2i Jλ +
⎛

⎝I +
n

∑

j=1

m j A j

⎞

⎠ .

Consequently, the action of the group Z2 × S1 on the block M0(ν) is (κ, ϕ)x = eiϕx .
Therefore the element (κ, 0) leaves fixed the points for M0(ν), so the isotropy subgroup for
M0(ν) is the one generated by (κ, 0),

Z2 = 〈(κ, 0)〉 .

For M1(ν) the action of the group Z2 × S1 is (κ, ϕ)x = −eiϕx . It follows that (κ, π) leaves
fixed the points for M1(ν), thus the isotropy subgroup for M1(ν) is generated by (κ, π),

Z̃2 = 〈(κ, π)〉 .

3.4 The orthogonal degree

The orthogonal degree is defined for orthogonal maps that are non-zero on the boundary of
some open bounded invariant set. The degree is made of integers, one for each orbit type,
and it has all the properties of the usual Brouwer degree. Hence, if one of the integers is
non-zero, then the map has a zero corresponding to the orbit type of that integer. In addition,
the degree is invariant under orthogonal deformations that are non-zero on the boundary. The
degree has other properties such as sum, products and suspensions, for instance, the degree
of two pieces of the set is the sum of the degrees.

Now, if one has an isolated orbit, then its linearization at one point of the orbit x0 has a
block diagonal structure, due to Schur’s lemma, where the isotropy subgroup of x0 acts as Zn
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Global bifurcation of planar and spatial periodic solutions 223

or as S1. Therefore, the orthogonal index of the orbit is given by the signs of the determinants
of the submatrices where the action is as Zn , for n = 1 and n = 2, and the Morse indices
of the submatrices where the action is as S1. In particular, for problems with a parameter, if
the orthogonal index changes at some value of the parameter, one will have bifurcation of
solutions with the corresponding orbit type. Here, the parameter is the frequency ν.

Any Fourier mode will give rise to an orbit type (modes which are multiples of it), hence
one has an element of the orthogonal degree for each mode. Furthermore, if x(t) is a periodic
solution, with frequency ν, then y(t) = x(nt) is a 2π/n-periodic solution, with frequency
ν/n. Hence, any branch arising from the fundamental mode will be reproduced in the har-
monic branch. If one wishes to study period-doubling, then one has to consider the branch
corresponding to π-periodic solutions.

The complete study of the orthogonal degree theory is given in Ize and Vignoli (2003).

Theorem 1 Supposing that the matrix M(0) = D2V (x0) is invertible, we define

ηk(λ) = σ(nk(λ − ρ) − nk(λ + ρ)), (4)

where σ = sgn(det M0(0)) and nk(λ) is the Morse index of Mk(λ) for k ∈ {0, 1}.
In general, if x0 is an isolated critical point, then σ is the index of ∇V (x) at x0.
If ηk(νk) is nonzero, then the equilibrium has a global bifurcation of periodic solutions

starting from the period 2π/νk with isotropy group Gk.

Proof Since M1(0) is a negative number, the sign of the determinant of M(0) is the opposite
of σ . Furthermore, there will be a change of the Morse number only at values of λ where
M1(λ) is 0 or where the self-adjoint matrix M0(λ) has one of its two eigenvalues equal to 0
( the other is not 0, given that the trace is positive). Finally, since λ = lν, what happens for
the fundamental mode (l = 1) is reproduced for higher modes and frequencies which are
quotients of the fundamental frequency by the mode l. Here we take the fundamental mode.
One is then in the position of applying Proposition 3.1, p. 255 of Ize and Vignoli (2003), after
one sees the change of orthogonal index. Finally, if x0 is an isolated critical point, then one
may perform an orthogonal deformation of the map to (∇V (x), M(lν)xl), for l ∈ {1, . . . , p},
near (x0, νk), with a jump at νk given by the above formula. ��

We say that the bifurcation is non-admissible when either: i) the global branch goes to
infinity in norm or period or ii) the branch ends in a collision path. In any other case we say
that the bifurcation is admissible. By global bifurcation we mean either that the bifurcation
is non-admissible or, if the bifurcation is admissible, that the bifurcation branch returns to
other bifurcation points and that the sum of the jumps of the indices at the bifurcation points,
ηk(νk), is zero.

4 Spectral analysis

Now, we wish to find the bifurcation points of an equilibrium. In order to do so, we need to
analyze the spectrum of the blocks M0(λ) and M1(λ). But let us first find the symmetries of
the solutions that bifurcate from these blocks.

For M0(λ) we get solutions with isotropy subgroup Z2. As κ ∈ Z2 has action ρ(κ)x0(t) =
Rx0(t), this means that the solutions with symmetry Z2 satisfies x0(t) = Rx0(t), i.e. z(t) = 0.
Therefore, solutions with symmetry Z2 are just planar solutions.

For M1(λ) we get solutions with isotropy subgroup Z̃2. As (κ, π) ∈ Z̃2 has action
ρ((κ, π)x0(t) = Rx0(t+π), then the solutions with symmetry Z̃2 satisfy x0(t) = Rx0(t+π),
i.e.
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x(t) = x(t + π), y(t) = y(t + π) and z(t) = −z(t + π). (5)

Since the projection of this solution on the (x, y)-plane is a π-periodic curve, that solution
follows twice this planar curve, one time with the spatial coordinate z(t) and a second time
with −z(t). Consequently, there is at least one t0 where z(t0) = z(t0 + π) = 0. For instance,
if only one t0 exists, then the solution looks like a spatial eight near the equilibrium. For this
reason, we will call eight-solutions the solutions with isotropy subgroup Z̃2.

Remark 1 Actually, the solutions of the satellite are defined in rotating coordinates, so that
the periodic solutions are in general quasiperiodic in fixed coordinates.

4.1 Planar solutions

Let T and D be the trace and determinant of the matrix M0(0). We point out that the block
M0(0) is just the Hessian of the planar potential at the equilibrium point. In addition, in the
first section we have proven that the trace T is always positive. Now, we want to show that
the bifurcation depends essentially on the sign of D.

Proposition 3 Let us define ν± as

ν± =
(

2 − T/2 ±
√

(2 − T/2)2 − D

)1/2

.

(a) If D < 0, then x0 has a global bifurcation of periodic planar solutions from 2π/ν+
with

η0(ν+) = −1.

(b) If D > 0, (2 − T/2)2 > D and T < 4, then x0 has a global bifurcation of periodic
planar solutions from 2π/ν+ and 2π/ν− with

η0(ν+) = 1 and η0(ν−) = −1.

Proof Since M0(0) is selfadjoint, there is an orthonormal matrix P ∈ SO(2) such that
M0(0) = PT �P , where � is the eigenvalue matrix diag(λ1, λ2). Since M0(ν) = ν2 I −
2i Jν + M0(0) and J commutes with P , then

P M0(ν)PT = diag(ν2 + λ1, ν
2 + λ2) − 2ν(i J ).

In view of T = λ1 + λ2 and D = λ1λ2, the determinant of M0(ν) is

det M0(ν) = ν4 − 2(2 − T/2)ν2 + D.

It follows that the determinant has the factorization

det M0(ν) = (ν2 − ν2+)(ν2 − ν2−).

Consequently, the Morse index of M0(ν) can change only at ±√
ν±.

For (a), only ν+ is positive, and σ = sgn(D) = −1. The Morse index of M0(0) is
n0(0) = 1 due to D < 0, and n0(∞) = 0 due to the fact that M0(ν) has only positive
eigenvalues for ν big enough. Therefore η0(ν+) = σ(1 − 0) = −1.

For (b), both numbers ν± are positive, and σ = sgn(D) = 1. Moreover, we see that the
determinant of M0(ν) is negative between ν− and ν+, thus n0(ν) = 1 for ν ∈ (ν−, ν+). As
the Morse index at infinity is n0(∞) = 0, we conclude that η0(ν+) = 1 − 0. Now, the Morse
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Global bifurcation of planar and spatial periodic solutions 225

index of M0(0) is n0(0) = 2 if T < 0 and n0(0) = 0 if T > 0. It follows that η0(ν−) = 2−1
if T < 0 and η0(ν−) = 0 − 1 if T > 0.

Note that this proof is independent of the form of the potential. For the case of the specific
potential of this paper, Eq. (2) implies that T > 0. ��
Remark 2 In the case (b), the two local bifurcations can locally collide when the resonance
condition ν+ = mν− holds. Moreover, it is easy to prove that the resonance condition is
equivalent to

(4 − T )D−1/2 ∈ {m + m−1 : m ∈ N}.
Remark 3 In all other cases different from (a), ( b) and (2 − T/2)2 = D, there is no bifur-
cation, if D is not 0, since then the matrix M0(λ) is always invertible. In addition, in the
case (2 − T/2)2 = D > 0, both points ν± coincide and η0(ν+) = 0, then we cannot assure
or discard the existence of bifurcation, but probably of a different kind, as found in Bardin
(2002) and Sicardy (2010). Finally, if D = 0, then ν− = 0 and ν+ = (4 − T )1/2, if T < 4,
i.e. V (x) is not a Morse function at x0. In this last case, one may have a bifurcation of relative
equilibria if the masses of the primaries are chosen as parameter and one has a change in σ ,
when one of the masses crosses the critical value, or one could have a secondary bifurcation
of periodic solutions if the unfolding has the right properties, see Ize (1995). However, in the
applications of the present paper, the potential is a Morse function.

Remark 4 Actually, the satellite equation on the plane is a Hamiltonian system with two
degrees of freedom. We can relate the linear stability of the system with the bifurcation
analysis. Indeed, it can be proven that the equilibrium x0 is linearly stable on the plane if
and only if condition (b) is satisfied. Note that one could argue about the usefulness of a
bifurcation result for the satellite if the arrangement of the primaries is unstable. This is a
quite valid argument from the practical point of view, taking into account the reality of this
model for a problem of mechanics. However, the mathematical result is independent of the
stability of the primaries and furthermore, as proved in García-Azpeitia (2010) and in an
article in preparation, the primaries may loose their stability and generate stable periodic
solutions of the whole system. In that case, it is much simpler to prove the bifurcation of
periodic solutions for the satellite, assuming, as a first approximation, that the primaries are
at their position of relative equilibrium. Hence, the mathematical study of the bifurcation is
also justified in this framework.

In the case of the Maxwell ring, it is well known that the system of the primaries is unsta-
ble if n is between 3 and 6 and the stability is treated, for n > 6 and large central mass, in
Roberts (2000); Vanderbei and Kolemen (2007) and others. A complete mathematical study
of the stability is given in García-Azpeitia and Ize (2011). Thus, if one insists, on physical
grounds, that the stability of the relative equilibrium configuration must be insured in other
to have a study of the bifurcation, one has to restrict to the case n > 6 and large central mass,
or assume that the primaries are fixed in the rotating frame.

Remark 5 Because there is only one bifurcation value for the frequency in case (a), the global
branch cannot return to the same equilibrium point, so the bifurcation branch is non-admissi-
ble or it is connected to the bifurcation point of another equilibrium. In fact, if the potential is
a Morse function, then one should get a connection to the small period branch of a minimum
(that is with a jump of 1). This implies that, in this case, there are at least n − 1 non admissi-
ble branches starting from saddle points, (see our previous proposition). In Maciejewski and
Rybicki (2004), one finds other possibilities for branches starting from a minimum, and ν+,
for the restricted three-body problem.
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226 C. García-Azpeitia , J. Ize

4.2 Spatial solutions

As before, let ν± be the points where M0(λ) is not invertible.

Proposition 4 Let us define ν1 as the positive root of

ν2
1 =

n
∑

j=1

m j/dα+1
j .

Then every equilibrium x0 has a global bifurcation of periodic eight solutions with

η1(ν1) = σ.

In addition, the local bifurcation branch from 2π/ν1 is truly spatial, z(t) �= 0, provided the
nonresonant condition ν1 �= ν±/2l holds.

Proof It is clear that M1(ν) is zero only for ±ν1. Since M1(∞) is positive and M1(0) is
negative, the Morse indices at infinity and zero are n1(∞) = 0 and n1(0) = 1. Therefore
η1(ν1) = σ(1 − 0). Thus, one has the global bifurcation of periodic eight solutions.

It remains only to prove that the solutions are truly spatial. In order to achieve this, we
need to prove the nonexistence of solutions of the kind

x(t) = x(t + π), y(t) = y(t + π) and z(t) = 0 (6)

near (x0, ν1). In fact, the solutions (6) are in the fixed point space of the group Z2 × Z2

generated by κ ∈ Z2 and π ∈ S1.
Now, the restriction of the derivative of the bifurcation equation to the fixed point space of

Z2 × Z2 has blocks M0(2lν1). Since the matrix M0(ν) is invertible except for the points ν±,
and we suppose ν± �= 2lν1, the blocks M0(2lν0) are invertible. Consequently, the derivative
of the bifurcation equation in the fixed point space of Z2 ×Z2 is invertible. Therefore, we get
the nonexistence of planar solutions (6) near (x0, ν1) from the implicit function theorem. ��
Remark 6 Although the nonresonant condition ν1 �= ν±/2l is sufficient to assure that the
bifurcation from 2π/ν1 is really spatial, it is not a necessary condition. If one considers the
full three-dimensional problem, without any special symmetry (except periodicity), then, if
one has the resonance ν± = 2lν1, the jump of orthogonal index has two components η1(ν1)

for the fundamental mode and η0(ν±) for the 2l-mode. Since this jump is different from
the one caused by the rescaling of the jump for the solution in the fixed-point subspace of
Z2, which has only the second component for the 2l-mode, one obtains a new branch of
periodic solutions. In the case of the restricted three-body problem, this is the branch given
in Maciejewski and Rybicki (2004).

5 Applications

5.1 A Morse potential

We have proven that the potential for the satellite problem has at least n saddle points and a
global minimum, provided it is a Morse function. Consequently, we get the following result:

Theorem 2 Each one of the saddle points has a global bifurcation of planar periodic solu-
tions and a global bifurcation of periodic eight solutions.
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Each of the minimum points satisfy one of the following options: (a) it has two global
bifurcations of planar periodic solutions and one bifurcation of periodic eight solutions, or
(b) it has one bifurcation of spatial periodic eight solutions.

For the planar bifurcation, each saddle point has a bifurcation with index η0 = −1 and
each minimum point has two bifurcations, if any, one with η0 = 1 and another with η0 = −1.
Because an admissible bifurcation branch has sum of indices η0 equal to zero, the sum over
all admissible branches is 0. If sa denotes the number of saddle points which belong to an
admissible branch, m−a the number of minima with jump of −1 which are on an admissible
branch and m+a those with jump 1, one has that sa + m−a = m+a . Let si , m−i , m+i be the
numbers of points which are on non-admissble branches and let s be the total number of
saddle points, m the number of minima (including m0 those which are not on any branch),
then one gets that m = m0 + m−a + m−i = m0 + m+a + m+i and, since s = n − 1 + m,
one has si + m−i − m+i = n − 1 + m, that is the number si + m−i of points with jump −1
belonging to non-admissible branches is at least n − 1 + m. Thus, the number of points on
non-admissible branches is at least the number of saddle points.

Now, since every minimum has a spatial bifurcation with η1 = 1 and every saddle point
has a spatial bifurcation with η1 = −1, then a bifurcation branch of eight solutions is non-
admissible or the total number of saddle and minimum points that it connects is the same
and the number of saddle points which are on non-admissible branches of eight solutions is
at least n − 1.

5.2 The restricted three-body problem

In the restricted three-body problem, the primary bodies are at a1 = (1 − μ, 0) and a2 =
(−μ, 0) with masses m1 = μ and m2 = 1 − μ. Hence, the potential of the satellite is

V (x) = 1

2

∥
∥ Ī x

∥
∥

2 +
2

∑

j=1

m jφα

(‖x − (a j , 0)‖) .

This problem is well known on the plane, see for instance Meyer and Hall (1991). There
are only five equilibrium points called Lagrangians. Two of these equilibrium points form
an equilateral triangle with the primary bodies a1 and a2, and they are minima of the pla-
nar potential. Three of the equilibrium points are collinear with the primaries, also called
Eulerian points, and they are saddle points of the potential. All of these relative equilibria
are non-degenerate, that is V (x) is a Morse function.

Also, it is well known that the minimum points have two bifurcation frequencies ν±
for μ < μ1, where μ1 = (1 − (α + 1)−1√α(30 − α) − 33)/12)/2, when α is in the inter-
val(15−8

√
3, 3), is the critical Routh ratio and without any restriction on μ if α belongs to the

interval (1, 15−8
√

3). This comes from the fact that the trace T = α+1 and the determinant
D = 3(α + 1)2μ(1 − μ)/4, with the conditions T < 4 and (2 − T/2)2 > D. In that case,

ν2± =
(

3 − α ±
√

(3 − α)2 − 3(α + 1)2μ(1 − μ)
)

/2.

Note that ν+/ν− tends to infinity when μ tends to 0, thus there is an infinite number of
resonance values for μ, when μ goes to 0.

For the saddle points we have only the bifurcation point ν+, where

ν2+ = 1 − (α − 1)ν2
1/2 + (

(α + 1)2ν4
1/4 − 2(α − 1)ν2

1

)1/2

with ν2
1 = ∑2

j=1 m j/dα+1
j > 1, since D2V (x0) = diag(1 + αν2

1 , 1 − ν2
1 ).
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Consequently, we get the classical global bifurcation of planar periodic solutions, with at
least three equilibria on non-admissible branches, see Maciejewski and Rybicki (2004) for
the case α = 2.

Now, we wish to find bifurcation of spatial periodic eight-solutions.

Theorem 3 In the restricted three-body problem each one of the five equilibria has a global
bifurcation of spatial periodic eight-solutions.

Proof We only need to prove the nonresonant condition ν1 > ν±/2l at equilibrium points. For
the triangular Lagrangian points we have that ν1 = 1 and ν± ∈ (0,

√
(3 − α) for μ ∈ (0, 1),

therefore ν1 > ν±/2l.
For the collinear Lagrangian points, since ν+ is given in terms of ν1, we need to prove that

4l2ν2
1 �= ν2+, or equivalently (α + 1)2ν4

1/4 − 2(α − 1)ν2
1 �= ((4l2 + (α − 1)/2)ν2

1 − 1)2. The

last inequality is also equivalent to aν4
1 − 2bν2

1 + 1 �= 0, where a = (

4l2 + (α − 1)/2
)2 −

(α + 1)2/4 and b = 4l2 − (α − 1)/2. But since b2 − a = (α + 1)2/4 − 8(α − 1)l2 < 0 is
satisfied for all l ≥ 1, if α ∈ (15 − 8

√
3, 3), then the quadratic equation aν4

1 − 2bν2
1 + 1 = 0

does not have solutions and 4l2ν2
1 �= ν2+. On the other hand, if α ∈ (1, 15 − 8

√
3) and l = 1,

then the quadratic equation has its largest root less than 1, which contradicts the fact that at
the saddle point ν1 > 1. Thus, there is no resonance and the branch is truly spatial and at
least one branch is non-admissible. ��
5.3 The Maxwell’s Saturn ring

In this section, we analyze the satellite problem when the primaries form a polygonal relative
equilibrium. Hereafter, we identify the real and complex planes.

The polygon consists of one body of mass μ at a0 = 0, and n bodies of mass 1 at each
vertex of a regular polygon, for instance a j = aei jζ for j ∈ {1, . . . , n}, where ζ = 2π/n. It
is easy to prove that the positions a j form a relative equilibrium provided that aα+1 = s +μ,
where s is defined by

s = 1

2α

n−1
∑

j=1

1

sinα−1( jζ/2)
.

Moreover, we can make the change of variable x = au in such a way that the equation is
ü + 2 J̄ u̇ = ∇V (u) with the potential

V (u) = 1

2

∥
∥ Ī u

∥
∥

2 +
n

∑

j=1

1

s + μ
φα

(

‖u − (ei jζ , 0)‖
)

+ μ

s + μ
φα(‖u‖).

Now we point out that the case n = 2 with μ = 0 is just a particular case of the restricted
three-body problem, hence we shall analyze only the cases n = 2 with μ > 0 and n ≥ 3
with μ ≥ 0.

Existence of equilibria

Remember that all equilibrium points of the satellite are in the plane. So, we assume, for this
purpose, that the satellite is in the plane, i.e. the potential is

V (u) = 1

2
‖u‖2 +

n
∑

j=1

1

s + μ
φα

(

‖u − ei jζ ‖
)

+ μ

s + μ
φα(‖u‖)

with u ∈ R
2.
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Proposition 5 For μ = 0, the origin u0 = 0 is a critical point. In addition, we have for
n ≥ 3 that D2V (0) = λI with λ > 0.

Proof That the origin is a critical point follows from the fact that

∇u V (0) = 1

s

n
∑

j=1

ei jζ = 0.

Now, since D2V (0) has real eigenvalues and D2V (0) is Dn-equivariant, by Schur’s lemma
we have D2V (0) = λI for n ≥ 3. That λ > 0 is due to the fact that the trace T = 2λ is
always positive. ��

Now for u �= 0, we may simplify the analysis if we change to polar coordinates. For these
coordinates the potential is

V (r, ϕ) = r2/2 + μ

s + μ
φα (‖r‖) +

n
∑

j=1

1

s + μ
φα

(

‖r − ei( jζ−ϕ)‖
)

.

Let us observe that the potential V is Dn-invariant for the action ρ(ζ )u = eiζ u and
ρ(κ)u = ū, thus, critical points will be Dn-orbits of points. It follows that the potential
V (r, ϕ) is even and 2π/n-periodic in ϕ, hence, we may restrict our analysis to points with
ϕ ∈ [0, π/n].

Now, we will show that the potential has three orbits of critical points. To achieve this
goal, we need first to prove the following lemma.

Lemma 1 For n ≥ 3, the derivative Vr at eiπ/n is negative,

Vr (1, π/n) < 0.

Proof The derivative of V (r, ϕ) is

Vr (r, ϕ) = r − μ

s + μ

1

rα
− 1

s + μ

n
∑

j=1

r − cos( jζ − ϕ)
∥
∥r − ei( jζ−ϕ)

∥
∥

α+1 . (7)

Therefore, at eiπ/n , we have

Vr (1, π/n) = s

s + μ
− 1

s + μ

⎛

⎝

n
∑

j=1

1

2α

1

sinα−1( j − 1/2)ζ/2

⎞

⎠ = s − σ

s + μ
,

where σ is the sum between parentheses.
So it remains to prove that s < σ . In order to do so, we need some inequalities. Since

n ≥ 3, we have the first inequality

2αs =
n−1
∑

j=1

1

sinα−1( jζ/2)
≤ 2

∑

j∈[1,n/2]∩N

1

sinα−1( jζ/2)
,

where equality holds for n odd. Similarly, we have the second inequality

2ασ =
n

∑

j=1

1

sinα−1( j − 1/2)ζ/2
≥ 2

∑

j∈[1,n/2]∩N

1

sinα−1( j − 1/2)ζ/2
,
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where equality holds for n even. Finally, since sin( j − 1/2)ζ/2 < sin jζ/2 for j ∈ [1, n/2],
then we have the third inequality

1

sinα−1( j − 1/2)ζ/2
>

1

sinα−1( jζ/2)
.

The fact σ > s follows from these inequalities. ��
In Bang and Elmabsout (2003), one may find an integral representation which is used to

prove the next corollary. In addition, a direct proof of the integral representation and of this
corollary will be given in the last section.

Corollary 1 For α ∈ (1, 3), the derivative Vr (r, ϕ) is the product of − sin(nϕ) with a positive
function ω(r, ϕ),

Vϕ(r, ϕ) = − sin(nϕ)ω(r, ϕ).

We may now prove the existence of Zn-orbits of equilibrium points.

Proposition 6 For α ∈ (1, 3) and n ≥ 3 there are three orbits of critical points. We are
showing only the points of the Zn-orbits with ϕ ∈ [0, π/n]:
(a) If μ ∈ (0,∞), there are two saddle points at r2 and r1, with 0 < r2 < 1 < r1, and

there is a minimum point at r3eiπ/n, with r3 > 1.
(b) If μ = 0, there are two saddle points at r1 and r2eiπ/n, with 0 < r2 < 1 < r1, and

there is a minimum point at r3eiπ/n, with r3 > 1.

Furthermore, there are no other critical points when ϕ ∈ [0, π/n).

Proof Since Vϕ(r, ϕ) = − sin(nϕ)ω(r, ϕ), with a positive function ω(r, ϕ), then Vϕ(r, ϕ) =
0 only for ϕ = kπ/n. Furthermore, at these points we have Vϕϕ(r, kπ/n) = −nω(r, ϕ)

cos kπ . Consequently, the critical points must be in ϕ ∈ {0, π/n} with

Vϕϕ(r, 0) < 0 and Vϕϕ(r, π/n) > 0.

Thus, in order to find critical points, we need to look only for points where Vr (r, ϕ) = 0,
with ϕ = 0, π/n.

Before we start finding critical points, we wish to prove that all the critical points with
ϕ = 0 are saddle points. The trace of D2V (x0) at a critical point is

T = Vxx + Vyy = Vrr + r−2Vϕϕ.

Similarly, it is easy to see that the determinant of D2V (x0) at a critical point is

D = Vrr Vϕϕr−2.

Now, since T is always positive and Vϕϕ(r, 0) is always negative, then Vrr (r, 0) is positive.
Consequently, all critical points, with ϕ = 0, satisfy

Vrr (r, 0) > 0 and Vϕϕ(r, 0) < 0.

For μ ∈ [0,∞), the potential V (r, 0) goes to infinity when r → {1,∞}. Hence, the
potential has a saddle point at r1 ∈ (1,∞). Now, if there were another critical point r∗ in
(1,∞), then Vrr (r∗, 0) would be positive. In that case there would be another critical point
between r1 and r∗ with Vrr (r, 0) ≤ 0. But that cannot happen, and consequently r1 is unique
in (1,∞).
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For μ ∈ (0,∞), the potential V (r, 0) goes to infinity when r → {1, 0}. Hence the potential
has a saddle point with r2 ∈ (0, 1). As before with r1, we can prove that r2 is unique in (0, 1).

For μ = 0, remember that Vr (0, ϕ) = 0 and Vrr (0, ϕ) > 0. Then, by a similar argu-
ment to the uniqueness of r1 we can prove that the potential V (r, 0) does not have critical
points in (0, 1). Now, for ϕ = π/n, since Vr (1, π/n) is negative and Vr (0, π/n) = 0 with
Vrr (0, π/n) > 0, there must be a r2 < 1 such that Vr (r2, π/n) = 0 with Vrr (r2, π/n) < 0.
Consequently r2eiπ/n is a saddle point.

For μ ∈ [0,∞), since Vr (1, π/n) is negative and since Vr (r, π/n) goes to infinity as
r → ∞, there is a critical point r3 ∈ (1,∞) such that Vrr (r3, π/n) > 0. Therefore r3eiπ/n

is a minimum. ��
In the article (Bang and Elmabsout 2004), the existence of these three orbits of equilibrium

points is proven, as well as their stability. However, our proofs are simpler.
For n = 2 and μ > 0 we can prove the previous proposition with the same argument,

except for the existence of r3. Instead, we get the existence of a r3 ∈ (0,∞) because the
potential V (r, π/2) goes to infinity when r → 0,∞.

Now, in Bang and Elmabsout (2004), the question of the existence of more critical points
was left open. Actually, for n = 2 and μ > 0 we can prove the following:

Proposition 7 For n = 2 and μ > 0 the previous proposition is true and there are no other
critical points.

Proof It remains only to prove that r3 is in (1,∞) and is unique. Let us define f (r) =
−2(r2 + 1)−(α+1)/2. After some computations, we find that the derivative Vr (r, π/2) satis-
fies the equality

(s + μ)Vr = r( f (r) + s) + μ(r − r−α). (8)

Let us denote the μ-dependence of the potential as V (r, ϕ;μ). Therefore, from the equality
(8), we have that Vr (r, π/2;μ) < Vr (r, π/2; 0) for r ≤ 1. Now, as the three body problem is
the case n = 2 with μ = 0, we know that Vr (r, π/2; 0) = 0 only at the triangular Lagrangian
point r = √

2. Furthermore, Vr (r, π/2; 0) < 0 for r ≤ 1, and hence Vr (r, π/2;μ) < 0 for
r ≤ 1.

Now, let us analyze the case r > 1. From (8), we see, for the second derivative, that

(s + μ)Vrr = (r f ′ + f ) + s + μ(1 + αr−(α+1)).

Since r f ′ + f = 2
(

r2α − 1
) (

r2 + 1
)(α+3)/2

is a positive function, then Vrr (r, π/2) > 0
for r > 1. From this statement, we conclude that Vr (r, π/2) has only the critical point
r3 ∈ (1,∞). ��

We proved that there may be more critical points only if ϕ = π/n. And indeed, for n ≥ 3
we can find more critical points when μ is near zero.

Proposition 8 For n ≥ 3 and μ near zero the potential has also a minimum and a saddle
point at r4eiπ/n and r5eiπ/n with r4 < r5 < 1. On the other hand, for μ large, r3eiπ/n is the
only critical point on that line.

Proof As before, we represent the dependence of the potential in μ as Vr (r, π/n;μ). Remem-
ber that Vr (0, ϕ; 0) = 0 with Vrr (0, ϕ; 0) = λ > 0 for n ≥ 3, then there is a r∗ ∈ (0, ε)

such that Vr (r∗, π/n; 0) > 0. Therefore, Vr (r∗, π/n;μ) > 0 for μ near zero due to the
continuity. Gathering data, we get Vr (0, π/n) = −∞, Vr (r∗, π/n) > 0 and Vr (1, π/n) < 0
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for μ near zero. Consequently, there are two points r4 and r5 where Vr (r, π/n) is zero with
r4 < r5 < 1. Moreover, the second derivative satisfies Vrr (r, π/n) ≥ 0 for r close to r4 and
Vrr (r, π/n) ≤ 0 for r close to r5. Therefore, r4eiπ/n is a minimum and r5eiπ/n is a saddle
point. On the other hand, for μ large it is easy to see that Vr is strictly increasing. ��

The existence of the solutions r4eiπ/n and r5eiπ/n was pointed out in the paper (Arribas
and Elipe 2004).

Existence of bifurcation

At the saddle points we have the following result:

Theorem 4 The potential has two Zn-orbits of saddle points for n ≥ 2, and one more
when n ≥ 3 and μ is near zero. Furthermore, each one of the saddle points has one global
bifurcation of planar periodic and one bifurcation of periodic eight solutions.

Proof The saddle point on the line ϕ = 0 is non-degenerate, while the critical points on the
line ϕ = π/n are isolated, since Vr is locally analytic. Hence the index at r5 will be −1,
unless r5 and r4 coincide, in which case the index would be 0. ��

Also at the orbit of minimum points we have the following:

Theorem 5 The potential has one Zn-orbit of minimum points for n ≥ 2, and one more when
n ≥ 3 and μ is near zero. Moreover, provided μ is big enough, each minimum point has two
global bifurcations of planar periodic solutions and one global bifurcation of periodic eight
solutions. On the other hand, if α ≥ 2 and μ is small, the minimum r4eiπ/n has no bifurcation
of planar periodic solutions and it has a global bifurcation of spatial eight solutions.

Proof Since the minima are isolated, with σ = 1, we only need to confirm that the bifurca-
tion condition (b), T < 4 and (2 − T/2)2 > D > 0, is satisfied at r3eiπ/n provided that μ is
big enough.

As r3 is a critical point, i.e. Vr (r3eiπ/n;μ) = 0, from (7) we can see that r3(μ) → 1 when
μ → ∞. From the definition (1) of A j , the matrix

M0(0) = I + 1

s + μ

n
∑

j=1

A j + μ

s + μ
A0

converges, when μ → ∞, to the matrix

I + A0 = (α + 1)

(

(cos π/n)2 cos π/n sin π/n
cos π/n sin π/n (sin π/n)2

)

.

Given that T (μ) → α + 1 and D(μ) → 0 when μ → ∞, then (2 − T/2)2 − D → ε > 0
for α ∈ (1, 3). Consequently, for α ∈ (1, 3), at the minimum point the bifurcation condition
(b) holds provided μ is big enough. Finally, for the minima inside the unit disc, one has that
d1 and dn are less than 1, hence, for α ≥ 2 one has that T > 4. ��
Remark 7 As a consequence of the previous proposition, we get that the minimum point
r3eiπ/n is linearly stable for μ big enough. This is one of the aims of the article (Bang and
Elmabsout 2004) where the stability, for the system of the primaries and the satellite, is
proven for n ≥ 7 and μ big enough.
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Remark 8 For n ≥ 3 with μ = 0, as we have seen before, at the origin x0 = 0, we have
M0(0) = λI . Actually, since the trace T > 2, we can prove that the condition for bifurcation
(b) is not satisfied. Hence the origin is a minimum point without bifurcation of planar periodic
solutions.

On the other hand, the origin is a minimum with one bifurcation of spatial eight periodic
solutions. Moreover, we can prove, from the symmetries, that the bifurcating solutions satisfy
x(t) = 0, y(t) = 0 and z(t) = −z(t + π). In fact, we can find z(t) by quadrature from the
equation z̈ = ∇V (z), with V (z) := n

ν2 φα(
√

z2 + 1), with ν2 close to n. Recall that, at it is
well known, that in this case the system of the primaries is linearly unstable.

Remark 9 The study of the bifurcation of periodic solutions, in the plane and also in space,
for the full system of primaries, will be published in another paper.

6 Conclusion

For an arbitrary relative equilibrium of primaries in the plane, we have proved that each
relative equilibrium of the satellite generates several global branches of periodic solutions:
for a saddle point one gets a global branch of planar solutions and a global branch of eight-
solutions, which are truly spatial if a non-resonance condition holds. For a minimum point of
the potential, one gets either two global branches of planar solutions (long and short period)
and a global branch of eight-solutions, or only the branch of eight-solutions which is then
truly spatial.

A global branch may be non-admissible if the period or the norm of the solutions on the
branch go to infinity or the branch goes to collision with one of the primaries. On the other
hand, if the branch is admissible, then the sum of the jumps of the Morse indices at the
critical points on the branch must be zero. In particular, a saddle point has to be connected
with a short period minimum, the number of points on non-admissible planar branches is at
least the number of saddle points and the number of saddle points on these non-admissible
planar branches is at least one less than the number of primaries. Also, the number of saddle
points on non-admissible branches of eight-solutions is at least one less than the number of
primaries.

We have applied this general result in order to describe a rather complete picture of the
restricted three-body problem and of the restricted Maxwell ring.

The topological degree approach, combined with the use of the orthogonality (or first
integrals) and a systematic use of representation theory, gives information which is a good
complement to classical analytical local calculus and allows flexible applications. In partic-
ular, one may extend easily these results to different potentials and to systems with more
bodies.

For concrete situations, there are many local techniques, such as normal form theory
which often requires to check some generic assumptions ( this is not always done in practice),
Poincaré mappings, stable and unstable manifold decomposition of the phase space and so
on. For a low dimensional bifurcation equation, there is a common starting point for these
analytical methods and for the computation of a topological degree, that is the lineariza-
tion of the equations. Higher order approximations may give a better local picture of the
bifurcated solutions. But, as soon as there are resonances or more couplings, the analytical
methods become more difficult to apply, while the topological degree approach can still give
a complementary information on the set of bifurcating solutions, in particular on the global
properties of the branches. It is important to point out that, in many relevant applied problems,
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one may carry out symbolic manipulations of high order which may be even converted into a
valid mathematical proof using interval arithmetics. We are fully familiar with higher order
symbolic manipulations of formal power series and the use of computer assisted proofs.

With these considerations in mind, we have several papers in preparation on bifurcation of
the whole arrangement of primaries, either as relative equilibria or as periodic solutions. For
instance, in the case of the Maxwell ring, one gets n global branches of periodic solutions,
each with different symmetries and where the central mass plays an important role, for the
existence of these periodic solutions. Similar results were obtained for vortices, filaments,
charged particles and nonlinear oscillators. See García-Azpeitia (2010).
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Appendix: Integral representation

Let us define the sum S(r, ϕ) as

S(r, ϕ) =
n

∑

j=1

1
∥
∥r − ei( jζ−ϕ)

∥
∥β

.

In Bang and Elmabsout (2003) the following integral representation of S(r, ϕ) is proved. We
shall give here a direct proof using Cauchy integrals.

Lemma 2 For β ∈ (0, 2) and r ∈ (0, 1) the function S(r, ϕ) has the integral representation

S(r, ϕ) = n

π
sin(πβ/2)

1∫

0

1

(τ−1 − 1)β/2 f (τ )dτ with

f (τ ) = 1

τ(1 − r2τ)β/2

1 − (rτ)2n

∥
∥1 − (τre−iϕ)n

∥
∥

2 .

We are now in a position of proving the corollary on Vϕ .
From the integral representation we get that

Sϕ = − sin(nϕ)

⎛

⎝
n2

π
sin

πβ

2

1∫

0

1

(τ−1 − 1)β/2

2(rτ)n

τ(1 − r2τ)β/2

1 − (rτ)2n

∥
∥1 − (τre−iϕ)n

∥
∥4 dτ

⎞

⎠

for r ∈ [0, 1). Therefore Sϕ(r, ϕ) is the product of − sin(nϕ) with the function between
parentheses, which is positive. Moreover, since the sum S(r) satisfies the equality S(1/r) =
rβ S(r), we conclude that Sϕ(r, ϕ) is the product of − sin(nϕ) with a positive function for
β ∈ (0, 2) and r �= 1.

We use this integral representation to prove the following: Set β = α − 1, then we have
φα(r) = 1/(βrβ). Now, we can express the potential V (r, ϕ) in terms of S(r, ϕ) as

V (r, ϕ) = r2/2 + μ

s + μ
φα(r) + 1

s + μ

1

β
S(r, ϕ).

Since V depends on ϕ only through S(r, ϕ), we conclude that Vϕ(r, ϕ) is the product of
− sin(nϕ) with a positive function for α = β + 1 ∈ (1, 3).

We may now prove the last lemma:
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Proof Let us define the function w(z) as

w(z) = 1

[z−1 − 1]β/2 .

This function has an analytic extension to C − [0, 1]. Indeed, using the principal branch of
the logarithm we can extend it as

w(z) = e−(β/2)[log
∣
∣z−1−1

∣
∣+i arg(z−1−1)].

Let w±(r) be the limits w±(r) = limε→0 w(r ± i |ε|) for r ∈ (0, 1), then

w+(r) = e−iβπ 1

(r−1 − 1)β/2 and w−(r) = 1

(r−1 − 1)β/2 .

Let Ωε be the set of points

Ωε = {|z| < 1/ε : |z − r | > ε for r ∈ [0, 1]}.
As the function w(z) f (z) is of order O(1/z1+β/2) when z → ∞, if β > 0 then the inte-
gral over the circle of radius 1/ε goes to zero when ε → 0. Moreover, since the product
w(z) f (z) is of order O(zβ/2−1) when z → 0 and of order O((1 − z)−β/2) when z → 1,
then for β < 2 the integrals over the half circles around z = 0 and z = 1 go to zero when
ε → 0. Consequently, we have that

lim
ε→0

∫

∂Ωε

w(z) f (z)dz =
1∫

0

[w+(τ ) − w−(τ )] f (τ )dτ

= (e−iβπ − 1)

1∫

0

w−(τ ) f (τ )dτ .

Now, the function w(z) f (z) has n poles in C − [0, 1] and another one at z = r−2, but
the residue at z = r−2 is zero because β/2 ∈ (0, 1). The other n poles are the roots of the
polynomial function

g(z) =
∥
∥
∥1 − (zre−iϕ)n

∥
∥
∥

2 = 1 + (r z)2n − 2(r z)n cos nϕ.

Consequently, the poles are found at the points z−1
j = (re−iϕ)ei jζ for j = 0, . . . , n − 1. As

(r z j )
n = einϕ , the derivative of g at the pole z j is

g′(z j ) = 2nz−1
j einϕ(einϕ − cos nϕ) = 2inz−1

j einϕ sin nϕ.

Consequently, the residue of w(z) f (z) at the pole z j is

resz j w(z) f (z) = 1

[(z−1
j − 1)(1 − r2z j )]β/2

1 − e2niϕ

z j g′(z j )
.

Moreover, since r2z j = z̄−1
j and (1 − e2niϕ)/(z j g′(z j )) = −1/n, then

resz j w(z) f (z) = − 1

n

1

(−1)β/2

1
∥
∥
∥z−1

j − 1
∥
∥
∥

β
= − 1

n
e−iπβ/2 1

∥
∥r − ei( jζ−ϕ)

∥
∥

β
.
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Now, from the Cauchy theorem, we obtain that

lim
ε→0

∫

∂Ωε

w(z) f (z)dz = 2π i
∑

z∈C−[0,1]
reszw(z) f (z).

Consequently, from the integral and the residues we have

(e−iβπ − 1)

1∫

0

1

(τ−1 − 1)β/2 f (τ )dτ = −2π ie−iπβ/2 1

n

n
∑

j=1

1
∥
∥r − ei( jζ−ϕ)

∥
∥β

.

Finally, we conclude that

n
∑

j=1

1
∥
∥r − ei( jζ−ϕ)

∥
∥

β
= n

π
sin(πβ/2)

1∫

0

1

(τ−1 − 1)β/2 f (τ )dτ.

��
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