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Abstract The low-thrust version of the low energy transfers to the Moon exploiting the
structure of the invariant manifolds associated to the Lagrange point orbits is presented in
this paper. A method to systematically produce low-energy, low-thrust transfers executing
ballistic lunar capture is discussed. The coupled restricted three-body problems approxima-
tion is used to deliver appropriate first guess for the subsequent optimization of the transfer
trajectory within a complete four-body model using direct transcription and multiple shoot-
ing strategy. It is shown that less propellant than standard low energy transfers to the Moon
is required. This paper follows previous works by the same authors aimed at integrating
together knowledge coming from dynamical system theory and optimal control problems for
the design of efficient low-energy, low-thrust transfers.

Keywords Low energy transfer · Low-thrust transfer · Ballistic capture · Lagrange points ·
Invariant manifolds · Three-body problem

1 Introduction

Low energy transfers to the Moon are being studied since the rescue of the Japanese spacecraft
Hiten in 1991 (Belbruno and Miller 1993). In essence, a low energy lunar transfer reduces
the hyperbolic excess velocity upon Moon arrival, typical of a patched-conics approach.
This process is called ballistic capture, and relies on a better exploitation of the gravitational
nature ruling the transfer problem instead of the classic Keplerian decomposition of the solar
system. The reduced speed relative to the Moon sets the trajectory to low energy levels which
in turn imply a reduced propellant mass needed to stabilize the spacecraft around the Moon.
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It is known that the dynamical mechanism governing a class of exterior low energy
transfers to the Moon is related to the structure of the invariant manifolds associated to
the Lyapunov orbits about the collinear Lagrange points (Belbruno 1994). In particular,
a systematic method for the construction of low energy transfers using the knowledge of
the phase space of the Sun–Earth and Earth–Moon systems is given in Koon et al. (2001).
With the “coupled restricted three-body problems approximation”, the four-body dynamics,
characterizing the low energy lunar transfers, is decomposed into two restricted three-body
problems, and the invariant manifolds of the Lyapunov orbits are computed. It is possible
to show that, with a suitably chosen Poincaré section, the trajectory design is restricted to
the selection of a single point on this section (Koon et al. 2001). Flown backward, this
initial condition gives rise to a trajectory close to the stable and unstable manifolds of the
L1,2 Lyapunov orbits of the Sun–Earth system; integrated forward, a transit, lunar ballis-
tic capture orbit (i.e., an orbit contained inside the stable manifold of the L2 Lyapunov
orbit of the Earth–Moon system) is achieved. A small �v maneuver is possibly needed at
this patching point in order to match the energies of the two legs. With this approach it is
possible to find efficient Earth–Moon transfers like the ones described in Belbruno and Miller
(1993).

In the present work the low-thrust version of the transfers described in Koon et al. (2001)
is presented. It is in fact possible to further reduce the propellant necessary to send a space-
craft to the Moon by exploiting both the simultaneous gravitational attractions of the Sun,
the Earth, and the Moon, and the high specific impulse provided by the low-thrust engines
(e.g., ion engines). Nevertheless, including the low-thrust term is not trivial, and asks for a
number of issues that have to be dealt with. It is of great importance, for instance, overcoming
the loss of Jacobi integral, finding subsets of the phase space that lead to low-thrust ballistic
capture (playing the separatrix-like role of the stable manifold associated to L2 Lyapunov
orbit of the Earth–Moon system), and summarizing, using as few parameters as possible, all
the reachable orbits that it is possible to target with the finite thrust magnitude available. The
purposes of this paper are therefore:

(1) To understand how the incorporation of low-thrust propulsion modifies the methodology
described in Koon et al. (2001);

(2) to formulate a systematic method for the design of low-energy, low-thrust Earth-
to-Moon transfers;

(3) to demonstrate that a combined low-energy, low-thrust approach gives rise to trans-
fers that require even less propellant than the standard low energy transfers while still
exploiting the structure of the phase space of the two restricted-three body problems.

It is worth mentioning that previous works have faced the combination of n-body
dynamics with low-thrust propulsion. An interior ballistic capture state using low-thrust
propulsion was found in Belbruno (1987). This approach paved the way for the design
of the trajectory for ESA’s SMART-1 mission (Schoenmaekers et al. 2001). Earth–Venus
transfers have been obtained in Dellnitz et al. (2006) by combining invariant manifold
dynamics and low-thrust with set oriented methods. A previous work by the present authors
was devoted to the integration of dynamical system theory and optimal control problems
for the design of efficient low-energy, low-thrust transfers to the halo orbits (Mingotti et al.
2007).

The remainder of the paper is organized as follows. In Sect. 2 the equations of the con-
trolled restricted three-body and four-body problems are given, and the basic properties of
these two models are recalled. In Sect. 3 we describe the design strategy used to find first guess
solutions that are later optimized with the method discussed in Sect. 4. Low energy low-thrust
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transfers are presented in Sect. 5 and compared to reference works. Final considerations are
made in Sect. 6.

2 Dynamical models

The controlled motion of a spacecraft under the influence of two and three primaries is
described in this section using the planar circular restricted three-body problem and the
bicircular four-body problem, RTBP and RFBP, respectively, from now on.

2.1 Controlled planar restricted three-body problem

The motion of the spacecraft, P3, is studied in the gravitational field generated by the mutual
circular motion of two primaries, P1, P2 of masses m1, m2, respectively, about their common
center of mass. It is assumed that P3 moves in the same plane of P1, P2 under the equations
(Szebehely 1967)

ẍ − 2 ẏ = ∂�3

∂x
, ÿ + 2ẋ = ∂�3

∂y
, (1)

where

�3(x, y, µ) = 1

2
(x2 + y2) + 1 − µ

r1
+ µ

r2
+ 1

2
µ(1 − µ), (2)

and µ = m2/(m1 +m2) is the mass parameter of the three-body problem. Equation 1 is writ-
ten in barycentric rotating frame with nondimensional units: the angular velocity of P1, P2,
their distance, and the sum of their masses are all set to 1. It is easy to verify that P1, of
mass 1 − µ, is located at (−µ, 0), whereas P2, of mass µ, is located at (1 − µ, 0); thus, the
distances between P3 and the primaries are

r2
1 = (x + µ)2 + y2, r2

2 = (x + µ − 1)2 + y2. (3)

For fixed µ, the Jacobi integral reads

J (x, y, ẋ, ẏ) = 2�3(x, y) − (ẋ2 + ẏ2), (4)

and, for a given energy C , it defines a three-dimensional manifold

J (C) = {(x, y, ẋ, ẏ) ∈ R
4|J (x, y, ẋ, ẏ) − C = 0}, (5)

foliating the four-dimensional phase space. The projection of J (C) on the configuration
space (x, y) defines the Hill’s curves bounding the allowed and forbidden regions associated
to prescribed values of C . The vector field defined by (1) has five equilibrium points, known
as the Lagrange points, labeled Lk, k = 1, . . . , 5. This study deals with the portion of the
phase space surrounding the two collinear points L1 and L2. In a linear analysis, these two
points behave like the product saddle × center. Thus, there exists a family of retrograde
Lyapunov orbits and two-dimensional stable and unstable manifolds emanating from them
(Conley 1968; Llibre et al. 1985).

Equation 1 describes the ballistic motion of P3. To model the controlled motion of P3

under both gravitational attractions of P1, P2, and the low-thrust propulsion, the following
differential equations are considered
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ẍ − 2 ẏ = ∂�3

∂x
+ Tx

m
, ÿ + 2ẋ = ∂�3

∂y
+ Ty

m
, ṁ = − T

Isp g0
, (6)

where T =
√

T 2
x + T 2

y is the thrust magnitude, whereas Isp and g0 are, respectively, the

specific impulse of the engine and the gravitational acceleration at sea level. Following
observations arise by comparing systems of Eqs. 1 and 6:

• The ballistic motion is represented by a fourth-order system, while the controlled motion
is described by a fifth-order system of differential equations. Variations of the spacecraft
mass, m, are taken into account;

• the thrust in Eq. 6 is not given, but rather in our approach it represents an unknown of the
optimal control problem. It is determined such that a certain state is targeted and, at the
same time, a certain objective function is minimized—this is a considerable departure
between the present work and (Dellnitz et al. 2006); in addition to the well-known cases
where P3 impacts P1 and P2, the vector field in Eq. 6 exhibits another singularity that is
found when m → 0. Special attention has to be paid to the thrust profile in the optimization
phase to avoid this singularity.

Equation 6 is used to initially decompose the RFBP into two RTBP: the pair {P1, P2} is
represented by {Sun, Earth} in the first one, and by {Earth, Moon} in the second one, respec-
tively. For brevity sake we refer to SE and EM models. The mass parameters assumed for
these models are µSE = 3.0359 × 10−6 and µEM = 1.2150 × 10−2, respectively.

2.2 Controlled planar restricted four-body problem

In the second part of the paper, solutions obtained with the coupled RTBP approximation are
optimized within a four-body model. In principle, this system incorporates the perturbation
of the Sun into the EM model. The equations of motion are

ẍ − 2 ẏ = ∂�4

∂x
+ Tx

m
, ÿ + 2ẋ = ∂�4

∂y
+ Ty

m
, θ̇ = ωS, ṁ = − T

Isp g0
, (7)

where this time the potential �4 is

�4(x, y) = �3(x, y, µE M ) + ms

rs
− ms

ρ2 (x cos θ + y sin θ). (8)

The physical constants introduced to describe the Sun perturbation have to be in agreement
with those of the EM model. Thus, the distance between the Sun and the Earth–Moon bary-
center is ρ = 3.8881 × 102, the mass of the Sun is ms = 3.2890 × 105, and its angular
velocity with respect to the EM rotating frame is ωS = −0.9251. The Sun is located at
(ρ cos θ, ρ sin θ), and therefore, its distance from P3 is

r2
s = (x − ρ cos θ)2 + (y − ρ sin θ)2. (9)

The bicircular four-body problem (Simó 1995) is represented by the sixth-order system
of Eq. 7. The phase of the Sun, θ , is taken as problem state to let the system be autonomous.
It is worth noting that this model is not coherent because all three primaries are assumed
to move in circular orbits. Nevertheless, this model catches basic insights of the real four-
body dynamics as the eccentricities of the Earth’s and Moon’s orbits are 0.016 and 0.054,
respectively, and the Moon’s orbit is inclined on the ecliptic by 5◦.
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3 Design strategy

The transfers studied in this work are defined as follows. The spacecraft is assumed to be
initially on a circular parking orbit around the Earth at a height h = 200 km; an impulsive
maneuver, �vTLI, carried out by the launch vehicle, places the spacecraft on a translunar tra-
jectory; from this point on, the spacecraft can only rely on its low-thrust propulsion to reach a
stable orbit around the Moon. This orbit has moderate eccentricity, e, and periapsis/apoapsis,
rp/ra, prescribed by the mission requirements. The transfer terminates when the spacecraft is
at the periapsis of the final orbit around the Moon. While both e and rp/ra are assumed to be
given, the orientation, i.e., the argument of periapsis, ω, of the final orbit around the Moon
is not fixed.

Low-energy, low-thrust transfers are achieved by optimizing, in a four-body scenario, a
first guess derived by the coupled three-body problems approximation. Under this model,
the transfer trajectory is conceived as made up by two distinct portions: the first, called Earth
escape leg, is built in the SE model, whereas the second, called Moon low-thrust capture leg,
is defined in the EM model.

3.1 Earth escape leg

If a value of Jacobi constant in the SE model, CSE, is suitably chosen, there exist a unique
Lyapunov orbit about both L1 and L2, labeled γ1 and γ2, respectively. We consider energy
values CSE � C2 such that both γ1 and γ2 exist, and the Hill’s regions are opened at both
L1 and L2. Without any loss of generality we construct the Earth escape leg considering
the dynamics around L2; using L1 instead of L2 is straightforward. The stable and unstable
manifolds associated to γ2, W s(γ2) and W u(γ2), are computed starting from the Lyapunov
orbit until a certain surface of section is reached.

Since we aim at exploiting the structure of both W s(γ2) and W u(γ2), two surfaces
of section are introduced to study their cuts at different stages. Section SA, making an
angle ϕA (clockwise) with the x-axis and passing through P2, is considered to cut
W s(γ2), whereas section SB, inclined by ϕB (counterclockwise) on the x-axis and
passing through P2, is assumed for W u(γ2) (see Fig. 1a where ϕA = ϕB = π/2). The
corresponding section curves, 
s

2, 
u
2 , represented on the (r2, ṙ2)-plane, are diffeomor-

phic to circles (in Fig. 1b, 
s
2, 
u

2 are plotted on the (y, ẏ)-plane as r2 = y, ṙ2 = ẏ for
x = 1 − µ, ϕA = ϕB = π/2).

Both Poincaré sections represent two-dimensional maps for the flow of the RTBP. Indeed,
any point on these sections uniquely defines an orbit. This property holds as both J (CSE)

and SA,B lower the dimension of the phase space to two. By definition, points on 
s
2 gen-

erate orbits that asymptotically approach γ2 in forward time. Points inside 
s
2 give rise to

transit orbits that pass from the Earth region to the exterior region, whereas points outside 
s
2

correspond to non-transit orbits [(the manifolds act as separatrices for the states of motion
(Conley 1968; Llibre et al. 1985)].

Candidate trajectories for Earth–Moon transfers are non-transit orbits close to both W s(γ2)

and W u(γ2). This property is wanted since the existence of W s(γ2) and W u(γ2) has to be
exploited, although the transfer orbit does not exactly lie on any invariant subset. We label

̄s

2 as the set of points in the (r2, ṙ2)-plane that are enclosed by 
s
2 (see Fig. 1b). Points on


̄s
2 have to be avoided as they lead to either transit or asymptotic orbits. On the contrary, all

the points that lie on

l = {(r2, ṙ2) ∈ SA, (r2, ṙ2) /∈ 
̄s
2|r2 = h + RE}
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Fig. 1 a Stable and unstable manifolds W s(γ2), W u(γ2) associated to the L2 Lyapunov orbit γ2, and their
section curves 
s

2, 
u
2 , respectively. b The set 
̄s

2 (grey) is made up by the points of SA that lie inside 
s
2,

whereas the line l (dashed) is the locus of points being at 200 km altitude above the Earth’s surface

are translunar candidate orbits as they intersect the initial parking orbit (RE is the radius of
the Earth). This intersection occurs in the configuration space only as the initial parking orbit
and the translunar trajectory have two different energy levels.

The pair {CSE, ϕA} uniquely defines the curve 
s
2 on SA: CSE defines the orbit γ2, whereas

ϕA defines the surface of section SA to cut the first intersection of W s(γ2). Thus, {CSE, ϕA}
are used to define the first guess Earth escape leg. In order to obtain efficient transfer trajec-
tories, the lowest possible initial instantaneous maneuver, �vTLI, is searched. It is necessary
to define its components: a first contribution to the �vTLI amount is related to the radial term
�vr , while the second tangential contribution �vt is needed to fill the gap �C between the
energy of the initial parking orbit, C0, and CSE (i.e., �C = C0 − CSE). It is possible to
show that �v(�C, ϕA) = �vt(�C)+�vr(ϕA), and it is even possible to lower �vr to zero
by properly tuning ϕA. This approach leads to initial tangential maneuvers, i.e., the initial
�vTLI is aligned with the velocity of the circular parking orbit around the Earth. The search
is therefore restricted to the point P ∈ SA defined by P = l ∩ l ′, where l ′ is the set of points
having zero radial velocity with respect to the Earth

l ′ = {(r2, ṙ2) ∈ SA, (r2, ṙ2) /∈ 
̄s
2|ṙ2 = 0}.

Point P does not exactly lie on the stable manifold, and can be found sufficiently close to
W s(γ2) by suitably tuning ϕA (see Fig. 2). In practice, since at this stage we are building a
first guess solution to be later optimized, orbits sufficiently close to P can also be considered.
In particular, we consider points P ′ ∈ SA such that |P ′ − P| ≤ ε as well, where ε is a certain
prescribed distance.

A number of P ′ points can be generated by tuning the angle ϕA. These points, flown
forward, produce orbits that are close to W s(γ2) until the region about γ2 is reached. From
this point on, the orbits get close to W u(γ2), and their intersection with SB is studied. The
set labeled ESE, ESE ∈ SB, stands for the set of orbits close to W u(γ2) whose pre-image
E−1

SE , E−1
SE ∈ SA, is made up by P ′ points. We take into account Earth escape trajectories

defined on E−1
SE , ESE, as the latter intersects a special subset leading to low-thrust ballistic

capture at the Moon (see Fig. 3b where ESE is reported).
It is worth noting that the parking orbit is defined at a lower energy level than orbits on

E−1
SE , therefore the instantaneous velocity change �vTLI is required to place the translunar
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Fig. 2 Earth escape trajectory performed with a tangential �vTLI maneuver and its associated section
point P
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Fig. 3 Stable manifold W s(δ2) and its section curve �s
2. The latter is used to define the set of orbits that lead

to Moon capture KEM (this set is labeled K̃EM, in gray in (b), when reported on SB)

trajectory on J (CSE) ∩ E−1
SE . In practice, this maneuver is provided by the launch vehicle

once the spacecraft is on the Earth parking orbit. A mission profile including this parking
orbit is in fact consistent with major architecture requirements (Perozzi and Di Salvo 2008).

The design of the SE phase is reduced in this way to the determination of just the two sets
E−1

SE , ESE, and to the computation of �vTLI. This first phase of the transfer is constructed
using either Eqs. 1 or 6 with T = 0. The SE trajectory does not make use of low-thrust
propulsion, and the phase space structure of the ballistic RTBP is exploited.

3.2 Moon ballistic capture leg

By fixing a suitable value of the Jacobi constant in the EM model, CEM, a unique Lyapunov
orbit about both L1 and L2, named δ1 and δ2, respectively, can be defined. Restricting the
energy to CEM � C2, both δ1 and δ2 exist, and the Hill’s regions are opened at both L1
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and L2. In order to reach the final orbit about the Moon from the exterior, a capture via L2

is considered (see Fig. 3a). This means that we construct the Moon ballistic capture leg by
exploiting the dynamics around L2. The stable manifold associated to δ2, W s(δ2), is com-
puted starting from δ2 and integrating backward until a certain surface of section is reached.
Section SC, making an angle ϕC (counterclockwise) with the x-axis and passing through P1,
is considered to cut W s(δ2) (ϕC = π/2 in Fig. 3a). The corresponding section curve, �s

2
represented on the (r1, ṙ1)-plane, is diffeomorphic to a circle. We can now define KEM = �̄s

2,
where �̄s

2 ∈ SC is the set of points inside �s
2, as the set that leads to Moon capture.

The set KEM is defined on section SC in the EM model. However, it is possible to repre-
sent KEM on SB defined in the SE model through the transformation K̃EM = M(KEM). The
operator M maps states on SC (EM model) to states on SB (SE model), provided the two
angles ϕC, ϕB. This transformation is basically made up by a rotation and a rescaling of the
variables in proper units (see Fig. 3b where K̃EM is reported).

Considering the sole section SB, it is possible to define the ballistic low energy Earth–
Moon transfers as the orbits belonging to the set ESE ∩ K̃EM. The sets ESE and K̃EM are
characterized by different values of the Jacobi constant, CSE and CEM, respectively. In addi-
tion, any point in K̃EM has a different value of Jacobi constant as M is not energy preserving.
Thus, in order to join together orbits on ESE and orbits on K̃EM, it is necessary to perform an
impulsive maneuver at the patching point.

This approach is the one known in literature to design Earth–Moon low energy transfers
with impulsive maneuvers (Koon et al. 2001). Indeed, another impulsive maneuver, beside
the one performed at the patching point, is necessary upon Moon arrival to place the space-
craft into a stable orbit around the Moon. This approach is based on either Eqs. 1 or 6 with
T = 0, and allows us to define low energy transfers like those described in Belbruno and
Miller (1993), Belbruno (1994), Koon et al. (2001). Nevertheless, this method is not suit-
able to design low-energy, low-thrust Earth–Moon transfers as impulsive maneuvers cannot
be provided by low-thrust systems. A modification is therefore necessary. In particular, the
definition of a low-thrust capture set, analogous to KEM, has to be given in order to construct
low-energy, low-thrust transfers in a totally analogous fashion.

3.3 Moon low-thrust capture leg

Without any loss of generality, let us assume a final orbit around the Moon with eccentricity
e = 0.65; this is associated, approximately, to an elliptic orbit with pericenter and apocenter
altitudes hp = 1000 km and ha = 10000 km, respectively. The final condition of the transfer
is set to yp, which is the vector made up by the spacecraft state (position and velocity) at the
pericenter of the arrival lunar orbit.

We aim to achieve the capture by application of a continuous low-thrust control law. When
the maximum thrust Tmax is applied tangentially, the state y(t) of a generic point along the
propelled leg can be defined by backward flowing system (6) starting from the pericenter.
Let φT(t)(x0, t0; t) be the flow of system (6) starting from (x0, t0) and considering the thrust
T(t). With this notation, it is possible to define the generic point of the low-thrust capture
leg through

y(t) = φT̄(yp, tf ; t), (10)

where tf is the final time, t ≤ tf , and T̄ = Tmaxv/‖v‖, v = (ẋ, ẏ). The point y(t) is defined
for t ∈ [τ, tf ], where τ is the time starting from which the engine is on duty at the maximum
thrust level. If ω indicates the argument of pericenter of the elliptic orbit around the Moon,
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Fig. 4 The first guess low-thrust capture solution as the point ESE ∩ L̃EM on SB

the couple {τ, ω} uniquely specifies the point y(τ ) in the phase space. Thus, {τ, ω} can be
suitably tuned for the construction of the first guess low-thrust capture solution (see Fig. 4a).

As for the ballistic case discussed previously, we can define on section SC the low-thrust
capture set, LEM = {γT̄(ω)∩ SC,∀ω ∈ [0, 2π ]}, where γT̄(ω) = {φT̄(yp(ω), tf ; τ)|∀τ < tf }
is the low-thrust orbit flown backward starting from the periapsis. It is possible to repre-
sent the set LEM on section SB by application of the previously defined operator M, i.e.,
L̃EM = M(LEM) (see Fig. 4b). As for K̃EM in Sect. 3.2, the set L̃EM is not necessary made
up by points having the same value of Jacobi constant. Nevertheless, by varying {τ, ω}, the
set L̃EM can be forced to have the energy level CSE, that is the energy level of the Earth
escape orbits.

Thanks to the definition of L̃EM, the low-energy, low-thrust transfers can be defined
using the same concept behind the ballistic Earth–Moon transfers. Indeed, ESE is the set
containing Earth escape trajectory, whereas L̃EM is made up by low-thrust capture orbits.
Thus, when these two sets are reported on the same surface of section, SB in this case,
the low-energy, low-thrust orbits are simply defined as those orbits generated by ESE ∩
L̃EM. This is a significant departure from classic Earth–Moon low-thrust transfers as in
this case the structure of the phase space of the two RTBP is exploited. Moreover, since
L̃EM is forced to lie on J (CSE), no velocity discontinuity is achieved at the patching
point.

In summary, the first guess solution is made up by pieces defined in two RTBP. The Earth
escape leg, derived in the SE model, considers system of Eq. 1, and therefore it makes use
of the Sun–Earth dynamics in a ballistic fashion (i.e., no low-thrust is considered in this first
leg). The Moon low-thrust capture leg is derived by Eq. 6 employing a tangential thrust pol-
icy. These two pieces are patched together to form a first guess solution. This is the essence
of the coupled restricted three-body problems approximation.

4 Transfer optimization

Once feasible and efficient first guess trajectories are achieved with the low-thrust version
of the patched restricted three-body problems approximation, an optimal control problem is
stated in the complete four-body dynamics. Taking into account the low-thrust propulsion
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and the gravitational attractions of the Sun, the Earth, and the Moon (through the controlled
bicircular four-body problem given in Sect. 2.2), it is possible to further improve the first
guess solutions found. In particular, we aim at finding, according to the standard optimal
control theory (Bryson and Ho 1975), the guidance law T(t), t ∈ [t0, tf ], that minimizes the
performance index

J = mp, (11)

where mp = m0 − m(tf ) stands for the propellant mass needed to carry out the transfer, m0

is the wet mass placed in the translunar orbit, and m(tf ) is the spacecraft mass depending
upon the optimal control policy T(t) through the last of Eq. 7. In order to make the whole
optimization robust, each first guess is first processed to minimize

J = 1

2

tf∫

t0

uTu dt, (12)

with u(t) = T(t)/m(t), and the resulting solution is later used to minimize objective function
(11). Numerical experiments have shown that performing an intermediate step with objective
function (12) better enforces the respect of boundary conditions and path constraints.

The initial boundary condition defines the tangential departure from a circular parking
orbit around the Earth; the final boundary condition states the arrival at the pericenter of the
final orbit about the Moon. Eccentricity and pericenter altitude of this orbit are prescribed by
mission requirements. The path constraint is used to model the saturation of the low-thrust
engine. Thus, the inequality T (t) ≤ Tmax, t ∈ [t0, tf ], is imposed along the whole transfer
with Tmax = 0.5 N.

The optimal control has been solved using a direct approach. This approach, although
sub-optimal, generally shows robustness and versatility, and does not require explicit deri-
vation of the necessary conditions of optimality. Moreover, direct approaches offer higher
computational efficiency and are less sensitive to variation of the first guess solutions (Betts
1998). In this paper we have implemented a direct multiple shooting method, in agreement
with the terminology introduced in Betts (1998). With this strategy the RFBP dynamics is
forward integrated within a number of sub-intervals (in which [t0, tf ] is split) and the con-
tinuity of position and velocity is imposed at their ends (Enright and Conway 1992). The
control law T(t) is described within each sub-interval by means of cubic spline functions.
The algorithm computes the value of the control at mesh points, respecting both boundary
and path constraints, and minimizing the performance index.

Dynamics (7) are highly nonlinear and, in general, lead to chaotic orbits. In order to
find accurate optimal solutions without excessively increasing the computational burden,
an adaptive nonuniform time grid has been implemented. Thus, when the trajectory is
close to either the Earth or the Moon the grid is automatically refined, whereas in the
intermediate phase, where a weak vector field governs the motion of the spacecraft, a
coarse grid is used. The optimal solution found is assessed a posteriori by forward inte-
grating the optimal initial condition and by cubic interpolation of the discrete optimal
control solution. In Fig. 5 we have reported a typical first guess solution (Fig. 5a) and
the associated optimal solution defined under the four-body dynamics (Fig. 5b). It can
be seen that the optimization converges to a final solution that is quite different from the
initial guess. This indicates that the implemented numerical scheme is able to explore
wide areas of the solutions space, though the optimal control problem is solved via local
methods (Betts 1998).
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Fig. 5 A first guess solution achieved by the low-thrust restricted three-body problem approximation and the
corresponding optimal trajectory

Table 1 Comparison between the low-energy, low-thrust (LELT) solutions designed and a set of impulsive
reference solutions found in literature

Type �vTLI (m/s)
∑

i �vi (m/s) e (–) hp (km) mp/m0 (–) �t (days)

LELT #1 3195 − 0.65 1000 0.031 236

LELT #2 3207 − 0.65 1000 0.032 228

LELT #3 3203 − 0 100 0.061 271

WSB (Belbruno and Miller 1993) 3161 677 0 100 0.205 90–120

BP (Belbruno and Miller 1993) 3232 721 0 100 0.217 ∞
HO (Belbruno and Miller 1993) 3143 848 0 100 0.253 4–5

BE (Belbruno and Miller 1993) 3161 987 0 100 0.285 55–90

L1 (Topputo et al. 2005) 3265 629 0 100 0.192 255

MIN (Sweetser 1991) 3099 622 0 100 0.190 –
WSB weak stability boundary, BP bi-parabolic, HO Hohmann, BE bi-elliptic, L1 via L1 transit orbits, MIN
minimum theoretical. Reference solutions are relative to a 167 km circular parking orbit about the Earth

5 Low-energy, low-thrust transfers

In this section we present the low-energy, low-thrust (LELT) solutions achieved with the
method described so far. Table 1 summarizes three sample solutions that are compared
to some reference transfers found in literature (Belbruno and Miller 1993; Sweetser 1991;
Perozzi and Di Salvo 2008; Topputo et al. 2005). It is worth pointing out that the reference
solutions have been achieved with impulsive maneuvers, therefore their comparison to the
LELT solutions should be made in terms of propellant mass ratio. In Table 1, the term �vTLI

stands for the cost of the translunar injection maneuver, assumed to be performed by the
launch vehicle once the spacecraft is on a 200 km circular parking orbit about the Earth.
The propellant mass fraction, mp/m0, is computed assuming m0 = 1000 kg. For the LELT
solutions, the specific impulse I LT

sp = 3000 s has been used to integrate the last of Eq. 7. For
the sake of consistency, the propellant mass fraction of the reference, high-thrust solutions
has been computed through the rocket equation
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Fig. 6 LELT solution #1 in Table 1. The solution is presented in terms of transfer trajectory, thrust profile,
and mass consumption. It is important to note that, since in the optimization process the low-thrust is not
constrained to act in the capture leg only, but rather it is a free parameter that has to be found along the whole
trajectory, a thrust arc is achieved when the spacecraft is far from the Earth at about six Earth–Moon distances.
This indicates that in such region it is possible to suitably tune the spacecraft state with little expenses of
propellant. In the subsequent coast arc (at constant mass) a Moon gravity assist places the spacecraft into a
3:1 resonant orbit with the Moon which leads to the low-thrust Moon capture

mp

m0
= 1 − exp

(
−

∑
i �vi

I HT
sp g0

)
(13)

where I HT
sp = 300 s, and �vi are the magnitudes of the impulsive maneuvers necessary to

carry out the transfer except �vTLI (e.g., for an Hohmann transfer, �vi is the magnitude of
the sole second burn necessary to place the spacecraft into the final orbit around the Moon;
for a WSB transfer, this term has to take into account the mid-course maneuver as well as
the final maneuver needed to place the spacecraft into the final orbit about the Moon; similar
arguments apply also to the bi-elliptic and bi-parabolic transfers. The minimum theoretical
cost is computed via energetic considerations, and no result corresponding to such solution
exist.) Three more columns are reported in Table 1: e and hp are the eccentricity and the
periapsis altitude of the final orbit about the Moon, respectively, whereas �t is the flight
time.
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The first two rows are relative to low-energy, low-thrust transfers leading to an elliptic
orbit around the Moon with e = 0.65 and hp = 1000 km. The TLI impulse for these two
solutions is slightly higher than �vTLI of both Hohmann and WSB transfers. However, the
propellant mass necessary for the rest of the transfer is significantly lower than that associated
to all reference cases. This is due to the low-thrust specific impulse, I LT

sp , that is one order of

magnitude greater than I HT
sp , assumed in Eq. 13 to evaluate the propellant mass fraction of

the reference solutions. Moreover, the final orbit about the Moon in these two cases has an
higher semi-major axis than that of the reference solutions. Another relevant feature of the
LELT solutions presented is the transfer time. In the stated approach the propellant mass has
been minimized without any constraint on the time of flight. This has led to very efficient
solutions from the propellant mass ratio point of view that require a longer transfer time
compared to that of the reference solutions.

Figure 6 shows the solution LELT #1. In details, the transfer orbit presented in the Earth-
centered frame (Fig. 6a) shows a capture mechanism which takes advantage of a 3:1 resonance
with the Moon. Moreover, the furthest point of the trajectory from the Earth is approximately
six times the Earth–Moon distance. Across this region, even if not present in the first guess
solution, a very low-thrust arc is attained in the optimization step (from Ton to Toff in Fig. 6a).

In solution LELT #3, the final orbit about the Moon overlaps that assumed in the refer-
ence solutions. Thus, a coherent comparison can be performed in this case. Although the
magnitude of �vTLI is slightly higher, the LELT method has been able to deliver a solution
outperforming all the reference ones in terms of propellant mass fraction by one order of
magnitude.

6 Conclusions

A systematic method for the design of low-energy, low-thrust transfers has been described
in this paper. A first guess solution with no velocity discontinuity at the patching point is
achieved with the low-thrust version of the coupled three-body problems approximation. In
this framework the low-thrust Moon leading set is defined and the whole design is reduced to
the search of a single point on a suitable surface of section. The first guess so derived is later
optimized in the controlled four-body dynamics using a direct multiple shooting strategy. We
have shown that the formulated method delivers very efficient solution requiring much less
propellant than the standard impulsive low energy transfers.
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