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Abstract We investigate the long time stability in Nekhoroshev’s sense for the Sun–
Jupiter–Saturn problem in the framework of the problem of three bodies. Using computer
algebra in order to perform huge perturbation expansions we show that the stability for a time
comparable with the age of the universe is actually reached, but with some strong truncations
on the perturbation expansion of the Hamiltonian at some stage. An improvement of such
results is currently under investigation.
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1 Introduction

The stability of the Solar System is a classical, long standing and challenging problem, already
pointed out by Newton. In this article we revisit the problem in the light of the theorems of
Kolmogorov and of Nekhoroshev, with the aim of proving that they apply to the problem of
three bodies with the masses and orbital parameters of Jupiter and Saturn.

Let us briefly recall the historical development of our knowledge. After 1954 a possible
solution was suggested by the celebrated theorem of Kolmogorov (1954) stating the exis-
tence of a large measure set of invariant tori for a nearly integrable Hamiltonian system,
e.g., the planetary system when the mutual perturbation of the planet is taken into account.
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160 A. Giorgilli et al.

The relevance of Kolmogorov’s result for the planetary problem has been soon emphasized
by Arnold (1963a) and Moser (1973). In particular Arnold worked out a proof taking into
account the degeneration of the unperturbed Hamiltonian which occurs in the planetary case
(see Arnold 1963b). On the other hand, Moser first gave a proof for the case of an area
preserving mapping of an annulus, and a few years later pointed out that the theorem of
Kolmogorov implies that the classical Lindstedt series are actually convergent (see Moser
1962, 1967, respectively).

As a matter of fact it was soon remarked by Hénon that the application of the Kolmogorov’s
theorem to the planetary motions is not straightforward, due to the condition that the masses
of the planets should be small enough. Indeed, the available estimates could only assure the
applicability, e.g., to the problem of three bodies, if the masses of the planets are less than that
of a proton. On the other hand, numerical integrations (see Carpino et al. 1987; Laskar 1989,
1994) of the full Solar System over a time span of billions of years have shown that the orbits
of the inner planets exhibit a chaotic evolution which is incompatible with the quasi periodic
motion predicted by Kolmogorov’s theorem. Furthermore the subsystem of the major planets
(i.e. Jupiter, Saturn, Uranus and Neptune) shows a very small positive Lyapunov exponent
(see Murray and Holman 1999), once again, this cannot fit with a motion on an invariant torus.

A second approach was suggested by Moser (1955) and Littlewood (1959a,b) and fully
stated by Nekhoroshev (1977, 1979) with his celebrated theorem on exponential stability.
According to this theorem the time evolution of the actions of the system (which in the plan-
etary case are actually related to the semimajor axes, the inclinations and the eccentricities)
remains bounded for a time exponentially increasing with the inverse of the perturbation
parameter. Thus, although the possibility of a chaotic motion is not excluded, nevertheless
a dramatic change of the orbits should not occur for such a long time, and it may be con-
jectured that such a time exceeds the age of the Solar System itself. But also in this case
the problem of the applicability of the theorem still persists, since the analytical estimates
based on Nekhoroshev’s formulation or other analytical proofs give ridiculous estimates for
the size of the masses of the planets.

In recent years the estimates for the applicability of both Kolmogorov’s and Nekhoroshev’s
theorems to realistic models of some part of the Solar System have been improved by some
authors. For example the applicability of Nekhoroshev’s theorem to the stability of the Trojan
asteroids in the vicinity of the triangular Lagrangian points has been investigated by Giorgilli
et al. (1989); Celletti and Giorgilli (1991); Giorgilli and Skokos (1997); Efthymiopoulos and
Sándor (2005) and by Lhotka et al. (2008), the connection between Nekhoroshev’s theo-
rem and Arnold diffusion has been considered in Efthimiopoulos (2008); the applicability
of KAM theorem has been studied by Robutel (1995); Fejoz (2005); Celletti and Chierchia
(2005); Gabern et al. (2005) and by Locatelli and Giorgilli (2005, 2007). In particular in
the latter two articles the Sun–Jupiter–Saturn (hereafter SJS) system is investigated, and evi-
dence is produced that an invariant torus exists in the vicinity of the initial data of Jupiter
and Saturn, at least in the approximation of the general problem of three bodies.

In the present article we study the stability in Nekhoroshev’s sense of the neighbourhood
of the invariant torus for the SJS system. The aim is to give evidence, with help of a com-
puter-assisted calculation, that the size of the neighbourhood of the invariant torus for which
exponential stability holds for a time interval as long as the age of the universe is big enough
to contain the actual initial data of Jupiter and Saturn. We should say that such an ambitious
goal is still out of our actual possibilities. However, we show that our methods should allow
us to achieve our program provided a sufficient computer power will be available in the next
future and a further refinement of our approximation methods will be worked out. This is
work for the next future.
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Kolmogorov and Nekhoroshev theory for the problem of three bodies 161

2 Theoretical framework

The basis of our approach is the investigation of the stability of a neighbourhood of an
invariant Kolmogorov’s torus. To this end let us briefly recall the statement of Kolmogorov’s
theorem.

Theorem 1 Consider a canonical system with Hamiltonian

H(p, q) = h(p) + ε f (p, q) . (1)

Let us assume that the unperturbed part of the Hamiltonian is non–degenerate, i.e.,

det
(

∂2h
∂p j ∂pk

)
�= 0 , and that p∗ ∈ R

n is such that the corresponding frequencies ω = ∂h
∂p (p∗)

satisfy a Diophantine condition, i.e.,

|〈k, ω〉| ≥ γ |k|−τ ∀ 0 �= k ∈ Z
n

with some constants γ ≥ 0 and τ ≥ n − 1 . Then for ε small enough the Hamiltonian (1)
admits an invariant torus carrying quasiperiodic motions with frequencies ω. The invariant
torus lies in a ε–neighbourhood of the unperturbed torus {(p, q) : p = p∗, q ∈ T

n}.
The question is about the dynamics in the neighbourhood of the invariant torus. In order to

discuss this point we need a few technical details about the Kolmogorov’s proof method. The
key points, clearly outlined in the original short note Kolmogorov (1954), are the following.
First, one picks an unperturbed invariant torus p∗ for the Hamiltonian (1) characterized by
diophantine frequencies ω, and expands the Hamiltonian in power series of the actions p in
the neighbourhood of p∗. Thus (with a translation moving p∗ to the origin of the actions
space) one gives the initial Hamiltonian the form

H(p, q) = 〈ω, p〉 + εA(q) + ε 〈B(q), p〉 + 1

2
〈Cp, p〉 + O(p2) (2)

where C =
[

∂2h
∂p j ∂pk

(p∗)
]

is a symmetric matrix, and A(q) and 〈B(q), p〉 are the terms inde-

pendent of p and linear in p in the power expansion of the perturbation f (p, q) , respectively.
The quadratic part in O(p2) is of order ε, too. The next step consists in performing a near
the identity canonical transformation which gives the Hamiltonian the Kolmogorov’s normal
form

H ′(p′, q ′) = 〈ω, p′〉 + O(p′2) . (3)

As Kolmogorov points out, the invariance of the torus p′ = 0 is evident, due to the particular
form of the normalized Hamiltonian. The whole process requires a composition of an infinite
sequence of transformations, and the most difficult part is to prove the convergence of such
a sequence. The point which is of interest to us is that the transformed Hamiltonian (3) is
analytic in a neighbourhood of the invariant torus p′ = 0 .

Let us emphasize that the analytical form of the Hamiltonian (3) is quite similar to that of
a Hamiltonian in the neighbourhood of an elliptic equilibrium, namely

H(x, y) = 1

2

n∑
j=1

ω j

(
x2

j + y2
j

)
+ · · · ,

where the dots stand for terms of degree larger than 2 in the Taylor expansion. For, introducing
the action-angle variables p, q via the usual canonical transformation x j = √

2p j cos q j ,
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y j = √
2p j sin q j , the latter Hamiltonian takes essentially the form (3). Thus the exponential

stability of the invariant torus p′ = 0 may be proved using the theoretical scheme that works
fine in the case of an elliptic equilibrium, e.g., in the case the triangular Lagrangian points.

As a matter of fact, a much stronger result holds true, namely that the invariant torus
is superexponentially stable, as stated in Morbidelli and Giorgilli (1995) and Giorgilli and
Morbidelli (1997). However, a computer assisted method for the theory of superexponential
stability seems not be currently available, so we limit our study to the exponential stability
in Nekhoroshev’s sense.

3 Technical tools

Let us now come to the improvement of the estimates for the applicability of the theorems
of Kolmorogov and Nekhoroshev. The key point is to use an explicit construction of the
normal form up to a finite order with algebraic manipulation in order to reduce the size of
the perturbation, and then apply a suitable formulation of the theorems.

Let us explain this point by making reference to the theorem of Kolmogorov. Starting with
the Hamiltonian (2), we perform a finite number, r say, of normalization steps in order to
give the Hamiltonian the normal form up to order r

H (r)(p, q) = 〈ω, p〉 + 1

2
〈Cp, p〉 + εr A(r)(q) + εr 〈B(r)(q), p〉 + R(r)(p, q) (4)

with R(r)(p, q) = O(|p|2), so that the perturbation is now of order εr .
To this end we implement the normalization algorithm for the normal form of Kolmogorov

step by step in powers of ε, as in the traditional expansions in Celestial Mechanics. The full
justification of such a procedure, including the convergence proof, is given, e.g., in Giorgilli
and Locatelli (1997a,b). The resulting Hamiltonian has still the form (2), with, however, ε

replaced by εr . Thus, a straightforward application of the theorem reads, in rough terms: if
εr ≤ ε∗, then an invariant torus exists. The power r may considerably improve the estimate
of the threshold for the applicability of the theorem. This approach has been translated in
a computer assisted rigorous proof, which has been successfully applied to a few simple
models (see Celletti et al. 2000; Locatelli and Giorgilli 2000; and Gabern et al. 2005).

Let us now come to the part concerning the estimate of the stability time which is the
main contribution of the present note. To this end we remove from the Hamiltonian (4)
all the contributions which are independent of or linear in the actions p, namely the terms
εr A(r)(q) + εr 〈B(r)(q), p〉, which are small, thus obtaining a reduced Hamiltonian in Kol-
mogorov’s normal form. Moreover, we expand the perturbation R(r)(p, q) in power series
of p and Fourier series of q , thus getting a Hamiltonian in the form

H(p, q) = 〈ω, p〉 + H1(p, q) + H2(p, q) + · · · . (5)

where Hs(p, q) is a homogeneous polynomial of degree s +1 in the actions p and a trigono-
metric series in the angles q . Here, the upper index r of H has been removed because it is now
meaningless, since we use the latter Hamiltonian as an approximation of the Kolmogorov’s
normal form.

On this Hamiltonian we perform a Birkhoff normalization up to a finite order, that we
denote again by r although it has no relation with the order of Kolmogorov’s normalization
used above. Thus we get a Birkhoff normalized Hamiltonian

H = 〈ω, p〉 + Z1(p) + · · · + Zr (p) + Fr (p, q),

123



Kolmogorov and Nekhoroshev theory for the problem of three bodies 163

with Fr (p, q) a power series in p starting with terms of degree r + 2. We omit the details
about this part of the calculation, since there are a number of well known formal algorithms
that do the job. We concentrate instead on the quantitative estimates.

Let us introduce a norm for a function f (p, q) = ∑
|l|=s,k∈Zn fl,k plei〈k,q〉 which is a

homogeneous polynomial of degree s in the actions p. Precisely define

‖ f ‖ =
∑

|l|=s, k∈Zn

| fl,k |. (6)

Moreover consider the domain

�� = {
p ∈ R

n, |p j | ≤ �, j = 1 , . . . , n
}
. (7)

Then we have

| f (p, q)| ≤ ‖ f ‖�s for p ∈ �� , q ∈ T
n .

Let now p(0) ∈ ��0 with �0 < �. Then we have p(t) ∈ �� for |t | < T , where T is the
escape time from the domain ��. This is the quantity that we want to evaluate. To this end
we use the elementary estimate

|p(t) − p(0)| ≤ |t | · sup
|p|<�

| ṗ| < |t | · ‖{p, Fr }‖ �r+2 . (8)

The latter formula allows us to find a lower bound for the escape time from the domain ��,
namely

τ(�0, �, r) = � − �0

‖{p, Fr }‖ �r+2 , (9)

which, however, depends on �0, � and r . We emphasize that in a practical application,
e.g., to the SJS system, �0 is fixed by the initial data, while � and r are left arbitrary. Thus we
try to find an estimate of the escape time T (�0) depending only on the physical parameter
�0. To this end we optimize τ(�0, �, r) with respect to � and r , proceeding as follows. First
we keep r fixed, and remark that the function τ(�0, �, r) has a maximum for

� = r + 2

r + 1
�0 .

This gives an optimal value of � as a function of �0 and r , and so a new function

τ̃ (�0, r) = sup
�≥�0

τ(�0, �, r)

which is actually computed by putting the optimal value � = �0(r +2)/(r +1) in the expres-
sion above for τ(�0, �, r). Next we look for the optimal value ropt of r , which maximizes
τ̃ (�0, r) when r is allowed to change. That is, we look for the quantity

T (�0) = max
r≥1

τ̃ (�0, r) ,

which is our best estimate of the escape time, depending only on the initial data. We define the
latter quantity as the estimated stability time. Here we need some further considerations in
order to convince the reader that the maximum in the r.h.s. of the latter formula actually exists.
This follows from the asymptotic properties of the Birkhoff’s normal form. For, according to
the available analytical estimates based on Diophantine inequalities for the frequencies, the
norm ‖{p, Fr }‖ in the denominator of (9) is expected to grow as (r !)n , n being the number
of degrees of freedom. Thus, for �0 small enough the denominator ‖{p, Fr }‖ �r

0 reaches a

123



164 A. Giorgilli et al.

minimum for some rn ∼ 1/�0, which means that the wanted maximum actually exists, thus
providing the optimal value ropt . We also remark that although no proof exists that the ana-
lytical estimates are optimal, accurate numerical investigations based on explicit expansions
show that the r ! growth of the norms actually shows up (see, e.g., Contopoulos et al. 2003
and Efthymiopoulos et al. 2004). Working out an analytical evaluation of the stability time
on the basis of these considerations leads to an exponential estimate of Nekhoroshev’s type
for T (�0) (see, e.g., Giorgilli et al. 1989). Here we replace the analytical estimates with an
explicit numerical optimization of τ̃ (�0, r) by just calculating it for increasing values of r
until the maximum is reached.

Our aim is to perform the procedure above by using computer algebra. Thus some trun-
cation of the functions must be introduced in order to implement the actual calculation. The
most straightforward approach is the following. First we truncate the Hamiltonian (5) at a
finite polynomial order in the actions. This is legitimate if the radius � of the domain is small,
due to the well known properties of Taylor series. However, the Fourier expansion of every
term Hs still contains infinitely many contributions. Here we take advantage of the exponen-
tial decay of the Fourier coefficients of analytic functions and of some algebraic properties of
the Poisson brackets. Precisely, let f (q) = ∑

k fkei〈k,q〉; the dependence of the coefficients
fk on the actions is unrelevant here. Then the exponential decay of the coefficients means
that | fk | ≤ Ce−|k|σ with some positive constants C and σ . Thus, having fixed a positive
integer K we truncate the Fourier expansion as f (q) = ∑

|k|≤K fkei〈k,q〉, i.e., we remove
all Fourier modes |k| ≥ K . This is allowed because the exponential decay assures that the
neglected part is small. The interested reader may find a more detailed discussion about this
method of splitting the Hamiltonian in Giorgilli (2003).

Coming back to our problem, we include in Hs(p, q) all Fourier coefficients with |k| ≤
sK , so that Hs(p, q) is a homogeneous polynomial of degree s + 1 in the actions p and a
trigonometric polynomial of degree sK in the angles q . The algebraic property mentioned
above is that such a splitting of the Hamiltonian is preserved by the Lie series algorithm that
we apply through all our calculations. This in view of the elementary fact that the Poisson
bracket between two functions, fr and fs say, which are homogeneous polynomial of degree
r + 1 and s + 1, respectively, in p and trigonometric polynomials of degree r K and sK ,
respectively, in q produces a new function of degree r + s + 1 in p and (r + s)K in q .

A final remark concerns the estimate of the remainder Fr in (8), which is an infinite
series, too. Here we just calculate the first term of the remainder, namely the term of degree
r + 1, and multiply its norm by a factor 2. This factor is justified in view of the fact that the
analytical estimates of the same quantities involve a sum of a geometric series which, for �

small enough, decreases with a ratio less than 1/2. Here a natural objection could be that for
some strange reason the norm of the remainder at some finite order could be smaller than
predicted by the analytical estimates. However, it is a common experience that after a few
perturbation steps the norms of the functions take a rather regular behaviour consistent with
the geometric decrease predicted by the theory. Thus, our choice appears to be justified by
experience.

As a final remark we note that our way of dealing with the truncation is the most straight-
forward one, but it is not the sole possible. Other more refined criteria may be invented,
of course, which may take into account the most important contribution while substantially
reducing the number of coefficients to be calculated. In this sense our direct approach should
be considered as a first attempt to check if the concept of Nekhoroshev’s stability may be
expected to apply to our Solar System. Although being unable to produce rigorous results in
a strict mathematical sense, we believe that our method gives interesting results in the spirit
of classical perturbation methods.
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4 Application to the planetary problem of three bodies

Applying the theories of Kolmokorov and Nekhoroshev to the planetary problem is not
straightforward, due to the degeneration of the Keplerian motion. In order to remove such a
degeneration, a lenghty procedure is needed; this essentially requires a suitable adaptation
of the canonical coordinates, paying a very particular care to the secular ones (to appreciate
some deep point of view about this problem, see, e.g., Arnold 1963b and Nekhoroshev 1977).

In our approach the difficulty shows up in the part concerning the application of Kolmogo-
rov’s theory. Once a Kolmogorov torus has been constructed, then there is no extra difficulty
in applying the method of Sect. 3, due to the fact that the method is local. In the present
section we give a brief sketch of the procedure for the construction of a Kolmogorov torus.
The complete procedure is described in Locatelli and Giorgilli (2005, 2007), to which we
refer for details.

Following a traditional approach, we first reduce the integrals of motion (i.e. the linear
and angular momenta); therefore, we separate the fast variables (essentially the semimajor
axes and the mean anomalies) from the slow ones (the eccentricities and the inclinations with
the conjugated longitudes of the perihelia and of the nodes). This is usually done in Poincaré
variables by writing a reduced Hamiltonian of the form

H R(	, λ, ξ, η) = F (0)(	) + µF (1)(	, λ, ξ, η) (10)

with

µ = max{m1 / m0 , m2 / m0 }
where m0 is the mass of the star, m1 and m2 are the masses of the planets, 	 j , λ j are the
fast variables and ξ j , η j are the slow (Cartesian–like) variables. Here, obviously, the values
of the index j = 1 , 2 correspond to the internal planet and to the external one, respectively.

On this Hamiltonian we perform a procedure which is the natural extension of the one
devised by Lagrange and Laplace in order to calculate the secular motion of the eccentricities
and the inclinations and the conjugated angles.

The first step is the identification of a good unperturbed invariant torus for the fast angles
λ, setting for a moment the slow variables ξ, η to zero. Here is a short description.

(i) Having fixed a frequency vector n∗ ∈ R
2, we determine the corresponding action values

	∗ corresponding to a torus which is invariant for an integrable approximation of the
system, where the dependency on both the fast angles λ and on the secular coordinates
ξ, η is dropped. This can be done by solving the equation

∂ 〈H R〉λ
∂	 j

∣∣∣∣
	=	∗
ξ , η=0

= n∗
j , j = 1, 2 .

Here 〈H R〉λ = 1
4π2

∫
T2 H R dλ1 dλ2 is the average of the Hamiltonian H R with respect

to the fast angles. The explicit value of n∗ is chosen so that it reflects the true mean
motion frequencies of the planets (see next section for our values). Having solved
the previous equation with respect to the unknown vector 	∗, we expand H R in power
series of 	−	∗. With a little abuse of notation we denote again by 	 the new variables.

(ii) We perform two further canonical transformations which make the torus 	 = ξ =
η = 0 to be invariant up to order 2 in the masses. Indeed, these changes of coordi-
nates are borrowed from the Kolmogorov’s normalization algorithm, but we look for
a Kolmogorov’s normal form with respect to the fast variables only, considering the
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slow ones essentially as parameters, although they are changed too. More precisely,
we determine generating functions of the form χ j (	, λ, ξ, η) = 	 j−1g j (λ, ξ, η) for
j = 1, 2 , where g j (λ, ξ, η) includes a finite order expansion both in Fourier modes
with respect to the fast angles λ and in polynomial terms of the slow variables ξ, η . The
aim of this step is to reduce the size of terms independent of or linear in the fast actions
so that it is of the same order as the rest of the perturbation. We denote by H T the
resulting Hamiltonian, which is still trigonometric in the fast angles λ and polynomial
in 	, ξ, η.
The next goal is to determine a good invariant torus for the slow variables ξ, η . To this
end we combine the classical Lagrange’s calculation of the secular frequencies with a
Birkhoff’s procedure that takes into account the nonlinearity.

(iii) We consider the secular system, namely the average 〈H T 〉 of the Hamiltonian H T result-
ing from the step (ii) above. Acting only on the quadratic part of the Taylor expansion
of 〈H T 〉 in ξ, η we determine a first approximation of the secular frequencies, and
transform the Hamiltonian so that its quadratic part has a diagonal form. This part of
the calculation follows the lines of Lagrange’s theory, but the calculation is worked out
at the second order approximation in the masses. The diagonalization of the quadratic
part requires a linear canonical transformation, which is a standard matter. Thus the
quadratic part in ξ, η of the resulting Hamiltonian has the form 1

2

∑
j ν j (ξ

2
j + η2

j ),
where ν are the secular frequencies and we denote again by ξ, η the slow variables.

(iv) We perform a Birkhoff’s normalization up to order 6 in ξ, η. This gives a normalized
secular Hamiltonian H B which in action–angle variables ξ j = √

2I j cos φ j , η j =√
2I j sin φ j takes the form

H B = ν · I + h(4)(I ) + h(6)(I ) + F(	, I, φ) ,

where h(4) and h(6) are polynomials of degree 2 and 3 in I , respectively. This step
removes the degeneration of the secular motion, thus allowing us to take into account
the nonlinearity of the secular part of the problem.

(v) Having fixed the slow frequencies g∗ so that they reflect the true frequencies of the
system, we determine a secular torus I ∗ corresponding to these frequencies, by using
the integrable approximation of H B . This is done by solving for I the equation

∂ h(4)

∂ I j
(I ) + ∂ h(6)

∂ I j
(I ) = g∗

j − ν∗
j , j = 1, 2 .

The values 	∗ and I ∗ so determined provide the first approximation of the Kolmogorov’s
invariant torus. Reintroducing the fast angles and performing on the original Hamiltonian H R

all the transformations that we have done throughout our procedure (i–v) we get a Hamiltonian
of the form (2) which is the starting point for Kolmogorov’s normalization algorithm. After
a number of Kolmogorov’s steps the Hamiltonian takes the form (4), thus giving a good
approximation of an invariant torus with frequencies n∗ and g∗. The latter form is precisely
the output of the calculation illustrated in Giorgilli and Locatelli (1997b), and by removing
all terms which are independent of or linear in the actions p it provides a Hamiltonian as
that in (5). This is the starting point for our algorithm evaluating the stability time in the
neighbourhood of the invariant torus.
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Table 1 Physical parameters for the Sun–Jupiter–Saturn system taken from JPL at the Julian Date 2451220.5

Jupiter ( j = 1) Saturn ( j = 2)

Mass m j (2π)2/1047.355 (2π)2/3498.5

Semi-major axis a j 5.20092253448245 9.55716977296997

Mean anomaly M j 6.14053316064644 5.37386251998842

Eccentricity e j 0.04814707261917873 0.05381979488308911

Perihelion argument ω j 1.18977636117073 5.65165124779163

Inclination i j 0.006301433258242599 0.01552738031933247

Longitude of the node � j 3.51164756250381 0.370054908914043

Table 2 The frequencies of the unperturbed torus in the SJS system corresponding to the initial data and
physical parameters in Table 1

Jupiter Saturn

Fast frequencies n∗
1 = 0.52989041594442 n∗

2 = 0.21345444291052

Secular frequencies g∗
1 = −0.00014577520419 g∗

2 = −0.00026201915143

The values are calculated via frequency analysis on the orbits obtained by direct integration of the equations
for the problem of three bodies

5 Application to the Sun–Jupiter–Saturn system

We come now to the application of our procedure to the SJS system. Let us first define the
model. We consider the general problem of three bodies with the Newtonian potential. Thus,
the contribution due to the other planets of the Solar System is not taken into account in
our approximation. The expansion of the Hamiltonian is a classical matter, so we skip the
details, just recalling that all the expansions have been done via algebraic manipulation, using
a package developed on purpose by the authors.

The choice of the model plays a crucial role in determining the frequencies of the torus,
that we calculate by integrating the Newton equations for the problem of three bodies and
applying the frequency analysis (see, e.g., Laskar 1999) to the computed orbit. As initial
data we take the orbital elements of Jupiter and Saturn as given by JPL1 for the Julian Date
2451220.5 . This is the point where the connection with the physical parameters of our Solar
System is made. The physical parameters and the orbital elements are reported in Table 1.
The calculated frequencies are given in Table 2.

The choice of the Julian Date 2451220.5 in order to set the initial data is completely
arbitrary, of course, its sole justification being that such data are directly available from JPL.
Choosing different dates or different determinations of the planet’s elements could lead to a
slightly different determination of the frequencies, and so also of the invariant torus. How-
ever, we emphasize that the aim of the present work is precisely to give a long time stability
result which applies to a neighbourhood of the invariant torus. The size of such a neighbour-
hood should be large enough to cover the unavoidable uncertainty in determining the initial
data for the SJS system. This is a delicate matter, of course, because the JPL data reflect the
dynamics of the full Solar System, while our study is concerned only with the model of three

1 The data about the planetary motions provided by the Jet Propulsion Laboratory are publicly available
starting from the webpage http://www.jpl.nasa.gov/
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Table 3 Estimates of the uncertainties on the initial values of the canonical coordinates (	, λ, ξ, η)

�	 j �λ j �ξ j �η j

Jupiter ( j = 1) 1.8 × 10−6 6.6 × 10−5 1.1 × 10−5 2.8 × 10−6

Saturn ( j = 2) 1.7 × 10−6 3.0 × 10−5 3.3 × 10−6 3.2 × 10−6

These evaluations are derived from the comparison of different sets of JPL’s DE

bodies. However, we may get some hint on the size of the uncertainty precisely by looking
at the JPL data.

As everybody knows, the initial positions and velocities of the planets are usually taken
from the Development Ephemeris of the Jet Propulsion Laboratory (for short, JPL’s DE).
There are several sets of these ephemerides, each version of them being based on more and
more observational data, which take benefit from the improvement of the techniques. Thus,
each new version of the JPL’s DE is expected to improve the precision of the data with respect
to the older ones and, then, one can approximately evaluate the error of the older versions
by comparison with the most recent one (see the initial discussion in Standish 1990b). The
positions and velocities of the planets given by five different sets of JPL’s DE are listed in
table 15 of Standish’s paper Standish (1990a). For each kind of these data we can determine
a narrow interval containing all of them and we can calculate the Keplerian orbital elements
corresponding to the extrema of such intervals. By applying all the necessary transformations
we translate these data into uncertainties for the Poincaré’s canonical coordinates (	, λ, ξ, η)

that have been used in order to write the Hamiltonian (10). These uncertainties are reported in
Table 3. This provides us with a first approximation of the neighbourhood of our initial data
that contains all JPL’s DE reported in Standish’s paper. We should now apply all the canon-
ical transformations needed in order to construct an invariant torus close to the SJS orbit.
However we remark that all such transformations are very smooth, being analytic, volume
preserving, and most of them are close to identity, so that they add just a small correction
with respect to the data in Table 3. Thus we may confidently expect that at some time the
phase space point representing the position of the SJS system lies in a neighbourhood of our
approximated invariant torus the size of which is evaluated to be O(10−6) for the fast actions
and O(10−5) for the secular coordinates.

Let us now come back to the actual calculation. The Kolmogorov’s normal form has been
computed up to order 17, with the generating function exhibiting a good geometric decay.
Furthermore, we have compared the orbit on the approximate invariant torus with that pro-
duced by a direct numerical integration of the equations of motion, thus finding a quite good
agreement between them, as shown in Table 4. Here, we omit the details about these lengthy
calculations, since a complete report has been already given in Locatelli and Giorgilli (2007).

The calculation of Kolmogorov’s normal form produces a Hamiltonian which is analytic
in the neighbourhood of the approximated invariant torus. Our program performs the cal-
culation of this Hamiltonian with the polynomial series in the actions truncated at order 3
and the trigonometric series truncated at order 34 (see Locatelli and Giorgilli 2007 for more
details). On this Hamiltonian we would like to apply the procedure of Sect. 3. However, a
major obstacle raises up: the number of coefficients in the series that we have calculated is
more than 7 100 000. Such a huge number of coefficients can not be handled in a Birkhoff
normalization procedure. For, referring to the discussion at the end of Sect 3 we should set
the parameter K for the truncation of trigonometric series to 34, thus getting a truncation
at trigonometric degree 68, 102, . . . , 34r, . . . at successive order. A rough estimate of the
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Table 4 Maximal discrepancies about the orbital elements of the SJS system between a numerical integra-
tion and the semi-analytic one, that is based on the construction of the invariant torus corresponding to the
frequencies values given in Table 2

Maxt

{∣∣∣�a j (t)
a j (t)

∣∣∣
}

Maxt
{∣∣�λ j (t)

∣∣} Maxt

{∣∣∣�e j (t)
e j (t)

∣∣∣
}

Maxt
{∣∣�ω j (t)

∣∣}

Jupiter 1.5 × 10−6 5.0 × 10−4 1.3 × 10−3 1.3 × 10−3

Saturn 6.8 × 10−6 1.1 × 10−3 4.3 × 10−3 7.3 × 10−3

The maximal relative errors on the semi-major axis a j and on the eccentricities e j are reported here for both
Jupiter (corresponding to j = 1) and Saturn (i.e., j = 2); the same is made also for the maximal absolute errors
on the “fast angle” λ j = M j + ω j and on the perihelion argument ω j . In the present case, the comparisons
are made starting from the initial conditions given in Table 1 and for a time span of 100 Myr

number of generated coefficients shows that we shall soon run out of memory and of time
on any available computer. Thus, we must introduce some further approximation.

In view of the considerations above we decided, as a first approach, to strictly follow the
truncation scheme illustrated at the end of Sect. 3 by just lowering the value of K . We report
the results of this first attempt, which in our opinion appear already to be interesting. Thus
we expand the Hamiltonian in the form

H(p, q) = 〈ω, p〉 + H1(p, q) + H2(p, q)

by keeping in H1 all terms of degree 2 in the actions p and K in the angles q , and in H2

all terms of degree 3 in the actions p and 2K in the angles q . The Birkhoff normalization
produces a Hamiltonian of the form

H = 〈ω, p〉 + Z1(p) + · · · + Zr (p) + Fr+1(p, q),

where Fr+1 denotes the term of degree r + 2 in the actions p and (r + 1)K in the angles,
i.e., the first term of the remainder. With a suitable choice of K , this considerably reduces
the number of coefficients in the expansions thus enabling us to perform the calculation on
a workstation. We emphasize however that the algorithm is a general one so that in principle
it can be applied to the full Hamiltonian or, better to a Hamiltonian obtained by removing
all coefficients which are very small and will likely not produce big coefficients (due to the
action of small denominators) during the calculation of the Birkhoff’s normal form. The
rest of the calculation closely follows the discussion in Sect. 3, so we come to illustrating
the results. We performed the calculation with two different values of K , as given in the
following table.

K r # of coefficients
4 5 2 494 000
6 4 3 380 000

This shows in particular the dramatic increase of the number of coefficient in the remain-
der Fr+1 (third column), which imposes strong constraints on the choice of the normalization
order r .

A quite natural objection could be raised here. Since the most celebrated resonance of the
SJS system (i.e., the mean motion resonance 5:2) has trigonometrical degree 7 , it seems that
some of the main resonant terms are neglected because of our choice of K . This is actually
not the case, due to a technical element that we have omitted in the previous section in order to
make the discussion simpler. Our sequence of transformations includes a unimodular linear
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Fig. 1 The estimated stability
time. a Results for K = 4 and
Birkhoff normalization order 5
(crosses) and 4 (dashed curve).
b Results for K = 6 and Birkhoff
normalization order 4

(a)

(b)

transformation on the angles, and so also on the frequencies. The action on the frequencies
changes the resonance 5:2 into a 3:1 one, which is of order 4. Thus, setting K ≥ 4 as we
did throughout all our calculations is enough in order to include the main resonant terms.
The interested reader will find a detailed discussion of this point in Sect 3 of Locatelli and
Giorgilli (2007).

Let us now come to the results. In panel (a) of Fig. 1 we report the results for K = 4. The
crosses give the estimated stability time for the Birkhoff’s normal form at order 5; the dashed
line gives the estimated time when the Birkhoff’s normal form is truncated at order 4, thus
showing how relevant is the improvement when a single normalization order is added.

We can now come back to the estimate about the escape time T = T (�0) . Looking at
panel (a) of Fig. 1, one can remark that we have an estimated stability time of 1010 years, that
is approximately equal to the age of the universe, for a neighbourhood of initial conditions
of radius 10−5 in actions.

It may be noted that the stability curves exhibit a sharp change of slope around �0 ∼ 10−4.
This is because the optimal normalization order increases when the radius is decreased.
Actually, further changes of slope should be expected for smaller values of �0, but due to
computational limits such changes can not appear in our figure, because the optimal order
exceeds the actual order of our calculation. Thus, our estimate of the stability time should be
considered as a very pessimistic lower bound.

123



Kolmogorov and Nekhoroshev theory for the problem of three bodies 171

Moreover, the behaviour of the plots in Fig. 1, clearly shows that the estimate of the
escape time can be substantially improved if smaller values of the radius �0 can be con-
sidered. Recalling that our estimate of the size of the neighbourhood in action variables is
calculated from the discrepancy among different sets of JPL’s DE data, we may affirm that our
neighbourhood roughly covers such a width, which is tabulated in Standish’s paper quoted
above.

If we try a better approximation of the Hamiltonian, setting K = 6, then we are forced
to stop the Birkhoff’s normalization at order 4, thus making the results definitely worse.
The data for the estimated stability time are plotted in panel (b) of Fig. 1. One sees that the
estimate becomes comparable with the age of the universe only in a neighbourhood of initial
conditions slightly larger than 10−6. However, if we compare the curve in panel (b) with the
dashed curve in panel (a) we see that we shall likely get substantially better results if we
could compute the normal form at order 5.

Thus, our rough approximation gives results which apply to a set of initial data for the
SJS system which is of the same order of magnitude as the uncertainty in JPL’s data. We also
emphasize that our evaluation of �0 is based on observational data which are presently older
than 25 years; we expect that this is quite pessimistic with respect to the features of more
recent JPL’s DE.

6 Conclusions

We have developed an effective method to compute the Kolmogorov’s normal form for the
problem of three bodies, and have successfully applied it to the SJS problem, using the data of
our Solar System. Next, we have shown that a calculation of the stability in Nekhoroshev’s
sense of orbits with initial point in the neighbourhood of the torus is possible, at least if
one accepts to make some strong truncation in the expansion of the Hamiltonian. A rather
strong truncation allows us to get an estimated stability time comparable with the age of the
universe in a neighbourhood of the torus that will likely contain the actual initial data of the
SJS system.

The natural question is whether such results will remain valid if we add more and more
terms in the Hamiltonian, thus making our approximation better. Answering such a question
is presently beyond our limits, but in our opinion deserves to be investigated. Some improve-
ment may be obtained by using more computer power, e.g., by performing our calculation
on a cluster of computers. However, substantial improvements require also a refinement of
our analytical techniques in order to be able to evaluate the error induced by our truncations,
thus allowing us to introduce better computation schemes and to evaluate the reliability of
our approximations.
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