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Abstract This work deals with the structure of the lunar Weak Stability Boundaries (WSB)
in the framework of the restricted three and four body problem. Geometry and properties
of the escape trajectories have been studied by changing the spacecraft orbital parameters
around the Moon. Results obtained using the algorithm definition of the WSB have been
compared with an analytical approximation based on the value of the Jacobi constant. Planar
and three-dimensional cases have been studied in both three and four body models and the
effects on the WSB structure, due to the presence of the gravitational force of the Sun and
the Moon orbital eccentricity, have been investigated. The study of the dynamical evolution
of the spacecraft after lunar capture allowed us to find regions of the WSB corresponding to
stable and safe orbits, that is orbits that will not impact onto lunar surface after capture. By
using a bicircular four body model, then, it has been possible to study low-energy transfer
trajectories and results are given in terms of eccentricity, pericenter altitude and inclination
of the capture orbit. Equatorial and polar capture orbits have been compared and differences
in terms of energy between these two kinds of orbits are shown. Finally, the knowledge of the
WSB geometry permitted us to modify the design of the low-energy capture trajectories in
order to reach stable capture, which allows orbit circularization using low-thrust propulsion
systems.

Keywords Weak Stability Boundaries · Four body problem · Low-energy transfer

1 Introduction

Low energy interplanetary transfers have been widely studied in the last twenty years and a
large number of publications are available in the literature (Belbruno 1987, 2004; Belbruno
and Miller 1990; Kawaguchi et al. 1995; Koon et al. 2000, 2001). Particularly, these kinds of
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transfers roused interest in designing lunar trajectories. In this way, in fact, it is possible to
save up to 15% propellant mass compared with classic Hohmann transfers. Many different
ways have been proposed for the design (Belbruno 1987; Belbruno et al. 1993; Bellò et al.
2000; Koon et al. 2001; Circi and Teofilatto 2001), but all these techniques use particular
space regions, called Weak Stability Boundaries. Belbruno (2004) suggested an algorithm
definition of WSB and presented their geometry for the Earth–Moon system in the planar
case, in terms of eccentricity, periselenium altitude and Jacobi constant of the spacecraft
osculating initial orbit. Using the Belbruno definition, Garcia and Gomez (2007) showed
the WSB in the framework of the circular restricted three body problem and located stable
and unstable points in the plane of motion of the two primaries of motion. In this paper,
the WSB are studied using three and four body models, investigating the configuration of
the stable and unstable regions in both planar and three-dimensional cases. Stable regions
are compared with the sphere of influence and are used to design low-energy transfers. In
Sect. 2, the three and four body models used in simulations are discussed. Section 3 deals
with the definition and characteristics of the WSB in terms of capture conditions. Numerical
results are then compared with an analytical approximation based on the value of the Jacobi
constant. In Sect. 4, the definition of the WSB is extended to the three-dimensional case. In
Sect. 5 the dynamics after capture is studied, in order to locate safe regions inside the WSB,
that is conditions that avoid impacts with the lunar surface. Finally, Sect. 6 deals with lunar
WSB transfers in terms of capture periselenium altitude and the maps obtained are used to
design lunar transfers with stable behavior.

2 Equation of motion

In this section, the restricted three and four body models used to study the WSB structure
are discussed. Consider two masses m1 and m2, the so called primaries of motion, moving
around their common center of mass and satisfying the condition m1 > m2. Let’s introduce a
third body of negligible mass m, so that m � m2 < m1, moves in the gravity field produced
by the two primaries. The motion of the third body is studied in a rotating reference frame
whose origin is located on the center of mass of the primaries, the x axis is along the line
between the primaries, the z axis is normal to the plane of motion of the primaries and the y
axis forms a right hand reference frame. If the two primaries move on a circular orbit around
their common center of mass, the model is referred to as the Circular Restricted Three Body
Problem (CRTBP), whereas if the two massive bodies move on elliptic orbits the model is
called the Elliptic Restricted Three Body Problem (ERTBP). In the CRTBP, the equations
of motion for the mass m can be expressed in terms of the second derivatives of a potential
function �3(x, y, z) defined as:

�3(x, y, z) = 1

2
(x2 + y2) + 1 − µ

r1
+ µ

r2
+ 1

2
µ(1 − µ) (1)

where µ = m2
m1+m2

is the mass parameter of the system, r1 = √
(x + µ)2 + y2 + z2 and

r2 = √
(x + µ − 1)2 + y2 + z2 the distances of the third body from m1 and m2 and 1

2µ(1 − µ)

is a constant for the potential, respectively. Note that the term 1
2µ(1 − µ), which does not

modify the equations of motion, is usually introduced in the literature in order to have a more
symmetrical potential function (Szebehely 1967). Obtaining the second derivatives from (1),
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the equations of motion can be written as (Wie 2000):
⎧
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In the ERTBP, the two primaries move on elliptic orbits around their common center of
mass. Hence, the instantaneous distance between m1 and m2 and the angular rate of the refer-
ence frame vary in time. In this case, the equations of motion for the third body are (Wie 2000):
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ẍ − 2ω ẏ = ω̇y + ω2x − (1 − µ)

r3
1

(x − x1) − µ

r3
2

(x − x2)
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where ω is the actual angular rate of the reference frame, x1 and x2 are the coordinates
along the x axis of the primaries and r1 and r2 are the instantaneous distances between
the spacecraft and the Earth and the spacecraft and the Moon, respectively, defined as
r2

1 = (x − x1)
2 + y2 + z2 and r2

2 = (x − x2)
2 + y2 + z2. Moreover, the motion of the

third body is studied using dimensionless quantities:

• The unit of distance is equal to the mean distance between the primaries;
• The unit of mass is equal to the sum of the masses of the primaries;
• The unit of time is such that the period of m2 about m1 is equal to 2π .

The next model introduced is the Bicircular Restricted Four Body Problem (BRFBP).
Compared with the case of the CRTBP, in which the Earth and the Moon move on circular
orbits around the system center of mass, the BRFBP adds the presence of the Sun, rotating
around the Earth–Moon system with a constant radius ρ and constant relative angular rate ωs .
The equations of motion can still be obtained using a potential function �4 = �4(x, y, z)
including the terms related to the Sun:

�4(x, y, z) = �3(x, y, z) + mS

r3
− mS

ρ2 (x cos ϕ (t) + y sin ϕ (t)) (4)

where ms is the mass of the Sun, r3 =
√

(x − ρ cos ϕ)2 + (y − ρ sin ϕ)2 + z2 is the distance
between the spacecraft and the Sun and ϕ = ϕ̄ (t)+ϕ0 is the phase angle between the Sun and
the Earth–Moon direction (Figs. 23, 25). Hence, the equations of motion for the spacecraft
can be written as (Yagasaki 2004):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẍ − 2 ẏ = ∂�4

∂x

ÿ + 2ẋ = ∂�4

∂y

z̈ = ∂�4

∂z
ϑ̇ = ωs

(5)
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Fig. 1 Algorithmic definition of
the WSB

The bicircular model is a good approximation for the Earth–Moon–Sun system. The eccen-
tricity of the Earth’s orbit about the Sun (eearth = 0.016) and that of the Moon’s orbit around
the Earth (emoon = 0.054), are, in fact, very small and the lunar orbital plane is inclined by
only 5◦ with respect to the ecliptic plane. The dimensionless characteristic values used in
this model are:

• The relative Sun angular rate is set equal to ωs = −0.9251.
• The distance between the Sun and the Earth–Moon center of mass is set equal to ρ =

3.8881 × 1012.
• The mass of the Sun is set equal to ms = 3.289 × 105.

3 Weak Stability Boundaries

The definition of the Weak Stability Boundaries is based on the following algorithm
(Belbruno 2004). Let’s introduce two masses m1 and m2, so that the condition m1 > m2 is
verified, and a third particle m satisfies the condition m � m2 < m1. In the synodic reference
frame introduced in Sect. 2, consider a radial line l(ϑ) from m2, defining an angle ϑ with
the x axis of the reference frame (Fig. 1).

In order to define the WSB, let’s consider all the trajectories of the third body m having
origin on the radial line l(ϑ) and such that:

• The initial velocity vector (v) of the mass m is normal to the radial line in positive (direct)
or negative (retrograde) direction with respect to m2;

• The Keplerian energy of the mass m with respect to the small primary m2 is negative;
• The eccentricity of the initial osculating orbit of the spacecraft is constant at each variation

of the initial point on the radial line l(ϑ).

The motion of the spacecraft begins at t = t0 on a point ‘a’, corresponding to the perisele-
nium of the osculating orbit around m2 with eccentricity e. For any further time, the motion
of the third body is stable with respect to m2 if:

• after leaving the radial line l(ϑ) the mass m performs a complete revolution around m2

and crosses again the radial line in a point b ∈ l(ϑ), which is generally different from the
starting point, with negative or zero Keplerian energy with respect to m2 without going
around m1.
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Earth–Moon Weak Stability Boundaries 83

E

Fig. 2 WSB in Planar Restricted Circular Three Body Problem according to the definition given by Belbruno
(with osculating orbit eccentricity e = 0)

On the contrary, the motion of the third body is unstable if:

• after leaving the radial line l(ϑ) the mass m crosses again the direction l(ϑ) in a point
b ∈ l(ϑ) without going about m1, but with positive Keplerian energy with respect to m2;

• after leaving the radial line l(ϑ), the third body moves away from m2 towards m1 and
makes a cycle about m1 without crossing the radial direction l(ϑ) or it collides with m1.

Varying the distance between m and m2 along the radial line l(ϑ) with a fixed value of the
osculating orbit eccentricity (in example e = 0), it is possible to find the values of the radius
r and anomaly ϑ which lead to the transition from stable to unstable conditions. Setting r∗
as the first radius value for the transition for each value of the anomaly ϑ , according to the
definition given by Belbruno, we have:

• stable motion for r < r∗
• unstable motion for r � r∗.

In order to compare the lunar WSB with the lunar sphere of influence, it is possible to
plot in a polar graph the values of r∗ and anomaly ϑ corresponding to the transition between
stable and unstable conditions. In the framework of the CRTBP, using �r = 1,000 km and
�ϑ = 1◦ as steps for the radius and for the anomaly, the results obtained from numerical
simulations with an integrating time of 35 days are shown in Fig. 2.

Figure 2 shows the geometry of the WSB according to the definition given by Belbruno.
As illustrated, the WSB have a halved extension compared to the sphere of influence of
the Moon. Moreover, the WSB presents four discontinuities identified by the four values
of anomaly ϑ1, ϑ2, ϑ3 and ϑ4. The spacecraft trajectories showed that the discontinuities in
ϑ1 = 59.2◦ and ϑ3 = 236.1◦ locate points in which the spacecraft behavior changes globally.
In the case of anomaly values ϑ < ϑ1, the spacecraft escapes towards the L2 Lagrangian
point, that is towards the outer regions of the Earth–Moon system, while in the case of anom-
aly ϑ > ϑ1 the third body escapes towards the L1 Lagrangian point, that is towards the inner
regions of the Earth–Moon system. The same happens for the discontinuity ϑ3, where the
escape is towards the L1 Lagrangian point for anomaly values ϑ < ϑ3 and towards the L2

Lagrangian point for anomaly values ϑ > ϑ3. Figure 3 shows the four trajectories for these
cases.
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Fig. 3 Different kinds of escape
for the discontinuities in ϑ = ϑ1
and ϑ = ϑ3

Fig. 4 Different kinds of
escapes for the discontinuities in
ϑ = ϑ2 and ϑ = ϑ4

Moon

For anomaly values ϑ2 = 170.6◦ and ϑ4 = 348.1◦ the spacecraft global behavior remains
the same, that is the escape is always towards the same Lagrangian point, but different kinds
of motion are possible for the same type of escape. Particularly, anomaly values ϑ < ϑ2 lead
to “direct” escapes towards L1 so that the spacecraft does not perform any revolution around
the Moon, while for anomaly values ϑ > ϑ2 the third body performs “indirect” escapes
towards L1, that is the spacecraft makes a complete revolution around m2 prior to escape. In
the case of the discontinuity in ϑ4 the situation is similar to that described for ϑ2, but oriented
to L2 (Fig. 4).
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Fig. 5 WSB geometry
depending on the spacecraft
initial eccentricity

e=0.0

e=0.2

e=0.4

e=0.6

e=0.8

It is easily seen that slight variations in the initial conditions strongly affect the motion
of the third body, through both global and local variations of the escape geometry. Besides,
slight variations in initial conditions also affect the stability of motion in the vicinity of the
WSB. Simulations showed that small increments of the anomaly, of about �ϑ ∼= 0.1◦, and
of the radius, of about �r ∼=100 km, may cause instability in the motion of the third body, so
that the spacecraft moves from an orbit around m2 to an orbit around m1. The same procedure,
illustrated above, to determine the WSB with e = 0 may be followed for different values of
the eccentricity. Results are shown in Fig. 5.

As illustrated, for increasing values of the eccentricity e, the stable zone becomes smaller
and closer to the Moon, and capture is possible only for low periselenium altitudes. Note
that the region closer to the Moon corresponds to capture orbits with low periselenium alti-
tudes and high eccentricities, which are the ones involved in low-energy lunar transfers. The
structure and the properties of the WSB can be studied with retrograde (negative) initial
velocities of the spacecraft on the osculating orbit. Figure 6 shows the geometry of the WSB
for retrograde orbits with different values of the eccentricity.

As illustrated, the behavior of the retrograde WSB for increasing values of the eccentricity
of the initial osculating orbit is the same as in the case of positive spacecraft initial veloc-
ities: the size of the WSB decreases remarkably, limiting the existence of stable conditions
only to a region very close to the Moon. The WSB algorithm definition given above ends
when the first stable/unstable transition around m2 occurs. Actually, numerical simulations
showed that, for values of the radius bigger than r∗, multiple transitions occur. Therefore, it
is possible to determine a finite number of points r∗

k , with r∗
1 = 0, such that the stable region

can be defined as (Garcia and Gomez 2007):

r ∈ (r∗
1 , r∗

2 ) ∪ (r∗
3 , r∗

4 ) ∪ (r∗
5 , r∗

6 ) ∪ · · · ∪ (r∗
k−1, r∗

k ) (6)

Using this criterion it is possible to draw the new geometry of the lunar WSB in the
Earth–Moon system. Figure 7 shows the structure of the WSB within the CRTBP framework
and the osculating initial orbit eccentricity set equal to e = 0. Note that the colored region
indicates the set of stable conditions.
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Fig. 6 WSB in the Planar
Circular Restricted Three Body
Problem and retrograde circular
orbits (Belbruno definition)

e=0.0

e=0.2

e=0.4

e=0.6

e=0.8

Earth gravity gradient field line 

single

Upper right corner

Lower left corner

direction

E

Fig. 7 Comparison between the WSB with single and multiple stable/unstable transitions

As illustrated, four arms appear and, therefore, for a fixed value of the anomaly ϑ there are
multiple transitions from stable conditions to unstable conditions, and vice versa. Note that
if the WSB obtained with the Belbruno algorithm (black line) is superimposed to that one
obtained with the multiple transition algorithm, it is clear that the four arms begin directly in
correspondence of the four small peaks identified through the Belbruno definition. Figure 7
shows that for ϑ = ϑ∗ there are three large scale transitions: stable/unstable, unstable/stable
and, again, stable/unstable. Nevertheless, it is important to note that small scale transitions
appear in the vicinity of the WSB defined by the Belbruno definition. Particularly, focusing
on the region near the two bigger peaks (Figs. 7, 8), it is immediately seen that within a short
range in the radius r it is possible to find stable conditions (gray points) very close to the
WSB defined by the Belbruno definition (black points).

The same kind of small scale transitions can be easily found in the vicinity of ϑ3 (Fig. 9).
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Fig. 8 Small scale
stable/unstable transitions in the
vicinity of v1

First unstable point

New stable point

Upper right corner

1000 Km

Fig. 9 Small scale
stable/unstable transitions in the
vicinity of v3

First unstable point

New stable point

Lower left corner

1000 Km

Stable points identify a region in space, the so called capture zone, corresponding to con-
ditions for the mass m that lead to a stable orbit around the Moon, that is the spacecraft
performs at least one complete revolution around the Moon with negative energy. The WSB
arms extend perpendicularly to the Earth–Moon direction and may be related to the Earth
gravity-gradient. Assuming a direct (positive) direction of the spacecraft initial velocity
around the Moon, where the gravity-gradient opposes the motion of the third body subtract-
ing energy from it, there are a greater number of stable points that can be used for captures.
This implies that in the m1 −m2 direction, where the Earth gravity-gradient moves the space-
craft away from the Moon, there are no stable points beyond the lunar sphere of influence.
Figure 10 shows the structure of the WSB for different values of the initial osculating orbit
eccentricity of the spacecraft. In particular the cases e = 0, e = 0.2 and e = 0.4 are
illustrated.

The global geometry does not change a lot for increasing values of the eccentricity, and
it is clear that the most impressive change is the reduction of the stable zone close to the
Moon. Besides, if the eccentricity increases, the plot of the WSB rotates clockwise, moving
the starting points of the arms, which tend to collapse reducing the unstable zone between
them and forming a single structure. The same approach can be followed using retrograde
conditions for the initial velocity of the spacecraft on the osculating orbit. Figure 11 compares
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E

Fig. 10 WSB structure for different values of the initial spacecraft eccentricity

WSB single transition

WSB multiple transitions

Km

Fig. 11 Comparison between WSB geometry single and multiple transition definition and negative initial
velocity

the WSB structure with initial negative velocity obtained with the Belbruno definition (black
line) against to the WSB obtained using the multiple transition definition (gray points).

As showed in the case of positive velocities, when comparing the WSB obtained with
the Belbruno definition against that one with multiple transitions, large and small scale tran-
sitions occur. As previously illustrated, the multiple transition definition allows taking into
consideration points which are far away from the Moon. It is also possible to investigate
the geometry of the retrograde WSB for different values of the initial eccentricity of the
osculating orbit of the spacecraft. Results of this analysis are shown in Fig. 12, where the
geometry of the WSB for negative velocities and increasing values of the eccentricity of
the initial osculating orbit has been determined, with particular attention to the cases e = 0,
e = 0.2 and e = 0.4.

Figure 12 shows that as in the case of positive initial (direct) velocity of the spacecraft, the
extension of the WSB decreases as the eccentricity of the osculating initial orbit increases.
Similarly to the direct case, for high values of the eccentricity e, the WSB is basically bounded
to a region close to the Moon, which corresponds to capture orbits with low periselenium.
It is important to note that in order to study low–energy lunar transfer (see Sect. 6) direct
orbits are of great interest, hence only the WSB related to direct initial conditions will be
investigated from now on. Considering a circular initial orbit for the spacecraft, the values
of the Jacobi constant are illustrated in Fig. 13.
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Fig. 12 WSB structure for retrograde initial orbits and different values of the eccentricity of the initial
osculating orbit

Fig. 13 Jacobi constant for
stable points (e = 0)

Note that the stable points exist also for Jacobi constant values smaller than that corre-
sponding to the libration points (CL1 and CL2), that is when the zero velocity curves are fully
opened and escapes are possible through both L1 and L2. The algorithmic definition of the
WSB leads to a numerical representation of this region. Nevertheless, it is possible to obtain
an analytical approximation of the WSB geometry in space (r, ϑ) by studying the Jacobi
constant in the Earth–Moon system. Belbruno (2004) gives a representation of this analytical
approximation in terms of the eccentricity (e), the periselenium (rp) and the Jacobi constant.
In order to compare the numerical solution with the analytical approximation of WSB, it
is necessary to express the Jacobi constant in polar coordinates using r and ϑ (Garcia and
Gomez 2007):

C(r2, ϑ, e) = 2
√

µ(1 + e)r2 − r2
2 − µ(e−1)

r2
+ 2(1−µ)√

(r2 cos ϑ−1)2+r2
2 sin2 ϑ

+ (r2 cos ϑ − 1 + µ)2 + r2
2 sin2 ϑ + µ(1 − µ) (7)

with r1 and r2 the distances of the spacecraft from the Earth and the Moon, respectively.
Using this expression and fixing the value of the eccentricity of the osculating initial orbit,
the values of the Jacobi constant in the Earth–Moon system are evaluated for each differ-
ent value of distance r and anomaly ϑ . Hence, the analytical approximation of the WSB is
obtained sectioning the Jacobi constant surface, given by Eq. 7, with the plane C = CL2 .
Figure 14 shows the analytical approximation of the lunar WSB and the numerical solution,
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Analytic approximation Analytic approximation Analytic approximation

Fig. 14 Comparison between numerical and analytic solutions for the lunar WSB

Fig. 15 Planes p (γ ) and p (ϑ)

for three-dimensional definition
of WSB

considering only the first stable/unstable transition, for different values of the eccentricity of
the osculating initial orbit of the spacecraft around the Moon, such as e = 0, e = 0.2 and
e = 0.4.

The analytic approximation is a good description of the WSB built considering only the
first stable/unstable transition, while in the case of multiple transitions the information about
the existence of the arms normal to the Earth–Moon direction is completely lost.

4 WSB: three-dimensional case

In order to study the three-dimensional definition of the WSB, let’s consider the case where
the initial orbit plane of the third body m does not lie in the plane of motion of the two prima-
ries, but on a plane p(γ ) rotated by an angle γ around the x axis of the synodic reference
frame. Due to the out of plane component of motion, for t > t0 the mass m leaves the plane
p(γ ) and will not cross the radial line l(ϑ) defined in Sect. 3. Therefore, the motion will
always be classified as unstable, according to the stability criterion stated above. For that
reason, the radial line l(ϑ) is substituted by the semi-plane p(ϑ), normal to the plane p(γ )

and including m2 and m (Fig. 15).
Note that it is possible to introduce a similar criterion for motion stability and instability.

The motion of the third body m is stable with respect to m2 if:

• after leaving the periselenium of the osculating orbit, it crosses again the plane p(ϑ) with
negative or zero Keplerian energy with respect to m2 without going around m1.
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Fig. 16 WSB structure for increasing values of γ with e = 0 in the framework of the CRTBP

On the contrary, the motion of the third body is unstable if:

• after a complete revolution around m2, it crosses again the plane p(ϑ) without going about
m1 but with a positive Keplerian energy with respect to m2;

• after leaving the plane p(ϑ), the third body moves away from m2 towards m1 and makes
a cycle about m1 without crossing anymore the plane p(ϑ) or it collides with m1.

As in the planar case it is necessary to search for the values of the radius r∗ = r∗(ϑ, e, γ )

corresponding to stable/unstable transitions, and vice versa. The definition of the WSB is
then extended to the three-dimensional case as:

W = {
r∗(ϑ, e, γ ) ∈ R1

∣
∣ ϑ ∈ [0, 2π ] , e ∈ [0, 1) , γ ∈ [0, 2π]

}
(8)

Figure 16 shows the configuration of the WSB for different values of the angle γ in the
framework of the CRTBP with initial eccentricity of the osculating orbit e = 0.

As illustrated, for increasing values of the out of plane angle γ , the structure of the WSB
changes remarkably reducing the extension of the capture zone. Note that the arms, typical
for low values of the angle γ , tend to join together at the ends, shrink and form a single
structure. If the satellite eccentricity gains a higher value e = 0.92, which is typical value
for translunar low–energy transfers, the WSB structure changes as illustrated in Fig. 17.

It is clearly seen that, in general, for high values of the eccentricity the extension of the
stable zone is reduced and for increasing values of the angle γ the number of stable points
decreases enormously. Particularly, for γ = 90◦, that is for polar initial conditions, the WSB
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Fig. 17 WSB structure for increasing values of γ and e = 0.92 in the framework of the CRTBP

Fig. 18 Jacobi constant for
stable points with γ = 90◦ and
e = 0.92

are reduced to a very small structure close to the Moon. Figure 18 shows the Jacobi constant
values for the case e = 0.92 and γ = 90◦.

Note that the Jacobi constant values are all below the value CL2 = 3.1722 and, therefore,
the zero velocity curves are fully opened. Particularly, the Jacobi constant is almost equal to
CL2 for the points close to the Moon, which correspond to points close to the origin of the x
axis in Fig. 16. Hence, these points lead to minimum energy transfer conditions, that is the
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Fig. 19 WSB structure for increasing values of γ and e = 0 in the BRFBP

zero velocity curves are as open as strictly necessary to allow the passing of the spacecraft.
The same procedure can be repeated using the elliptic three body problem and the bicircu-
lar four body problem. Numerical simulations showed that the results are similar to those
obtained in the framework of the CRTBP and differences appear only with a zoom of the
region considered (Figs. 19, 20).

Comparing Figs. 19 and 20 against Figs. 16 and 17 it is immediately seen that there
are slight differences between the two cases. Particularly, the presence of the Sun slightly
increases the extension of the WSB, especially with high values of the out of plane angle
γ and of the eccentricity e of the osculating initial orbit. It is important to note that this
slight dependency of the WSB to the perturbations acting on the Earth–Moon system has not
to be confused with the great importance that these perturbations have on the dynamics of
low-energy lunar transfers. From the point of view of the WSB definition, that is from the
point of view of the identification of the stable/unstable transition conditions, the influence
of the eccentricity of the Moon around the Earth and of the Sun gravitational effect is in first
approximation negligible. The three-dimensional case can be further extended introducing
an angle δ (Fig. 21), which represents a rotation of the plane p (γ ) around the z axis of the
synodic reference frame. The structure of the WSB is, then, investigated after a rotation γ

around the x axis and a rotation δ around the z axis.
Assuming δ ∈ [0◦ 90◦] and γ = 90◦, that is only polar initial conditions for the third body

are considered, the plane p(γ ) will pass from the (z − x) reference plane to being parallel to
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Fig. 20 WSB structure for increasing values of γ and e = 0.92 in the BRFBP

Fig. 21 Rotation of the plane
p(γ ) around the z axis

the (z − y) reference plane. Figure 22 shows the geometry of the WSB for different values
of the angle δ and high values of the initial osculating orbit eccentricity (e = 0.92).

As illustrated, first the extension of the capture zone rises, then decreases for initial con-
ditions corresponding to the plane p (γ ) normal to the Earth–Moon direction (δ = 90◦).
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Fig. 22 WSB structure for increasing values of the angle δ with e = 0.92 and γ = 90◦

5 Trajectories evolution after capture

Information about the stable/unstable feature of motion for a point in the Earth–Moon system
is important for the trajectory design, but another fundamental parameter is the minimum
periselenium altitude. The knowledge of this quantity, in fact, is very useful to design safe
capture orbits and avoid impacts with the surface of the Moon. Hence, it is possible to study
the trajectory evolution of the third body and determine the minimum distance from m2.
Generally, three different cases are possible:

(i) The third body reaches a positive periselenium altitude greater than the initial height;
(ii) The third body reaches a positive periselenium altitude smaller than the initial height;

(iii) The third body reaches a negative periselenium altitude, that is the spacecraft collides
with the lunar surface.

First of all, it is important to distinguish between the couples of values (r, ϑ) that lead to
a safe flyover of the lunar surface and those that, on the contrary, lead to impacts with the
surface. Note that both the value of the angle γ and the eccentricity of the initial osculating
orbit are parameters that strongly affect the safe/unsafe characteristic of motion. Numerical
simulations executed with the circular, elliptic and bicircular models showed similar results.
Hence, only the bicircular four body model results will be illustrated. Figure 23 shows the
results with e = 0.92 and an integration time of 30 days.

For increasing values of the out of plane angle γ , the number of stable points decreases as
previously said. Nevertheless, for each value of γ , points that avoid collisions with the lunar
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Fig. 23 Safe conditions (gray points) and impacts conditions (black points) for increasing values of γ and
e = 0.92

surface exist (gray points in Fig. 23) as well as conditions that lead to a collision with the
lunar surface (black points in Fig. 23). Particularly, it is clearly seen that, as γ increases, the
ratio between the number of stable and safe points with the number of stable points increases.
Note that the black points in left high corner of Fig. 23 are due to a superimposition of both
safe and unsafe conditions very close one to each other: for equatorial orbits (γ = 0◦), the
number of stable and safe conditions is approximately the same as the number of stable and
unsafe conditions. For polar conditions, then, it is more difficult to obtain stable orbits than
in the equatorial case, but the possible orbits are more probably safe. Besides, it must be
specified that for polar orbits the region close to the Moon presents both safe and unsafe
points, with the safe ones located along the Earth–Moon direction. Finally, for a fixed value
of the angle γ = 90◦ it is possible to investigate the evolution of motion for increasing
values of the angle δ in the definition range [0◦, 90◦]. Integrating the equations of motion for
a 30 days time interval, the results in Fig. 24 are obtained.

As in the previous case, the region close to the Moon, which corresponds to low altitude
orbits, includes unsafe and safe points.

6 WSB and lunar low-energy transfers

Lunar WSB information can be used to design lunar transfers with stable capture. In this way,
it is possible to execute the circularization maneuver even after the first periselenium passage
or to have the required time to stabilize the trajectory with low-thrust propulsion systems.
Lunar low-energy transfers use the Earth–Sun WSB, in order to obtain a first �V to raise
the perigee to the lunar height, and Earth–Moon WSB to reach capture with the minimum
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Fig. 24 WSB safe zone for increasing values of the angle δ and γ = 90◦ (gray points)

Fig. 25 Capture conditions for
WSB lunar transfers

amount of energy. These transfers require a fine synchronization between the position of
the Moon and that of the Sun at the beginning of the transfer. These transfers are usually
studied to reach a low altitude periselenium of about 200 km with an extremely high capture
eccentricity of about e = 0.92 (Bellò et al. 2000; Circi et al. 2000). However, it is possible
to obtain low-energy transfers with eccentricity smaller than e = 0.92, raising the satellite
pericenter altitude rp along the Earth–Moon direction (Fig. 25), reducing in this way the total
�V required for the mission.

Figure 26 shows the performances of the lunar WSB transfers, obtained using the bicircu-
lar four body model. Note that small disks correspond to transfers with equatorial captures,
while crosses represent polar captures.
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Fig. 26 Performances for
low-energy transfers in terms of
r p and e

Fig. 27 Initial phase angle ϕ for
low-energy transfers in the
BRFBP
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Transfer time varies between 90 and 100 days, while the �Vc for the circularization maneu-
ver decreases considerably as the pericenter rises. As illustrated, for a fixed value of the peri-
center altitude, equatorial captures lead to smaller values of the eccentricity and, therefore,
to smaller values of the �Vc for circularization. Figure 27 shows the initial conditions for
the phase angle ϕ (Fig. 23), used for the transfers of Fig. 26.

Figure 28 shows the Jacobi constant value (C) for the satellites during the transfers illus-
trated in Fig. 26.

Note that the value of C is not constant due to the presence of the Sun. It is easily seen
that the transfers with equatorial capture have a greater value of C, hence equatorial captures
happen with a lower amount of energy than polar captures. Besides, for the same family
of capture, it is evident that the value of C rises for decreasing values of the periselenium
altitude and for increasing values of the capture eccentricity. This stresses how transfers with
low pericenter altitude and high capture eccentricity give the best results in terms of capture.
Figure 29 shows different capture trajectories for lunar WSB transfers.
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1934

2000

Fig. 28 Jacobi constant on low-energy trajectories

Fig. 29 Polar and equatorial
captures for WSB lunar transfers

As illustrated, the two families of curves are easily distinguishable. In particular, it is evi-
dent that equatorial captures happen with high values of the Jacobi constant and, therefore,
capture occurs in the vicinity of the L2 libration point, with a small opening of the zero
velocity curves.

In order to execute the circularization maneuver with low-thrust propulsion systems, it
is recommended that a stable capture in the WSB be obtained. Assuming that the desired
periselenium altitude is 15,000 km along the Earth–Moon line direction, Fig. 26 shows that,
for equatorial captures, the transfer must have a capture eccentricity of e = 0.5. Once the
WSB geometry is known, it is possible to determine if the capture orbit is stable or unstable,
that is if the spacecraft will cross the radial line l (ϑ) again performing a complete revolution
around the Moon. Figure 30 shows the structure of the WSB with e = 0.5.

As illustrated in Fig. 30, the selected point is out of the stable zone and, therefore, the
circularization maneuver has to be executed at the first periselenium passage. In this way,
it is not possible to take advantage of stable motion, which ensures that the spacecraft per-

123



100 D. Romagnoli, C. Circi

E

Fig. 30 WSB structure for equatorial orbits and eccentricity capture e = 0.5

Fig. 31 WSB lunar transfer
with stable capture orbit

forms at least one complete revolution around the Moon. This means that, if the motion of
the spacecraft is integrated forward in time from these conditions out of the stable region,
the trajectory will be unstable and an escape towards the L1 Lagrangian point will occur,
in agreement with Sect. 2. Note that if the line of apsides of the capture orbit is rotated by
30◦, the initially unstable point enters the stable region and, therefore, once the motion is
integrated forward in time from these new conditions the spacecraft performs at least one
complete revolution of the Moon. Hence, it is important to distinguish the dynamics of the
motion of the spacecraft before and after the capture. Figure 31 shows the lunar transfer made
with the new geometry obtained after the rotation of 30◦ of the line of apsides.

The new transfer geometry ensures stable capture conditions. Although the capture eccen-
tricity for the new conditions decreases from e = 0.5 to e = 0.48, changes in the geometry
of the WSB are negligible and the satellite is captured with stable conditions. In the case of
polar captures, in order to obtain a periselenium altitude of 15,000 km a capture eccentricity
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E

Fig. 32 WSB structure for polar orbits with capture eccentricity e = 0.6

Fig. 33 WSB lunar transfer
with stable capture orbit

e = 0.6 is needed (Fig. 26). Figure 32 shows the associated WSB structure. It is easily seen
that the spacecraft is in the unstable region.

As mentioned for the equatorial case, it is possible to rotate the line of apsides by 45◦ in
order to obtain a new geometry which leads to stable capture conditions. Figure 33 shows
the transfer associated with the new configuration.

Note that in order to realize the designed transfer, the capture eccentricity increases from
e = 0.6 to e = 0.62 but, as in the previous case, the related changes in the WSB structure
are negligible and, therefore, the spacecraft is in the stable region.
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7 Conclusion

The structure of the lunar WSB has been investigated using both the three and four body
models, in the plane and in the three-dimensional cases. Single and multiple stable/unstable
transitions have been considered to find the WSB for increasing values of the periselenium
altitude of the initial osculating orbit of the spacecraft. In the case of multiple transitions
it has been stressed that the extension of the capture zone is enlarged with respect to the
single transition definition, with the presence of four arms along the direction normal to the
Earth–Moon line. This behavior can be related to the action of the Earth gravity-gradient,
which removes or provides energy to the spacecraft and makes the motion stable or unstable,
respectively. For different values of the initial orbit eccentricity around the Moon, numerical
simulations showed that for increasing values of eccentricity the extension of the stable zone
decreases and becomes closer to the Moon, while the over all dimension of the arms remains
approximately the same. The analytical approximation based on the value of the Jacobi con-
stant, is very close to the numerical solution with one single transition. In fact, in this case
the information about the presence of the arms is totally lost. The influence of the lunar orbit
eccentricity and of the presence of the Sun does not affect a lot the WSB geometry, both in
the planar and in the three-dimensional case. The trajectory evolution after capture allowed
us to determine stable and safe trajectories, that is stable trajectories that avoid impacts with
the lunar surface. This study illustrated that stable polar captures are less in number com-
pared with the equatorial case but, at the same time, polar captures decrease the possibility of
collisions with the surface. Lunar low-energy transfers’ geometry and performance, in terms
of the �Vc required for the circularization maneuver, have been studied in the framework of
the bicircular four body problem for different values of the pericenter altitude. It has been
shown that equatorial captures with low pericenter altitude lead to minimum energy transfers.
Finally, the information about the structure of the WSB allowed us to design lunar low-energy
transfers with stable capture orbits.
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