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Abstract We prove the existence of infinitely many periodic solutions, with larger and
larger minimal period, accumulating onto elliptic invariant tori for (an “outer solar-system”
model of) the planar (N + 1)-body problem.

Keywords N -body problem · Periodic orbits · Nearly-integrable Hamiltonian systems ·
Lower-dimensional elliptic tori · Planetary N -body problem

Mathematics Subject Classification (2000) 37J45 (primary) · 70H08, 70F10 (secondary)

1 Introduction and results

The importance of periodic solutions in Hamiltonian systems was remarked by Poincaré:
“. . .ce qui nous rend ces solutions périodiques si précieuses, c’est qu’elles sont, pour ainsi
dire, la seule brèche par où nous puissons essayer de pénétrer dans une place jusqu’ici réputée
inabordable. . .”.

Poincaré also conjectured that periodic orbits approximate any trajectory: “. . .voici un
fait que je n’ai pu démontrer rigoureusement, mais qui me parait pourtant très vraisemblable.
Étant données des équations de la forme définie dans1 le n. 13 et une solution particulière
quelconque de ces équations, on peut toujours trouver une solution périodique (dont la période
peut, il est vrai, être très longue), telle que la différence entre les deux solutions soit aussi
petite qu’on le veut, pendant un temps aussi long qu’on le veut.”

1 Formula no. 13 mentioned by Poincaré is the Hamilton’s equation.
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350 L. Biasco, F. Coglitore

A partial answer to this conjecture was given in Pugh and Robinson (1983), where it is
proved that periodic orbits are dense in any regular and compact energy surface, generically
in the C2 category. Anyway, the conjecture is still open for given systems, in particular for
the many-body problem.

As an intermediate step towards this conjecture, one may try to find periodic orbits approa-
ching invariant manifolds. Periodic orbits accumulating on elliptic equilibria and on elliptic
periodic orbits were constructed in Birkhoff and Lewis (1933), while Conley and Zehnder
(1983) provided periodic orbits accumulating on maximal KAM tori.

Recently an analogous result has been proved for elliptic tori2 of any intermediate dimen-
sion 2 ≤ k ≤ n − 1:

Theorem 1.1 (Berti et al. 2004) Under suitable non-degeneracy and non-resonance as-
sumptions between the linear and elliptic frequencies, there are infinitely many periodic
orbits, whose minimal period goes to infinity, accumulating on (lower-dimensional) elliptic
invariant tori of Hamiltonian systems.

The proof of the above theorem is based on a Lyapunov–Schmidt reduction that resembles
the method used in Moser (1976) (see also Moser 1977). The non-degeneracy and non-
resonance assumptions are used to solve the range equation by the Fixed Point Theorem,
then the kernel (or bifurcation) equation is solved by variational arguments.

It must be remarked that one of the main motivations for studying this kind of problems
is Celestial Mechanics (indeed Poincaré formulated the above conjecture in his treatment of
the three-body problem).

In Biasco et al. (2003) it is proved that the spatial planetary three-body problem has, for
small values of the parameter εmeasuring the ratio between the masses of the two planets and
the mass of the star, two-dimensional elliptic invariant tori, provided the osculating Keplerian
major semi-axes belong to a two-dimensional set of density close to one (as ε tends to zero).

In Berti et al. (2004) it is showed that the abstract Theorem 1.1 can be applied to the
three-body problem, namely that, for ε small enough, there exist infinitely many periodic
solutions, with larger and larger minimal period, accumulating onto the two-dimensional
elliptic invariant tori found in Biasco et al. (2003).

Actually the Poincaré’s “periodic orbits of second kind” (see Poincaré 1982) and Fejoz’s
generalization away from nearly circular ellipses (see Féjoz 2002) also fall into this category
(in the planar case).

Elliptic tori for the many-body problem have been considered in Biasco et al. (2006). In
particular that paper focuses on a “caricature of the outer solar system”. Since in the following
we will study the same model, we are going to describe it in details.

Let us consider N + 1 “bodies” P0, . . . , PN mutually interacting through gravitational
attraction. Such bodies are supposed to lie on a fixed plane (planar case). Moreover, we
consider the planetary case, where one of the bodies, for instance P0 (the “Sun”), has mass
much greater than that of the other ones (the “planets”). Denoting by mi the mass of the i th
body, we assume that, for a small parameter ε,

mi = εµi , i = 1, . . . , N , 0 < ε < 1, (1)

where µi are constants (of order 1 in ε).
The useful feature of the planetary problem is that one can, in first approximation, neglect

the (small) forces between the planets and consider only the N decoupled two-body systems

2 We recall that a lower-dimensional invariant torus is called elliptic, or linearly stable, if the linearized system
along the torus possesses purely imaginary eigenvalues. The dynamics on the torus is described by the linear
frequencies, while the dynamics around the torus is described by the elliptic (or normal) frequencies.
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formed by the Sun and the i th planet. As well known from Kepler’s laws, for suitable initial
data, each planet will revolve on a ellipse around the Sun. Thus, for all i = 1, . . . , N , at any
given instant, we can define the osculating ellipse associated to the planet Pi as the Keplerian
orbit given by the solution of the two-body problem (P0, Pi ), with initial data given by the
positions and the velocities of P0 and P1 at that instant. Of course, such ellipses describe the
motions of the full (N + 1)-body problem only approximately; nevertheless, they provide a
nice set of coordinates allowing, for example, to describe the true motions in terms of the
eccentricities ei and the major semi-axes ai of the osculating ellipses.

We focus our attention on a planetary planar model with planets evolving from phase
points corresponding to well separated nearly-circular ellipses (with eccentricities ei � 1);
here “well separated" means that (renumbering the planets according to their positions)

0 < ai < θ ai+1, 1 ≤ i ≤ N − 1. (2)

for a suitable constant 0 < θ < 1.
We will assume that two planets (Jupiter and Saturn) have mass considerably bigger than

the other ones; besides, the two big planets are supposed to have an orbit which is internal
with respect to the orbits of the small planets (Uranus, Neptune. . .). Precisely, we will assume
for concreteness that, for some m0 < µ̄i < 4m0,

µi = µ̄i for i = 1, 2 ,
(3)

µi = δ µ̄i for i = 3, . . . , N , 0 < δ < 1.

The reason for considering this model is that it makes possible to compute asymptotically the
eigenvalues of the linearized secular dynamics (we will recall them in Proposition 4.1 below).
Then, one can directly prove that the (Melnikov) non-resonance condition, needed to apply
elliptic KAM theory, is satisfied. Accordingly, Biasco et al. (2006) shows, for ε small and
for a large set of semi-axes, the existence of quasi-periodic orbits with small eccentricities
filling up N -dimensional invariant elliptic tori. Such orbits can be seen as continuations of the
“limiting” circular trajectories of the system obtained by neglecting the mutual interactions
among the planets.

In this paper we show how Theorem 1.1 can be applied to the (N + 1)-body problem
considered in Biasco et al. (2006), namely we obtain the following result (for a more precise
formulation see Theorem 5.5):

Theorem 1.2 For ε small enough, there exist infinitely many periodic solutions of increasing
minimal period, accumulating onto the N-dimensional elliptic invariant tori of the (N + 1)-
body problem considered in Biasco et al. (2006).

Theorem 1.1 works under several different non-resonance hypotheses (see Theorem 2.1 of
Berti et al. (2004)). The simplest one requires that the dimension of the elliptic torus is equal
to two (or smaller); so, in the case of the three-body problem the non-resonance hypothe-
sis is automatically satisfied. Anyway, this is not our case (when N ≥ 3). An alternative
non-resonance hypothesis of Theorem 2.1 is that the vector formed by the linear and elliptic
frequencies is non-resonant at any order. Proving this fact for the (N+1)-body problem is dif-
ficult3 since the N -dimensional linear frequencies and the N -dimensional elliptic frequencies
do not vary independently, depending only on N parameters (the N major semi-axes).

3 By the KAM analysis used to prove the persistence of elliptic tori one only has that the “second order
Melnikov condition” holds (see (49) below).
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Fig. 1 The periodic orbits of Theorem 1.2 in the case N = 3. The picture is drawn in an inertial frame. The
star P0, due to its huge mass, is almost at rest, the bigger planets P1 and P2, and the smaller planet P3 revolve
on periodic orbits close to nearly circular ellipses

To overcome this problem we first prove that Theorem 1.1 still holds assuming that the
vector of the linear and elliptic frequencies is non-resonant only at a (large but) finite order
(see Theorem 2.1 below). Then, through a careful handling of the asymptotics in Biasco et al.
(2006) (see Proposition 4.1) and exploiting the analytic properties of the involved functions,
we will manage to find a subset of osculating major semi-axes on which the vector of the
linear and elliptic frequencies of the (N + 1)-body model we are considering is indeed
non-resonant up to a suitable (large) finite order. Furthermore, the measure of the set of
“discarded” semi-axes is proved to be polynomially small with respect to the perturbative
parameters.

The paper is organized as follows: In Sect. 2 we present our modified version of Theorem
1.1. In Sect. 3 we prove a result about the measure of sub-level-sets of (non-identically-
vanishing) real-analytic functions of several variables, that will be used in estimating the
measure of the set of non-resonant semi-axes. In Sect. 4 we recall some results about the
model of the (N + 1)-body problem introduced (Biasco et al. 2006); we also add some
useful estimates. In Sect. 5 we finally prove that the non-degeneracy and non-resonance
hypotheses of the abstract theorem of Sect. 2 are fulfilled by the (N + 1)-body problem
we are considering.

A preliminary version of some results contained in this paper can be found in Coglitore
(2007). The result stated in theorem 1.2 has been announced in Biasco and Valdinoci (2008).
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2 Periodic orbits close to elliptic tori

We present the abstract result (Theorem 2.1) about the existence of periodic solutions, with
larger and larger minimal period, accumulating onto elliptic invariant tori of Hamiltonian
systems.

Following the notation in Berti et al. (2004), let us consider a Hamiltonian of the form

H∗(I∗, ϕ∗, Z∗, Z∗) = ω · I∗ + �Z∗ · Z∗ +
∑

2|k|+|a+a| ≥ 3

R∗
k,a,a(ϕ∗)I

k∗ Za∗ Z
a
∗ , (4)

where (I∗, ϕ∗) ∈ R
n × T

n are action-angle variables and (Z∗, Z∗) ∈ C
2m are called the

normal (or elliptic) coordinates. The phase space R
n × T

n × C
m × C

m is equipped with the
symplectic form dI∗ ∧ dϕ∗ + i d Z∗ ∧ d Z∗.
ω ∈ R

n is the vector of “linear frequencies” and � := diag(�1, . . . , �m) is the m × m
diagonal matrix4 of the “elliptic frequencies”. This denomination comes by the fact that the
Hamilton’s equations given by H∗,

İ∗ = −∂ϕ∗H∗, ϕ̇∗ = ∂I∗H∗, Ż∗ = i∂Z∗H∗, Ż∗ = −i∂Z∗H∗, (5)

admit the elliptic invariant torus

T :=
{
(I∗, ϕ∗, Z∗, Z∗) ∈ R

n × T
n × C

2m
∣∣∣ I∗ = 0, Z∗ = Z∗ = 0

}

supporting the flow t → (0, ϕ∗0 + ωt, 0, 0).
The functions R∗

k,a,a(ϕ∗) can be expanded in Fourier series as

R∗
k,a,a(ϕ∗) =

∑

�∈Zn

R∗
k,a,a,� ei�·ϕ∗ . (6)

Note that, in order to let H∗(I∗, ϕ∗, Z∗, Z∗) be real-analytic, it must necessarily be

R∗
k a,a,� = R∗

k,a,a,−�. (7)

The frequency vector (ω,�) := (ω1, . . . , ωn,�1, . . . , �m) is assumed to satisfy the
“second order Melnikov non-resonance condition”

∣∣ω · � + � · h
∣∣ ≥ γ

1 + |�|τ , ∀ � ∈ Z
n, ∀ h ∈ Z

m, |h| ≤ 2, (� , h) 	= (0, 0), (8)

for some positive constants γ, τ ∈ R. This implies that the linear frequency vector ω is
rationally independent (actually Diophantine), while the whole frequency vector (ω,�) can
meet some resonance relations.

We define the symmetric “twist” matrix R ∈ Mat(n × n,R)

Ri i ′ := (1 + δi i ′) R∗
ei+ei ′ ,0,0,0

−
∑

1≤ j≤m

∑

�∈Zn

1

ω · �+� j

(
R∗

ei ,e j ,0,� R∗
ei ′ ,0,e j ,−� + R∗

ei ,0,e j ,−� R∗
ei ′ ,e j ,0,�

)
, (9)

4 In the sequel, we will often identify the diagonal matrix � with the vector (�1, . . . , �m ) ∈ R
m without

further specifications. The expression �Z∗ · Z∗ in (4) denotes
∑

1≤ j≤m
� j Z∗ j Z∗ j .
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where R∗
k,a,a,� are the Taylor-Fourier coefficients introduced in (6), and δi i ′ is the classical

Krönecker symbol. We also define the matrix Q ∈ Mat(m × n,R) as

Q j i := R∗
ei ,e j ,e j ,0 −

∑

1≤i ′≤n

∑

�∈Zn

�i ′

ω · �+� j

×
(

R∗
ei ,e j ,0,� R∗

ei ′ ,0,e j ,−� + R∗
ei ,0,e j ,−� R∗

ei ′ ,e j ,0,�

)
−

∑

1≤ j ′≤m

∑

�∈Zn

1

ω · �+� j ′

×
(

R∗
0,e j ,e j+e j ′ ,−� R∗

ei ,e j ′ ,0,� + R∗
0,e j+e j ′ ,e j ,�

R∗
ei ,0,e j ′ ,−�

)
. (10)

We now state the aforesaid theorem concerning the existence of periodic orbits close to
elliptic tori. First, let’s give a last definition: for l,M ∈ N we denote the set of the vectors in
Z

l having norm less than M by

Z
l
M :=

{�k ∈ Z
l : 0 < |�k|1 ≤ M

}
. (11)

Theorem 2.1 Given a Hamiltonian of the form (4), let the frequency vector (ω,�) satisfy
the second order Melnikov non-resonance condition (8) for some positive constant γ, τ ∈ R.
Let R and Q be the matrices defined in (9) and (10), and

L := max
1≤i≤m

∑

1≤ j≤n

∣∣(QR−1)i j
∣∣ . (12)

Assume the “twist” condition det R 	= 0 and that the frequency vector (ω,�) is non-resonant
up to a sufficiently high order, i.e.

(ω,�) · �k 	= 0 ∀�k ∈ Z
n+m
M , (13)

where M = M(n,m, L) ∈ N is a suitable constant. Then ∃ η0 > 0 such that ∀η ∈ (0, η0]
there exists an open set of periods�η ⊂ [ 1

η2 ,+∞) such that ∀ T ∈ �η there exists a vector

of “shifted linear frequencies” ω̃ = ω̃(T ) ∈ R
n,with ω̃T ∈ 2πZ

n, |ω̃−ω| ≤ const η2 , such
that the Hamiltonian system (5) admits at least n geometrically distinct T -periodic solutions
�η(t) =

(
I∗η(t), ϕ∗η(t), Z∗η(t), Z∗η(t)

)
satisfying

(i) sup
t∈R

(|I∗η(t)| + |Z∗η(t)| + |Z∗η(t)|
) ≤ const η2,

(i i) sup
t∈R

|ϕ∗η(t)− (ϕ∗η(0)+ ω̃t)| ≤ const η.

In particular, the closure of the family of periodic orbits �η, η ∈ (0, η0], contains the elliptic
torus T := {I∗ = 0 , ϕ∗ ∈ T

n , Z∗ = Z∗ = 0}.
Moreover the minimal period Tmin of �η satisfies Tmin ≥ const T 1/(τ+1).

Remark 2.2 Theorem 1.1 of Berti et al. (2004) holds under various non-resonance hypo-
theses, in particular if (13) is satisfied for all �k ∈ Z

n+m . Actually in Berti et al. (2004) it is
suggested that the same result still holds if the weaker condition (13) is satisfied (see p. 97
of Berti et al. (2004)). Here we prove it.

The proof of Theorem 2.1 is easily obtained adapting the arguments of Berti et al. (2004),
that we will briefly recall here for completeness. Then we will focus on the new part of the
proof, which consists in finding the set of the “admissible periods” (see Lemma 2.5 below).

Sketch of the proof of Theorem 2.1: First of all, as we are interested in the region of
phase space near the torus T , a small rescaling parameter η > 0 measuring the distance
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Periodic orbits accumulating onto elliptic tori 355

from T is introduced. Then, since (ω,�) satisfies the second order Melnikov non-resonance
conditions (8), in view of an averaging procedure, the Hamiltonian H∗ is casted, in a suitable
set of coordinates (I, φ, z, z) ∈ R

n × T
n × C

2m , and sufficiently close to the torus T , in a
small perturbation of the integrable Hamiltonian

Hint := ω · I + η2

2
RI · I +�zz + η2QI · zz.

The Hamiltonian system generated by Hint possesses the elliptic tori T (I0) := {I =
I0, φ ∈ T

n, z = z = 0}. The torus T (I0) supports the linear flow t → (I0, φ0 + (ω +
η2RI0)t, 0, 0), whereas on the normal space the dynamic is described by ż = i(� +
η2QI0)z, ż = i(�+η2QI0)z. ω̃ = ω+η2RI0 and �̃ = �+η2QI0 are called respectively
the vector of the “shifted linear frequencies” and of the “shifted elliptic frequencies”.

By the “twist condition” det R 	= 0 the system generated by Hint is properly nonlinear. In
particular, such condition ensures that the shifted linear frequencies ω̃ vary with the actions
I0. Hence, it is always possible to find completely resonant frequencies

ω̃ = 1

T
2πk ∈ 1

T
2πZ

n, (14)

for some T : in such case, T (I0) is a completely resonant torus supporting the family of
T -periodic motions P := {I (t) = I0, φ(t) = φ0 + ω̃t, z(t) = z(t) = 0}.

Following (Berti et al. 2004), we define I0 := I0(T ) in dependence on the “1-dimensional
parameter” T in such a way that (14) is identically satisfied: for T ≥ 1/η2 we set

I0 := I0(T ) := − 2π

η2T
R−1

〈ωT

2π

〉
, (15)

k := k(T ) = ωT

2π
−
〈ωT

2π

〉
, (16)

where 〈(x1, . . . , xn)〉 := (〈x1〉, . . . , 〈xn〉) and the function 〈·〉 : R → [−1/2, 1/2) is defined
as 〈x〉 := x for x ∈ [−1/2, 1/2) and it is 1-periodically extended for x ∈ R.

With the choices (15), (16),

ω̃T = ωT + η2RI0(T )T = 2πk ∈ 2πZ
n, (17)

and then (14) holds. In addition, T ≥ 1/η2 �⇒ I0(T ) = O(1).
The idea of the proof is to find periodic solutions for the Hamiltonian system generated by

H∗ bifurcating from the ones of Hint. Nevertheless, in general, the family P will not persist
in its entirety for the complete Hamiltonian system due to resonances among the oscillations.
The key point to continue some periodic solutions of the family P is to choose properly the
“1-dimensional parameter” T : the period T and the “shifted elliptic frequencies” �̃(I0(T ))
must satisfy the following non-resonance property:

M := M(T ) := I dm − e i�̃T is invertible.5 (18)

Before discussing this condition, we conclude the proof using a Lyapunov-Schmidt
reduction. First, (18) and the “twist condition” allow to solve the range equation by means
of the Contraction Mapping Theorem. Roughly, by these assumptions the manifold P is
“non-degenerate”, i.e. the only T -periodic solutions of Hint , close to P , are the set P; heu-
ristically, this implies, by the Implicit Function Theorem, the existence, for small η > 0,
of a manifold of T -periodic solutions of the Hamilton’s equations induced by H . Then, the

5 Here �̃ := diag (�̃1, . . . , �̃m ).
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bifurcation equation given by the previous Lyapunov-Schmidt reduction is written in a varia-
tional form, so that the solutions are seen as critical points of a suitable “reduced Hamiltonian
action functional”. Finally, by Ljusternik-Shnirelmann Category Theory (see for example
Ambrosetti 1992), one manages to find at least n geometrically distinct T -periodic solutions
for the system. ��

We now discuss (18) in full details. First, note that

M is invertible ⇐⇒ �̃ j T /∈ 2πZ, ∀ j = 1, . . . ,m (19)

and (recalling (15))

∣∣M−1
∣∣ = 1

min
1≤ j≤m

∣∣1 − e i�̃ j T
∣∣
≤ 2

min
1≤ j≤m

dist
(
�̃ j T, 2πZ

) . (20)

We now show how, assuming condition (13), it is possible to find an open set of “non-
resonant” periods T : this could be done, as was already suggested in Berti et al. (2004), by
means of “ergodization” arguments. We enter in details:

To begin we deal with the notion of ergodization time, that will play an important role in the

proof. Let’s set T
l := R

l

Zl . Given a vector ξ ∈ R
l , it is well known that, if ξ ·k 	= 0 ∀k ∈ Z

l
�{0},

then the trajectories of the linear flow {ξ t+P}t∈R are dense on T
l for any initial point P ∈ T

l .
It is also intuitively clear that the trajectories of the linear flow {ξ t + P}t∈R will make an
arbitrarily fine d-net (d > 0) if ξ is resonant only at a sufficiently high order, namely if
ξ · �k 	= 0, ∀�k ∈ Z

l
M for some large enough M depending on d .

We now make more precise and quantitative these considerations.

Definition 2.3 Let ξ ∈ R
l and d > 0. The ergodization time Terg(ξ, d) required to fill T

l

within d is

Terg(ξ, d) := inf
{

t > 0
∣∣∣ ∀x ∈ R

l , dist∞ (x, [0, t]ξ + Z
l) ≤ d

}
, (21)

where dist∞ denotes the distance induced by the sup-norm in R
l .

As usual, we set

Terg(ξ, d) := +∞ if
{

t > 0
∣∣∣ ∀x ∈ R

l , dist∞ (x, [0, t]ξ + Z
l) ≤ d

}
= ∅.

The following result is proved in Berti et al. (2003) (Theorem 4.1):6

Lemma 2.4 Let l ∈ N. There exist a positive constant Cl such that ∀d > 0, if ξ ∈ R
l satisfies

the non-resonance condition

ξ · �k 	= 0, ∀�k ∈ Z
l
M with M :=

⌊
Cl

d

⌋
, (22)

then the ergodization time Terg(ξ, d) is finite.

Now we finally explain how to achieve condition (18) on an open set of periods; the following
lemma is the analogue of Lemma 4.1 of Berti et al. (2004).

Lemma 2.5 Let L be as in (12), d := d(L) := min
( 1

4 ,
1

8L

)
, and Te := Terg ((ω,�), d).

Suppose that the frequency vector (ω,�) satisfies the non-resonance condition (13) of

6 For x ∈ R+ we denote by �x� the so called “floor function” (or integer part) of x , that is the largest integer
less than or equal to x .
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Theorem 2.1 with M :=
⌊

Cn+m
d

⌋
= �Cn+m max(4, 8L)� , Cn+m being the constant defi-

ned in Lemma 2.4. Then, ∀t0 > 0, there exists an open interval J ⊂ [ t0 t0 + 2πTe ] such
that

∥∥(M(T ))−1
∥∥ ≤ 3 , ∀ T ∈ J . (23)

Proof Let t0 > 0. By Lemma 2.4 applied with ξ = (ω,�), l = n + m, d = d(L) , Te is
finite. Moreover, by definition of ergodization time in (21), there exists a time T0 = T

2π ∈[ t0
2π ,

t0
2π + Te

]
such that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dist

(
� j T0, Z + 1

2

)
≤ d ≤ 1

4
∀ j = 1, . . . ,m

dist
(
ω j T0, Z

) ≤ d ≤ 1

8L
∀ j = 1, . . . ,m.

(24)

Noting that dist
(
� j T0 , Z + 1

2

) ≤ 1
4 ⇐⇒ dist

(
� j T0, Z

) ≥ 1
4 , we get by (15)

dist
(
�̃ j (T )T0, Z

) = dist
(
� j T0 − (QR−1) j < ωT0 >, Z

)

≥ 1

4
− max

1≤ j≤m

∣∣(QR−1) j
∣∣
1

1

8L
≥ 1

8
.

The existence of J follows by continuity (of x �→ |〈x〉|), (20) and 2
3 <

2π
8 . ��

3 Sub-level-sets of real-analytic functions

In this section we provide an estimate on the measure of the sub-level-sets of (non-identically-
vanishing) real-analytic functions of several variables. Such result will be used in Sect. 5.2 to
control the size of the “discarded” subset of “semiaxes” where the non-resonance condition
(13) is not met (see Proposition 4.3).

The statement we want to prove is the following:

Proposition 3.1 Let D ⊂ R
N be nonempty, open, connected. Let f : D −→ R be a real-

analytic function that does not vanish identically. Let us define the sub-level-sets

D f (γ ) :=
{

x ∈ D : | f (x)| ≤ γ
}
.

Then, for any compact C ⊂ D there exists α > 0 such that

meas
(
D f (γ ) ∩ C

) = O
(
γ α
)
. (25)

The previous proposition directly follows by compactness and by the following result on
balls.

Lemma 3.2 Let D ⊂ R
N be not empty, open, connected. Let f : D −→ R be a non-

identically-vanishing real-analytic function. Then, for any x0 ∈ D, there exist r, α > 0 such
that Br (x0) ⊂ D and

meas
(
D f (γ ) ∩ Br (x0)

) = O
(
γ α
)
.

In order to prove Lemma 3.2, we need the following result from the theory of functions of
several complex variables, due to Weierstraß (see, e.g. Griffiths and Harris (1978)).
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358 L. Biasco, F. Coglitore

Theorem 3.3 (Weierstraß Preparation Theorem) Let f (z, w) = f (z1, . . . , zN−1, w) be a
holomorphic function defined in a neighborhood of the origin of C

N , and assume that f
does not vanish identically on the w-direction, i.e. ∃d ∈ N such that ∂ j

w f (0, 0) = 0 for any
1 ≤ j < d, but ∂d

w f (0, 0) 	= 0. Then, in some neighborhood of the origin f can be written
uniquely as f = g · h, where g is a Weierstraß polynomial of degree d in w, i.e.

wd + a1(z)w
d−1 + · · · + ad(z), a j (0) = 0 , ∀ 1 ≤ j < d,

and h = h(z, w) is holomorphic with h(0, 0) 	= 0.

We also need the following simple result.

Lemma 3.4 Let g(w) = wd + a1w
d−1 + · · · + ad , ai ∈ C. Then

meas
({
w ∈ R : |g(w)| ≤ γ

}) ≤ 2d γ 1/d .

Proof Let w1, . . . , wd ∈ C be the (not necessarily distinct) roots of the polynomial g, so
that g(w) = (w − w1)(w − w2) . . . (w − wd). For r > 0

∈ R \
[

d⋃

i=1

(Re wi − r,Re wi + r)

]
�⇒ |g(w)| ≥ rd .

Equivalently, |g(w)| ≤ γ �⇒ w ∈
d⋃

i=1

(
Re wi − γ 1/d ,Re wi + γ 1/d

)
and clearly the

measure of this last set is at most 2d γ 1/d . ��
Proof of Lemma 3.2 Up to a translation and a rotation we can suppose that x0 is the origin
and that f is not identically vanishing in the last coordinate. So we are in a position to apply
Theorem 3.3: there exists r > 0 such that Br (0) ⊂ D and f = g · h on Br (0), where g is
a Weierstraß polynomial of degree d ≥ 1 and h is holomorphic with inf Br (0) |h| =: κ > 0.
Then,7 by Fubini’s theorem and Lemma 3.4,

meas N
(
D f (γ ) ∩ Br (0)

) ≤ meas N
(
Dg(γ /κ) ∩ Br (0)

)

≤ 2d(γ /κ)1/d × meas N−1

(
B N−1

r (0)
)
.

The statement follows taking α := 1/d . ��
We now define a non-resonance condition up to order M for real-analytic functions, that

will be appropriate for our purpose:8

Definition 3.5 Let M ∈ N. A real-analytic function g = (g1, . . . , gl) : D ⊂ R
N −→ R

l is
said to be non-resonant up to order M if

�k · g = k1 g1 + · · · + kl gl 	≡ 0 , ∀�k ∈ Z
l
M . (26)

The next result, that is a quite direct consequence of Proposition 3.1, has a fundamental role
in the proof of Proposition 5.4:

7 We denote by meas j the j-dimensional Lebesgue measure on R
j and by B j

r (0) the j-dimesional ball of

center the origin of R
j and radius r . For brevity Br (0) = B N

r (0).
8 Recall the definition of the set Z

l
M in (11).
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Proposition 3.6 Let g : D −→ R
l be a real-analytic function, with D ⊂ R

N not empty open
and connected. Fix M ∈ N and let

DM
g (γ ) :=

{
x ∈ D : |�k · g(x)| ≤ γ for some �k ∈ Z

l
M

}
. (27)

If g is non-resonant up to order M, then for any compact C ⊂ D

meas
(

DM
g (γ ) ∩ C

)
= O

(
γ α
)

for some α > 0. (28)

Proof For any �k belonging to the finite set Z
l
M , let f�k := �k · g. Since g is non-resonant up to

order M , every f�k is non-identically-vanishing. Hence, by Proposition 3.1 there exist positive
numbers α�k such that

meas
(

D f�k (γ ) ∩ C
)
= O

(
γ α�k

)
, ∀�k ∈ Z

l
M .

Since by definition (27)

DM
g (γ ) =

⋃

�k ∈Z
l
M

D f�k (γ ) ,

we conclude setting α := min�k∈Z
l
M
α�k . ��

For the sake of completeness, we finally recall the Rüßmann non-degeneracy condition
for analytic functions (see Rüssmann 1990).

Definition 3.7 A real-analytic function g = (g1, . . . , gl) : D ⊂ R
N −→ R

l is called
Rüßmann non-degenerate (or, simply, non-degenerate) if

c1 g1 + · · · + cl gl 	≡ 0 ∀ (c1, . . . , cl) ∈ R
l
� {�0} , (29)

i.e. the range g(D) of g is not lying in any vectorial hyperplane of R
l .

Remark 3.8 As it is obvious from Definition 3.5 and Definition 3.7, the Rüßmann
non-degeneracy condition implies the non-resonance condition up to order M , ∀M ∈ N.

4 The planetary planar (N + 1)-body problem

In this section we recall the result from Biasco et al. (2006) concerning the existence of
N -dimensional invariant elliptic tori (supporting quasi-periodic orbits) for the planetary pla-
nar (N + 1)-body model described in the introduction. The scheme of the proof in Biasco
et al. (2006) is as follows.

First of all the classical Hamiltonian formulation of the problem is provided. The planetary
(N+1)-body problem is viewed as a nearly-integrable Hamiltonian system in the perturbative
parameter ε; the integrable limit (ε = 0) consists just of the N decoupled two-body systems
given by the Sun and the i th planet.

In Poincaré (1905), carrying on the work of Delaunay, introduced a set of analytic symplec-
tic variables for the two-body system; using a planar version of this classical result, planar
Poincaré variables (�i , λi , ηi , ξi ) ∈ (0,∞) × T × R × R, i = 1, . . . , N for each (Sun,
i th planet)-system are considered. Here we only recall (for more details see, for example,
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Appendix A of Biasco et al. (2006) or Chenciner (1988) where the non-planar case is consi-
der) that the action �i is related to the major semi-axis ai of the osculating ellipse for the
i th planet through

Mi := 1 + ε µi

m0
, mi := µi

m0

1√
Mi
, σi :=

(
µi

m0

)3 1

Mi
, ai := �2

i

m2
i

. (30)

In planar Poincaré variables the planetary (N + 1)-body Hamiltonian is

H(�, λ, η, ξ) = H0(�)+ H1(�, λ, η, ξ) , with H0(�) := −1

2

N∑

i=1

σi

�2
i

,

H1 = O(ε), (31)

and symplectic structure
∑

1≤i≤N

(d�i ∧ dλi + dηi ∧ dξi ).

As customary, the variables λ may be regarded as “fast angles”; by averaging theory one
can neglect, in suitably non-resonant regions of the phase space, the fast-angle dependence
up to high order in ε : in first approximation the motions are governed by the averaged
Hamiltonian.9

The λ-average of H1 is an even function of (η, ξ). Hence, we may split the perturbation
function as

H1 = H1 + H̃1, (32)

with

H1(�, η, ξ) :=
∫

TN
H1

dλ

(2π)N
,

∫

TN
H̃1 dλ = 0. (33)

Furthermore, H1 may be written as

H1(�, η, ξ) = H1,0(�)+ H1,2(�, η, ξ)+ H1,∗(�, η, ξ), (34)

where H1,0 := H1(�, 0, 0), H1,2 is the (η, ξ)-quadratic part of H1, while H1,∗ is the
“remainder of order four”:

|H1,∗(�, η, ξ)| ≤ const |(η, ξ)|4.
Moreover

H1,2 = 1

2
(Qη · η + Qξ · ξ) , (35)

Q being a real, symmetric (N × N )-matrix.
By the previous expression, the secular Hamiltonian system admits lower dimensional

elliptic invariant tori run by linear flows. The crucial fact, in order to apply elliptic KAM
theory and show that some of such motions (in particular those with Diophantine quasi-
periodic frequency) persist, consists in proving that the eigenvalues of the matrix Q are
non-degenerate in the sense that they are non-vanishing and distinct (see the “Melnikov
condition”in Theorem 4.1 of Biasco et al. 2006). Such non-degeneracy is checked (for δ and
ε suitably small) in Biasco et al. (2006), where, assuming the hypotheses (1) and (3) over the

9 The averaged Hamiltonian wil be also called secular, since physically it describes (looking at the first order
in ε) the slow variation along the centuries of Keplerian ellipses which changes their shapes under perturbations
due to gravitational interaction among the planets.
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masses of the planets, the asymptotics of the eigenvalues are explicitly computed through
direct algebraic calculations, yielding the following result.10

Proposition 4.1 There exists a (small) universal constant θ (depending only on the given
masses of the planet) such that for any compact set

A ⊂
{
(a1, . . . , aN )

∣∣∣ 0 < ai < θ ai+1 , i = 1, . . . , N − 1
}

there exist 0 < δ0 < 1 and 0 < ε0 < 1 such that for all 0 < δ < δ0 and 0 ≤ ε < ε0, the
eigenvalues {�̄1, . . . , �̄N } of the matrix Q are non vanishing and distinct and satisfy

�̄ j (a) = ε
(
�̄0

j (a)+ O
(√
δ, ε

))
, j = 1, 2,

(36)

�̄ j (a) = ε
(√
δ �̄0

j (a)+ O (δ, ε)
)
, 3 ≤ j ≤ N ,

where 0 < b < 1/2 is a suitable constant. Moreover the following asymptotics hold for

�̄0 := (�̄0
1, . . . , �̄

0
N ) :

{
(a1, . . . , aN )

∣∣∣ 0 < ai < ai+1, i = 1, . . . , N − 1
}
−→ R

N :

�̄0
1(a)=

3

4

√
µ̄1µ̄2

a3/2
2

(
a1

a2

)7/4
[

1 − 5

16

a1

a2
+ O

((
a1

a2

)2
)]

,

�̄0
2(a)=

3

4

√
µ̄1µ̄2

a3/2
2

(
a1

a2

)7/4
[

1 + 5

16

a1

a2
+ O

((
a1

a2

)2
)]

, (37)

�̄0
j (a)=

3

4

√
µ̄ j µ̄2

a3/2
j

(
a2

a j

)7/4
[

1 + O

((
a1

a2

)7/4
)
+ O

((
a2

a j

)2
)]

, 3 ≤ j ≤ N .

Remark 4.2 Proposition 4.1 can be obtained simply joining Eq. (3.50) of Biasco et al. (2006)
and the expressions in Remark 3.2 of Biasco et al. (2006).

Using the asymptotics in (36) and (37), and choosing small δ and ε, we can now achieve a
“preliminary” non-resonance result for the vector �̄ = �̄(a). This will be exploited in Sect. 5
as the starting point to check the non-resonance condition (13) and apply Theorem 2.1 to
the (N + 1)-body problem. We just give the statement here. The proof will be provided later
(Sect. 5.2).

Proposition 4.3 Fix M ∈ N. There exist positive constants α� and δ� < δ0 such that, for
every 0 < δ ≤ δ�, and 0 < ε ≤ ε�(δ) ≤ ε0 there exists a subset of semi-axes A� = A�(δ) ⊂
A, with

meas
(

A \ A�
) = O(δ α

�

) , (38)

such that
∣∣�̄(a) · K

∣∣ ≥ const ε δ3/4 , ∀K ∈ Z
N
M , ∀a ∈ A� . (39)

10 By (30) we will consider Q as a function of a = (a1, . . . , aN ) instead of �.
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Going on with Biasco et al. (2006) contents, let now θ , A�, δ� and ε� be as above. Fix now
0 < δ < δ�, which henceforth will be kept fixed. In the rest of the paper only ε is regarded
a free parameter: at the moment, ε is assumed not to exceed ε� but later will be required to
satisfy stronger smallness conditions.

In Biasco et al. (2006), several symplectic close-to-the-identity11 changes of variables are
performed,12 casting the Hamiltonian in the form

H̃(�̃, λ̃, η̃, ξ̃ ) = h0(�̃)+ 1

2

∑

1≤i≤N

�̃i (�̃)(η̃
2
i + ξ̃2

i )+ g̃0(�̃, η̃, ξ̃ )+ f̃0(�̃, λ̃, η̃, ξ̃ ),

(40)

with

h0 = H0 + O(ε), �̃i − �̄i = O(ε1+const), g̃0 = O
(
ε|(η̃, ξ̃ )|3

)
,

f̃0 = O(ε3). (41)

Then the Hamiltonian H̃ is written in a form suitable to apply (elliptic) KAM theory:
introducing translated variables y := �̃− p(a) and complex variables z, z̄, we define

H(y, ψ, z, z̄; a) := H̃
(

p + y, ψ,
z + z̄√

2
,

z − z̄

i
√

2

)
, (42)

where p = p(a), with pi := mi
√

ai (recall (30)), and the vector of semi-axes a is regar-
ded as a parameter; the symplectic form is now

∑N
j=1 dy j ∧ dψ j + i

∑N
j=1 dz j ∧ dz̄ j .

The Hamiltonian H is seen to have the form

H = N + P

where

N = e + ω · y +
N∑

j=1

� j z j z̄ j , e = e(a) := h0(p(a)), ω = ω(a) := h′
0(p(a)),

� = �(a) := �̃(p(a)) (43)

and P is a perturbation. The Hamiltonian H is real-analytic on

(y, ψ, z, z̄; a) ∈ Dr ,s × Ad̄ , (44)

where

(y, ψ, z, z̄) ∈ Dr ,s := B N
r2 × Ts × B2N

r ,

11 With respect to some positive power of ε.
12 In particular one performs first an averaging over the fast angles λ. To do that, one needs the frequency

vector, whose components are ∂�i H0 (�(a)) = √
Mi a−3/2

i , to be γ̄ -τ diophantine, with γ̄ := εb1 , up to

order K = εb2 (recall that a vector v ∈ R
N is γ̄ -τ diophantine up to order K if |v · k| ≥ γ̄ |k|−τ , ∀ |k| ≤ K ),

with 0 < b1 < 1/2 and 0 < b2 < ( 1
2 − b1)/(τ + 1). Since the above condition is equivalent to require that

the vector (. . . , a−3/2
i , . . .) is γ̄ -τ diophantine up to order K (recall that Mi = 1 + O(ε)), one can perform

the averaging for a belonging to a suitable set of semi-axes A = A(ε) ⊂ A (corresponding to diophantine
frequencies) verifying meas (A \ A) = O(εb1 ).
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with, for n ∈ Z, ρ > 0, Bn
ρ := {x ∈ C

n s.t. |x | < ρ} and T
n
ρ := {

z ∈ C
n
∣∣ Re z ∈

T
n, |Im z j | < ρ, ∀ 1 ≤ j ≤ n

}
, Ad̄ := {a ∈ C

N s.t. dist (a,A) < d̄}, for suitable

r := const ε 3/4, s := const , d̄ := const
√
ε, (45)

finally A = A(ε) ⊂ A is a suitable set of semi-axes such that the symplectic transformations
carried out in Biasco et al. (2006) hold (see footnote 12). We have

meas (A \ A) ≤ ε const . (46)

We can now state the KAM theorem on the conservation of elliptic tori.

Theorem 4.4 For ε small enough, let’s say ε < ε� for some 0 < ε� < ε�, there exists a
Cantor set A� = A�(ε) ⊂ A ⊂ A, with

meas
(

A \ A�
) = O(ε const ) , (47)

such that for any vector of semi-axes a ∈ A� it is possible to find a real-analytic symplectic
transformation

� : Dr/2, s/2 −→ Dr , s

casting the (N + 1)-body Hamiltonian H into the normal form

H∗(y∗, ψ∗, z∗, z∗; a) := H ◦ � = N∗(y∗, z∗, z∗ ; a) + R∗(y∗, ψ∗, z∗, z∗),
(48)

N∗ := e∗ + ω(a) · y∗ + �∗(a)z∗z∗, R∗ :=
∑

2|k|+|a+a| ≥ 3

R∗
kaa(ψ∗)yk∗ za∗za∗.

Moreover:
(i) the frequency vector (ω,�∗) = (ω,�∗)(a) meets the “second order Melnikov

non-resonance condition”
∣∣∣ω(a) · � + �∗(a) · h

∣∣∣ ≥ const ε

(1 + |�|τ ) , (49)

∀ � ∈ Z
n, ∀ h ∈ Z

n, |h| ≤ 2, (� , h) 	= (0, 0), ∀ a ∈ A�.

(ii) � has the form

y = y∗ + Y (y∗, ψ∗, z∗, z∗)

ψ = ψ∗ + X (ψ∗) (50)
z = z∗ + Z(ψ∗, z∗, z∗)

z = z∗ + Z(ψ∗, z∗, z∗)

where

Y :=
∑

2|k|+|a+a| ≤ 2

Ykaa(ψ∗)yk∗ za∗za∗, Z :=
∑

|a+a| ≤ 1

Zaa(ψ∗)za∗za∗, (51)

and, denoting by ‖ · ‖∗ := supDr/2, s/2
| · |,

‖Y‖∗, r2

s
‖X‖∗, r‖Z‖∗, r‖Z‖∗ ≤ const ε2. (52)
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(iii) the elliptic frequencies in the normal form satisfy
∣∣�∗(a) − �(a)

∣∣ ≤ const ε 3/2. (53)

In particular, ∀ a ∈ A�,

T := {y∗ = 0} × T
N × {z∗ = z∗ = 0}

is an N-dimensional elliptic invariant torus foliated by the quasi-periodic (Diophantine)
flows t → ψ∗ + ωt with frequency ω = ω(a).

Remark 4.5 The proof of Theorem 4.4 goes exactly as in Biasco et al. (2006): the main result
is achieved using the KAM Theorem of Pöschel (1989).

Actually, for our purpose it is more convenient to refer to the more detailed version of
the KAM Theorem of Pöschel (1989) stated in Theorem 5.1 of Berti et al. (2004); here the
form of the KAM transformation (Eqs. 50, 51) is provided. The (indispensable) estimates
(49) and (52) are obtained respectively from equations (119) and (123) of Berti et al. (2004),
choosing the involved parameters as in (45)13 and α = const ε. See again (Coglitore 2007)
for a detailed display of the proof.

Anyway, in Berti et al. (2004) no estimate on the final elliptic frequencies�∗ is provided:
the low number (m= 2) of elliptic directions in the three-body problem allows to apply a
result analogous to Theorem 2.1 without need to check the non-resonance condition (13)
(involving �∗). Instead, since we are interested in the N -body problem (with N ≥ 3), for
which the aforesaid original theorem of Berti et al. (2004) is no longer applicable, according
to Theorem 2.1 we do have to exclude resonances (up to a certain order) among the linear
and the elliptic frequencies.

To obtain (53) we have used the results contained in the paragraph called Estimates to
Theorem A on p. 37 of Pöschel (1989) (see also Eqs. 2.90, 2.101) of Coglitore (2007)).

5 Abundance of periodic solutions in the planetary planar (N + 1)-body problem

In this section we prove that, for ε and δ small enough and a varying in a suitable subset
of A (that will of course depend on ε and δ), the non-degeneracy “twist” condition and the
non-resonance condition (13) of Theorem 2.1 are fulfilled for the normal form Hamiltonian
of the planetary planar (N + 1)-body problem we have dealt with in Sect. 4. We could then
apply Theorem 2.1 in such setting proving our final result, see Theorem 5.5.

First of all we study the matrices R and Q.

5.1 Checking non-degeneracy condition

We check here the invertibility of the “twist” matrix R; at the same time, we control the
size 14 of |Q| and |R−1|.
13 Note that the particular choice of the “radius” r we have made in (45), namely r = const ε 3/4, is different
from the analogous one in Berti et al. (2004), that is r = const ε 1/2 ; this is tantamount to further narrowing
the domain of the Hamiltonian H . The reason why we did so is that by our setting we have managed to get
the estimate in (53). Instead, r ∼ ε 1/2, would give rise in (53) to a term O(ε), that would be completely
unuseless since, from (36), � ∼ ε.
14 The reason for doing this is that the matrices R and Q are involved in the definition of the constant L in
(12). As it will be clear in the sequel (see also Sect. 5.3), we need L to be uniformly bounded in ε.
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Proposition 5.1 For ε < ε� small enough, if R and Q are the matrices defined in (9) and
(10) associated to the planetary planar (N + 1)-body problem Hamiltonian H∗ in (48), then

det R 	= 0, |R−1| = O(1), |Q| = O(ε 1/2). (54)

Proof (Sketch: The definitions of matrices R and Q involve some Taylor-Fourier coefficients
R∗

k,a,a,� of the function R∗ appearing into the normal form (48). To estimate them, we
first obtain each R∗

k,a,a(ϕ∗) as a suitable partial derivative of the function H∗ evaluated in
(0, ψ∗, 0, 0); we could then write H∗ = H ◦�, as in Theorem 4.4, in order to estimate the
derivatives thanks to the special form of the canonical transformation � (while we know H
explicitly). Finally, making use of classical estimate on the Fourier coefficients of analytic
functions, we prove (54)).

From the normal form (48), by Taylor’s formula, it follows that:

R∗
ei+ei ′ ,0,0(ψ∗) = 1

1 + δ(i,i ′)
∂2 H∗

∂y∗i∂y∗i ′
(0, ψ∗, 0, 0),

R∗
ei ,e j ,0(ψ∗) = ∂2 H∗

∂y∗i∂z∗ j
(0, ψ∗, 0, 0),

R∗
ei ,0,e j

(ψ∗) = ∂2 H∗
∂y∗i∂z∗ j

(0, ψ∗, 0, 0), (55)

R∗
ei ,e j ,e j

(ψ∗) = ∂3 H∗
∂y∗i∂z∗ j∂z∗ j

(0, ψ∗, 0, 0),

R∗
0,e j ,e j+e j ′ (ψ∗) = 1

1 + δ( j, j ′)

∂3 H∗
∂z∗i∂z∗ j∂z∗ j ′

(0, ψ∗, 0, 0),

R∗
0,e j+e j ′ ,e j

(ψ∗) = 1

1 + δ( j, j ′)

∂3 H∗
∂z∗ j∂z∗ j ′∂z∗ j

(0, ψ∗, 0, 0).

So, defining

x := (x1, . . . , x3N ) := (y1, . . . , yN , z1, . . . , zN , z1, . . . , zN ) ,

x∗ := (x∗1, . . . , x∗3N ) := (y∗1, . . . , y∗n, z∗1, . . . , z∗N , z∗1, . . . , z∗n) ,

we are interested in partial derivatives of the form15

∂αH∗(x∗, ψ∗)
∂x∗

∣∣∣∣
(x∗,ψ∗)= (�0,ψ∗)

where α ∈ Z
3N is a multi-index with norm |α|1 = 2, 3.

We proceed by writing H∗(x∗, ψ∗) = H ◦ �(x∗, ψ∗), where�(x∗, ψ∗) is the symplectic
transformation given by Theorem 4.4 and H has been defined in (42).

15 Here and in the next few formulas there is a slight “misuse of notation”: we will usually write (x, ψ) and
(x∗, ψ∗) in place of (y, ψ, z, z) and (y∗, ψ∗, z∗, z∗).

123



366 L. Biasco, F. Coglitore

Using the “chain rule” for the derivatives of composite functions, we have

∂H∗
∂x∗i

(�0, ψ∗) =
∑

1≤a≤3N

∂H

∂xa

∂�a

∂x∗i
,

∂2 H∗
∂x∗i∂x∗ j

(�0, ψ∗) =
∑

1≤a,b≤3N

∂2 H

∂xa∂xb

∂�a

∂x∗i

∂�b

∂x∗ j
+

∑

1≤a≤3N

∂H

∂xa

∂2�a

∂x∗i∂x∗ j
,

∂3 H∗
∂x∗i∂x∗ j∂x∗l

(�0, ψ∗) =
∑

1≤a,b,c≤3N

∂3 H

∂xa∂xb∂xc

∂�a

∂x∗i

∂�b

∂x∗ j

∂�c

∂x∗l

+
∑

1≤a,b≤3N

∂2 H

∂xa∂xb

∂2�a

∂x∗i∂x∗ j

∂�b

∂x∗l

+
∑

1≤a,b≤3N

∂2 H

∂xa∂xb

∂2�a

∂x∗i∂x∗l

∂�b

∂x∗ j

+
∑

1≤a,b≤3N

∂2 H

∂xa∂xb

∂2�a

∂x∗ j∂x∗l

∂�b

∂x∗i

+
∑

1≤a≤3N

∂H

∂xa

∂3�a

∂x∗i∂x∗ j∂x∗l
, (56)

where the derivatives of the functions H and� are understood to be evaluated respectively at
(x, ψ) = �(�0, ψ∗) and at (x∗, ψ∗) = (�0, ψ∗) (and so will be in the sequel). We remark that
in the previous formulas, ψ∗ has been considered as a fixed parameter due to the particular
form of the symplectic transformation �; in fact (by (50)) ψ = ψ∗ + X (ψ∗) is independent
on x∗.

From (51) and (52) there follows:

|Y | ≤ const
P
α

= const ε 2,

∣∣∣∣
∂Y

∂(z∗, z∗)

∣∣∣∣ ≤ const
P
αr

= const ε 5/4, (57)

∣∣∣∣
∂Y

∂y∗

∣∣∣∣ ,

∣∣∣∣∣
∂(Z , Z)

∂(z∗, z∗)

∣∣∣∣∣ ,
∣∣∣∣

∂2Y

∂2(z∗, z∗)

∣∣∣∣ ≤ const
P
αr2 = const ε 1/2,

having made use of standard16 “Cauchy estimates” on the domain D2
r2 × T

2
s × D4

r , with

r = const ε 3/4, as in (45). The first and second order partial derivatives of Y, Z , Z not
appearing in (57), as well as the third order derivatives, are null.

From (42), that allows us to know H apart from O(ε) terms, we get:

∂H

∂xa

∣∣∣∣
�(�0,ψ∗)

=

⎧
⎪⎨

⎪⎩

σi

(J0i )3
+ O(ε) if a = i ≤ N

O(ε) otherwise

16 Cauchy estimates allow to bound n-derivatives of analytic functions on a set A in terms of their sup-norm
on larger domains A ⊂ A′ divided by dist (∂A, ∂A′)n .
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∂2 H

∂xa∂xb

∣∣∣∣
�(�0,ψ∗)

=

⎧
⎪⎨

⎪⎩

−3σi

(J0i )4
+ O(ε) if a = b = i ≤ N

O(ε) otherwise (58)

∂3 H

∂xa∂xb∂xc

∣∣∣∣
�(�0,ψ∗)

=

⎧
⎪⎨

⎪⎩

12σi

(J0i )5
+ O(ε) if a = b = c = i ≤ N

O(ε) otherwise

(Note that we have used the first of (57) to neglect the dependence on yi (�0, ψ∗) = Yi (�0, ψ∗) =
O(ε2) where necessary).

On the other side, combining (50) with the estimates in (57) we obtain:

∂�a

∂x∗i

∣∣∣∣
(�0,ψ∗)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 + O(ε 1/2) if a = i

O(ε 5/4) if a ≤ N , i > N

0 if a > N , i ≤ N

O(ε1/2) otherwise

(59)

∂2�a

∂x∗i∂x∗ j

∣∣∣∣
(�0,ψ∗)

=
⎧
⎨

⎩
O(ε 1/2) if a ≤ N , i > N

0 otherwise

∂3�a

∂x∗i∂x∗ j∂x∗l

∣∣∣∣
(�0,ψ∗)

= 0.

Now, recalling the expression in (55) and (56), from the estimates in (58) and (59), it is
straightforward (even if lengthy) to prove that:

• R∗
ei+ei ′ ,0,0(ψ∗) = δ(i,i ′)

−3σi

2(J0i )4
+ O(ε 1/2),

• R∗
ei ,e j ,0(ψ∗), R∗

ei ,0,e j
(ψ∗) = O(ε) (the leading term in the second of (56) is in the first

summation for a = i, b = N + j and a = i, b = 2N + j respectively),
• R∗

0,e j ,e j+e j ′ (ψ∗), R∗
0,e j+e j ′ ,e j

(ψ∗) = O(ε) (the leading term in the third of (56) is in

the first summation for a = N + j, b = 2N + j, c = 2N + j ′ and a = N + j, b =
N + j ′, c = 2N + j respectively),

• R∗
ei ,e j ,e j

(ψ∗) = O(ε 1/2) (the leading term in the third of (56) is in the fourth summation
for a = b = i).

Evaluating the Fourier coefficients17 of the above functions, which, by Theorem 4.4, are
analytic on T

n
s/2 (with s = const defined in (45)), we have:

R∗
ei+ei ′ ,0,0,0 = δ(i,i ′)

−3σi

2(J0i )4
+ O(ε 1/2), R∗

ei ,e j ,e j ,0 = O(ε 1/2),

R∗
ei ,e j ,0,�, R∗

ei ,0,e j ,�
, R∗

0,e j ,e j+e j ′ ,�, R∗
0,e j+e j ′ ,e j ,�

= O(ε) e−|�|s/2. (60)

17 The classical estimate | f�| ≤ const e−|�|s for the �-Fourier coefficient of a function analytic on T
n
s holds.
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Moreover, the second order Melnikov condition (49), together with (60), implies
∑

1≤ j ≤m

∑

�∈Zn

1

ω · �+�∗ j

(
R∗

ei ,e j ,0,� R∗
ei ′ ,0,e j ,−� + R∗

ei ,0,e j ,−� R∗
ei ′ ,e j ,0,�

)
,

∑

1≤ i ′ ≤ n

∑

�∈Zn

�i ′

ω · �+�∗ j

(
R∗

ei ,e j ,0,� R∗
ei ′ ,0,e j ,−� + R∗

ei ,0,e j ,−� R∗
ei ′ ,e j ,0,�

)
,

∑

1≤ j ′ ≤m

∑

�∈Zn

1

ω · �+�∗ j ′

(
R∗

0,e j ,e j+e j ′ ,−� R∗
ei ,e j ′ ,0,� + R∗

0,e j+e j ′ ,e j ,�
R∗

ei ,0,e j ′ ,−�
)

≤
∑

�∈Zn

1 + |�|τ
ε

e−|�|s O(ε2) = O(ε),

and hence the summations in (9) and (10) are negligible with respect to the first addenda.
Hence, we have obtained that the entries of the matrix R and Q corresponding to the

(N + 1)-body problem Hamiltonian H∗ are

Ri i = −3σi

2(J0i )4
+ O(ε 1/2) , Ri i ′ = O(ε 1/2) for i 	= i ′ , Q j i = O(ε 1/2) ,

and the proposition follows taking ε < ε� small enough. ��

5.2 Checking non-resonance condition

In this section, that is the very core of the present paper, we show that, if the perturbative
parameters δ and ε are small enough, the non-resonance condition (13) of Theorem 2.1
holds for any vector of semi-axes a belonging to a suitable subset of Ã(δ, ε) ⊂ A�(ε)

(defined in Theorem 4.4) whose measure tends to be full as δ, ε → 0+. This will be done in
Proposition 5.4.

First of all we prove Proposition 4.3, that has been stated before (see Sect. 4):

Proof of Proposition 4.3 Writing K = (K1, . . . , KN ), we distinguish two cases: (K1, K2) 	=
(0, 0) or (K1, K2) = (0, 0). Suppose first (K1, K2) 	= (0, 0), we need the following result:18

Lemma 5.2 The function

g(1) : a ∈ {0 < ai < ai+1} −→ (
�̄0

1(a), �̄
0
2(a)

) ∈ R
2

is non-degenerate.19

Applying20 Proposition 3.6 to the function g(1) with γ := 2δ1/4, we find:
∣∣∣g(1)(a) · (K1, K2)

∣∣∣ = ∣∣(�̄0
1(a), �̄

0
2(a)

) · (K1, K2)
∣∣ ≥ 2δ1/4,

∀ (K1, K2) ∈ Z
2
M , ∀ a ∈ A1 := A1(δ) := A \ DM

g(1)
(
2δ1/4) , (61)

with DM
g(1)

(
2δ1/4

)
defined as in (27). Furthermore, from (28),

meas (A \ A1) = O(δ α1) for some α1 > 0. (62)

18 In order non to interrupt the proof of the theorem, we will prove Lemma 5.2 later.
19 In the sense of Definition 3.7. The same holds for the next Lemma.
20 See Remark 3.8.
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By (61), recalling the asymptotics in (36), we get

|�̄(a) · K | ≥ ε|g(1)(a) · (K1, K2)| − εM O(
√
δ, ε) ≥ 2εδ1/4 − O(ε

√
δ, ε2)

≥ εδ1/4 ∀ K ∈ Z
N
M ∩ {(K1, K2) 	= (0, 0)

}
, ∀ a ∈ A1, (63)

when δ ≤ δ1 and ε ≤ ε1(δ), for some suitable (small) δ1 ≤ δ0, and ε1(δ) ≤ ε0.
Let us suppose now (K1, K2) = (0, 0), we need the following result:

Lemma 5.3 The function

g(2) : a ∈ {0 < ai < ai+1} −→ (
�̄0

3(a), . . . , �̄
0
N (a)

) ∈ R
N−2

is non-degenerate.

Applying Proposition 3.6 to the function g(2) with γ := 2δ1/4, we get
∣∣∣g(2)(a) · (K3, . . . , KN )

∣∣∣ = ∣∣(�̄0
3(a), . . . , �̄

0
N (a)

) · (K3, . . . , KN )
∣∣ ≥ 2δ1/4,

∀ (K3, . . . , KN ) ∈ Z
N−2
M , ∀ a ∈ A2 := A2(δ) := A \ DM

g(2)
(
2δ1/4) , (64)

where, DM
g(2)

(
δ1/4

)
is defined in (27). As above, (28) yields

meas (A \ A2) = O(δ α2) for some α2 > 0. (65)

By (64) and (36), we obtain

|�̄(a) · K | ≥ ε
√
δ|g(2)(a) · (K3, . . . , KN )| − εM O(δ, ε) ≥ 2εδ3/4 − O(εδ, ε2)

≥ εδ3/4 ∀ K ∈ Z
N
M ∩ {(K1, K2) = (0, 0)

}
, ∀ a ∈ A2, (66)

when δ ≤ δ2 and ε ≤ ε2(δ), for some suitable (small) δ2 ≤ δ0, and ε2(δ) ≤ ε0.
Taking

A� := A1 ∩ A2, δ� := min (δ1, δ2), ε� := min (ε1, ε2), α� := min (α1, α2),

we conclude by (63) and (66). ��
Proof of Lemma 5.2 According to Definition 3.7, we have to check that, for any c = (c1, c2) ∈
R

2, c 	= �0,

c · g(1) = c1 �̄
0
1 + c2 �̄

0
2 	≡ 0.

Suppose, by contradiction, that c1 �̄
0
1 + c2 �̄

0
2 ≡ 0 for some (c1, c2) 	= �0. Then, if e.g.

c1 	= 0 (otherwise it would be c2 	= 0, and we could go on in a completely analogous way),

�̄0
1

�̄0
2

≡ − c2

c1
=: C (1). (67)

Now, recalling the expressions for �̄0
1(a) and �̄0

2(a) in (37), we see that

�̄0
1(a)

�̄0
2(a)

=
1 − 5

16
a1
a2

+ O

((
a1
a2

)2
)

1 + 5
16

a1
a2

+ O

((
a1
a2

)2
) . (68)
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Since the right hand member of (68) is evidently 21 a non-constant function over the
domain {0 < ai < ai+1}, it is impossible for (67) to be identically verified. So, the function
g(1) : a ∈ {0 < ai < ai+1} −→

(
�̄0

1(a), �̄
0
2(a)

)
must be non-degenerate. ��

Proof of Lemma 5.3 By (3.8) we have to prove that, for any c = (c1, . . . , cN−2) ∈ R
N−2,

c 	= �0, the analytic function

fc := c · g(2) = c1�̄
0
3 + · · · + cN−2�̄

0
N

is not constantly vanishing.
To this end we define the parametrized curve γ : (0, 1] −→ R

N ,

γ (t) := (t2, t, tα1 , . . . , tαN−2), (69)

with

7

13
< αi := 7

13
+ i

1

13N
< 1, ∀ i = 1, . . . , N − 2. (70)

Moreover, let’s consider the map G(t) : (0, 1] −→ R
N−2 obtained by restricting the

function g(2) to the curve γ , i.e.

G(t) :=
(

g(2) ◦ γ
)
(t) = (

�̄0
3 (γ (t)) , . . . , �̄

0
N (γ (t))

)
.

If, by contradiction, there exists c ∈ R
N−2

� {�0} such that fc ≡ 0, then it must rightly be

Fc(t) := c · G(t) =
∑

1≤i≤N−2

ci · �̄0
i+2 (γ (t)) = 0, ∀t ∈ (0, 1]. (71)

By the asymptotics for �̄0
j (a), 3 ≤ j ≤ N , found in (37), and the definition of γ in (69),

we have

�̄0
i+2 (γ (t)) = const t−βi

[
1 + O

(
t νi
)]
, ∀ i = 1, . . . , N − 2, (72)

where, for i = 1, . . . , N − 2, we have set

βi := 13

4
αi − 7

4
= 13

4

(
7

13
+ i

1

13 N

)
− 7

4
= i

1

4 N
> 0,

(73)

0 < νi := 2(1 − αi ) = 2

(
1 −

(
7

13
+ i

1

13 N

))
<

12

13
<

7

4
.

By means of (72), (71) becomes

Fc(t) = const
∑

1≤i≤N−2

ci · t−βi
[
1 + O

(
t νi
)] = 0 , ∀t ∈ (0, 1] . (74)

Now, since, from (73), 0 < βi < βi ′ if i < i ′, it must necessarily be ci = 0, for any
i = 1, . . . , N − 2. Indeed, let otherwise

i0 := min
{
1 ≤ i ≤ N − 2 : ci 	= 0

}
.

21 For instance, �̄0
1(a)/ �̄

0
2(a) −→ 1− as a1/a2 → 0+.
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Then, from (74) we would have
∑

1≤i≤N−2

ci · t−βi
[
1 + O

(
t νi
)] =

∑

i0≤i≤N−2

ci · t−βi
[
1 + O

(
t νi
)]

= t−βi0
∑

i0≤i≤N−2

ci · t− (βi−βi0 )
[
1 + O

(
t νi
)] = 0, ∀t ∈ (0, 1],

and we would come to a contradiction, since the last expression tends towards +∞ as
t → 0+. Hence, (71) it is not possible, i.e. g(2) is of course a Rüßmann non-degenerate
analytic function. ��

Now, in light of the previous results, it is finally straightforward to prove the non-resonance
for the frequency vector for the (N + 1)-body problem given by Theorem 4.4.

Proposition 5.4 Fix M ∈ N, and let (ω,�∗) = (ω(a),�∗(a)) be the frequency vector of the
normal form (48) for the planetary planar (N + 1)-body problem Hamiltonian H∗ found in
Theorem 4.4. For every 0 < δ ≤ δ�, and 0 < ε ≤ ε̃(δ), for a suitable function ε̃(δ) ≤ ε� (with
δ� defined in Proposition 4.3 and ε� as in Theorem 4.4), there exists a subset of semi-axes
Ã = Ã(δ, ε) ⊂ A� ⊂ A with

meas
(

A \ Ã
) = O(δ const ), (75)

(ω(a),�∗(a)) · �k 	= 0 , ∀�k ∈ Z
2N
M , ∀a ∈ Ã . (76)

Proof Let �k = (k, K ) ∈ Z
N × Z

N . We have two cases: k 	= 0 or k = 0.
Let us suppose first that k 	= 0, we note that the function

g(3) : {0 < ai < ai+1} −→ R
N , with g(3)i (a) := a−3/2

i , i = 1, . . . , N

is (trivially) non-degenerate. Applying22 Proposition 3.6 to g(3) with γ := δ, we find:
∣∣∣g(3)(a) · k

∣∣∣ ≥ δ, ∀ k ∈ Z
N
M , ∀ a ∈ A3 = A3(δ) := A \ DM

g(3) (δ) , (77)

with DM
g(3)

(δ) defined as in (27). Furthermore, from (28),

meas (A \ A3) = O(δ α3) for some constant α3 > 0 . (78)

By (30), (31), (41) and (43), since σi m
−3
i = √

Mi = 1 + O(ε), we have that ω =
g(3)+O(ε) and, therefore,ωi (a) = σi m

−3
i a−3/2

i +O(ε)= a−3/2
i +O(ε). Being�∗ = O(ε),

for ε small enough with respect to δ, let’s say 0 < ε ≤ ε3(δ) ≤ ε�(δ), we get

|(ω(a),�∗(a)) · (k, K )| ≥ |g(3)(a) · k| − M O(ε) ≥ δ − O(ε) ≥ 1

2
δ > 0,

∀ (k, K ) ∈ Z
2N
M ∩ {k 	= 0}, ∀ a ∈ A3 ∩ A�. (79)

Now, suppose k = 0 (hence K 	= 0), by (41), (43) and (53), �∗ = �̄ + O(ε1+ const ).
Then, by Proposition 4.3, if 0 < ε ≤ ε̄(δ) for a suitable positive ε̄(δ) ≤ ε�(δ), we get

|(ω(a),�∗(a)) · �k| = |�∗(a) · K | ≥ |�̄ · K | − O(ε1+ const )

≥ εδ3/4 − O(ε1+ const ) ≥ 1

2
εδ3/4 > 0,

∀ (k, K ) ∈ Z
2N
M ∩ {k = 0}, ∀ a ∈ A�.

22 See Remark 3.8.
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We conclude setting ε̃(δ) := min{ε3, ε̄} and Ã := A3 ∩ A� ∩ A�.
The estimate (75) follows by (38), (47) and (78). ��

5.3 Conclusions

Putting together the previous results, we can finally prove the existence of infinitely many
periodic solutions of the planetary planar (N + 1)-body problem, as stated in the following
recapitulatory theorem (for more quantitative information about the periodic orbits found,
we refer to the thesis of Theorem 2.1).

Theorem 5.5 Consider a planetary planar (N +1)-body system (N ≥ 3) and let the masses
of the planets satisfy (1) and (3). For every compact set A of osculating Keplerian major
semi-axes, where (2) holds for a suitable universal constant θ (depending only on the given
masses of the planets), there exist a positive constant δ� and a positive function ε̃ such that,
if 0 < δ ≤ δ� and 0 < ε ≤ ε̃(δ), the system affords infinitely many periodic solutions, with
minimal period increasing at infinity, clustering to the elliptic KAM tori found in Theorem 4.4,
provided the osculating major semi-axes belong to a suitable subset Ã = Ã(ε, δ) ⊂ A
satisfying meas

(
A \ Ã

) = O(δ const ).

Proof We have only to check that the Hamiltonian H∗ in (48) meets the hypotheses of
Theorem 2.1.

The Melnikov condition (8) is satisfied by (49). Taking ε̃(δ) small enough, the twist
condition det R 	= 0 holds by (54); moreover, we have that the constant L defined in (12) is
uniformly bounded in ε (e.g. it is less than 1). Therefore, M (defined in Theorem 2.1) can be
regarded as a fixed quantity independent of δ and ε (as we have done throughout the proof
of Proposition 4.3) and condition (13) is satisfied by (76). Thus, we are in position to apply
Theorem 2.1. The estimate on the measure of the set of “discarded semi-axes” A \ Ã is the
same as in (75). ��
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