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Abstract In this paper, following the increase of the mass ratio µ, the vertical stability
curves of the long and the short period families were studied, and the vertical bifurcation
families from these two families were computed. It is found that these vertical bifurcation
families connect the long and short period families with the spatial periodic family emanating
from the equilateral equilibrium points. The evolution details of these vertical bifurcation
families were carefully studied and they are found to be similar to the planar bifurcation
families connecting the long period family with the short period family in the planar case.

Keywords Restricted three-body problem · Equilateral equilibrium point · Periodic orbit ·
Bifurcation

1 Introduction

The equilateral libration points of the circular restricted three-body problem are equilibrium
points of elliptic type in the planar case for µ < µ1 = 0.0385 . . . . There are two fundamental
frequencies ωs and ωl , with ωs > ωl . For the out-of-plane motion, it is always stable, with a
linearized fundamental frequency ωz = 1. According to Lyapunov’s theorem, there are three
periodic families emanating from the equilibrium points. For the planar case, there are the
long period family and the short period family corresponding to the frequencies ωl and ωs

respectively (Szebehely 1967). For the vertical case, there is the three dimensional periodic
family corresponding to the frequency ωz (Zagouras 1985). In the following, for brevity, we
call the three dimensional periodic family as 3D periodic family.
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310 X. Y. Hou, L. Liu

There are planar bifurcation orbits and vertical bifurcation orbits in the long and short
period families (Hénon 1973). For planar bifurcation orbits, there are periodic families
connecting them. These families are often called bridges and have been widely studied
(Deprit and Henrard 1968; Henrard 2002; Bruno and Varin 2007). However, seldom work
has been done about the vertical bifurcation orbits (Perdios and Zagouras 1991; Bruno and
Varin 2006). We wonder whether these vertical bifurcation orbits are connected with some
bifurcation orbits in a special periodic family, as what happens in the planar case. Following
this idea, we continued the vertical bifurcation families bifurcating from the long and short
period families to their natural ends. We found this special periodic family does exist and it
is just the 3D periodic family.

In this paper, following the increase of µ, the vertical stability curves of the long and short
period families were firstly studied. Then the stability curves of the 3D periodic family with
increasing µ were also studied. At last the vertical bifurcation families connecting the long
and short period families with the 3D families were studied.

2 Methodology

The usual synodic coordinate for the circular restricted three-body problem is shown in the
left figure of Fig. 1. For clarity, we didn’t plot the z axis which is perpendicular to the x − y
plane. The coordinate we choose to analyze the periodic orbits, however, is not the usual
synodic one. It has its origin at the equilateral equilibrium points and rotates the x − y plane
with a fixed angle α, where α is a constant of µ. We didn’t plot the z axis which is perpen-
dicular to the ξ − η plane either. About the details of this coordinate, the reader can refer to
the book of Szebehely (1967).

In fact, we give initial conditions of periodic orbit in the ξηz frame, transfer them to the
synodic one and integrate the orbits. After period T , we transfer the states of orbits in the
synodic coordinate back to the ξηz frame to check the periodic conditions. The algorithm
used to continue periodic families is the usual predictor-corrector one. The reader can turn
to the references for more details (Deprit and Henrard 1967). In this paper, all the periodic
families are computed this way.

Fig. 1 The synodic coordinate and coordinate chosen in our work
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Vertical bifurcation families from the long and short period families 311

The integrator we used is the traditional RKF78 integrator. The accuracy of the refinement
is guaranteed to be around 10−8.

3 Results

3.1 Vertical stability curves of the long and short period families

For the planar case, there are critical mass ratios when ωs and ωl are in commensurability.
These mass ratios are (Szebehely 1967)

µk = [1 − (k4 + 38k2/27 + 1)1/2/(k2 + 1)]/2 (1)

where k = q/p, q, p are integers. Similarly, we denote the mass ratios when ωl and ωz are
in commensurability as µ′

k , it satisfies

µ′
k = 1

2

{
1 −

√
1 − 4[1 − (1 − 2/k2)2]/27

}
(2)

where k = q/p. For mass ratios where ωs and ωz are in commensurability, the same formula
exists, but with 1 < k = q/p <

√
2. It’s easy to check the following relations.

µ′
k+1 < µk < µ′

k (3)

Although µ′
k are not critical values concerning the evolution of the long period family, we

introduce them for better understanding the evolution details of the vertical stability curves
of the long and short period families.

First, we study the vertical stability curve of the long period family. When µ = µ′
k+1, the

stability index reduces from 2 with the increasing amplitude of long period orbits and then
increases again. When the long period family terminates onto a planar critical short period
orbit, the vertical stability index does not equal 2. So the termination of the long period family
is not a vertical critical short period orbit. Shown in Fig. 2 is the stability curve for µ = µ′

6.
The ordinate “T raceV ” equals (a33 + a66 − 2), where M = (ai j )6×6 is the monodromy
matrix of the periodic orbit.

Following the increase of µ from µ′
k+1 to µ′

k , the origin of the stability curve (denoted as
L4 in Fig. 2) will first reduces to a little smaller than −2 and than increases again to 2. The
turning point is µ = µ′

(2k+1)/2. Between µ′
k+1 and µ′

k exists the critical mass ratio µk . The
structure of the long period family changes (Deprit and Henrard 1968), so changes with it
the vertical stability curve. In Fig. 3, from left to right and from top down, local magnifica-
tions of the vertical stability curve around the origin for different mass ratios µ′

6, µ
′
6 − 1 ×

10−4, µ′
11/2, µ5 − 1 × 10−4, µ5 + 1 × 10−4 and µ′

5 are given. The abrupt changes between
the fourth and the fifth figures are due to the structure changes of the long period family at µ5.

The evolution scenario is valid only for k ≥ 5. When k < 5, there is another spe-
cial critical value between µ′

k+1 and µ′
k besides the critical value µk (Henrard 1970; Hou

and Liu 2008a). Take k = 3 for an example. Between µ′
4 and µ′

3 exists a special criti-
cal value µ∗ (Henrard 1970), the long period family changes its structure at this critical
value, so does the vertical stability curve. In Fig. 4, from left to right and from top down,
local magnifications of the vertical stability curve around the origin for different mass ratios
µ′

4, µ
′
4 < 0.0122 < µ∗, µ∗ < 0.0124 < µ3, µ3 − 1 × 10−4, µ3 + 1 × 10−4 and µ′

3 are
given. The abrupt changes between the second and the third figures are due to the structure
changes of the long period family at µ∗.
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312 X. Y. Hou, L. Liu

Fig. 2 The vertical stability curve of the long period family for µ = µ′
6

Fig. 3 The vertical stability curves of the long period families for different mass ratios between µ′
6 and µ′

5

To save space, we will not explain the details of the abrupt changes of the long period
family at these critical mass ratios. Readers can refer to references for more details (Deprit and
Henrard 1968; Henrard 1970; Hou and Liu 2008a). We just have to know that the following
general evolution tendency holds true: with µ increasing from µ′

k+1 to µ′
(2k+1)/2, the origin of

the vertical stability curve reduces; with µ increasing from µ′
(2k+1)/2 to µ′

k , the origin of the
vertical stability curve increases. More specifically, when µ < µ′

q/p < µ′
(2k+1)/2, the origin

of the vertical stability curve is larger than 2 cos(q · 2π/p); when µ > µ′
q/p < µ′

(2k+1)/2,
the origin is smaller than 2 cos(q · 2π/p); when µ < µ′

q/p > µ′
(2k+1)/2, the origin of the

vertical stability curve is smaller than 2 cos(q · 2π/p); when µ > µ′
q/p > µ′

(2k+1)/2, the
origin of the vertical stability curve is larger than 2 cos(q · 2π/p).
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Vertical bifurcation families from the long and short period families 313

Fig. 4 The vertical stability curves of the long period families for different mass ratios µ′
4 and µ′

3

Fig. 5 The vertical stability curve of the short period family for mass ratios µ3.8/3 and µ4.2/3

The vertical stability curve of the short period family is much simpler. Following the
increase of µ, the origin of the stability curve reduces. More specifically, when µ < µ′

q/p

(where 1 < q/p <
√

2), the origin of the vertical stability curve is larger than 2 cos(q ·2π/p);
when µ > µ′

q/p , the origin of the vertical stability curve is smaller than 2 cos(q ·2π/p). Take
q/p = 4/3 as an example, Fig. 5 are the vertical stability curves for mass ratios µ′

3.8/3 < µ′
4/3

and µ′
4.2/3 > µ′

4/3. Because q/p <
√

2, the origin of the vertical stability curve of the short

period family cannot be smaller than 2 cos(2π/
√

2). So there is no vertical 2-bifurcation
short period orbit. The maximal possible value for q/p is 4/3.

3.2 The 3D periodic family

Zagouras has given formulas for the 3D periodic family up to fourth order (Zagouras 1985).
These formulas can be used as initial seed for the predictor-corrector algorithm mentioned
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above. The eigenvalues of the monodromy matrix M can be solved from the following
equation (Bray and Goudas 1967).

(λ − 1)2(λ2 + p1λ + 1)(λ2 + p2λ + 1) = 0 (4)

where

p1 = 1

2
(α + √

D), p2 = 1

2
(α − √

D), D = α2 − 4(β − 2)

α = 2 − T r(M), β = 1

2
[α2 + 2 − T r(M2)]

Obviously, there are two stability curves, we denote them as curve p1 and curve p2. With
the increase of µ, the origin of the curve p1 (denoted as L4 in the figures) will raise first
and then reduces. The turning point is µ = µ′

2. More specifically, when µ < µ′
q/p < µ′

2,
the origin of the curve p1 is smaller than −2 cos(p · 2π/q); when µ > µ′

q/p < µ′
2, the

origin of the curve p1 is larger than −2 cos(p · 2π/q). When µ < µ′
q/p > µ′

2, the origin of
the stability curve p1 is larger than −2 cos(p · 2π/q); when µ > µ′

q/p > µ′
2, the origin of

the stability curve p1 is smaller than −2 cos(p · 2π/q). For the curve p2, the origin always
increases with increasing µ. More specifically, when µ < µ′

q/p , the origin is smaller than
−2 cos(p · 2π/q); when µ > µ′

q/p , the origin is larger than −2 cos(p · 2π/q). When µ

increases to µ′√
2

= µ1, the origins of the curves p1 and p2 coincide, with a stability index

−2 cos(2π/
√

2) (Denoted as B in the last figure of Fig. 6). Shown in Fig. 6 are the stability
curves for mass ratios µ′

4, µ′
2 and µ√

2.
Numerical computations show that the vertical long period bifurcation orbits are connected

with the bifurcation orbits in the stability curve p1 and the vertical short period bifurcation
orbits are connected with bifurcation orbits in the stability curve p2.

3.3 Vertical bifurcation families

In the following, we take µ ∈ (µ′
6, µ

′
5) as an example to show how the vertical bifurcation

families evolve. We use P to denote members of the 3D periodic family. Shown in the left
figure of Fig. 7 is the local magnification of the vertical stability curve of the long period
family for the mass ratio µ′

11/2 + 6 × 10−4. “left” and “right” in the figure indicate two
different long period orbits with vertical stability index 2. The two vertical long period bifur-
cation orbits are connected with a 6-bifurcation orbit in the 3D family with stability index
−2 cos(2π/6) in the curve p1. The right picture gives out the T –C curves for the vertical
families B(Lle f t , 6P) and B(Lright , 6P). We call these families as bridges as we did in the
planar case (Deprit and Henrard 1968; Bruno and Varin 2007). Since the two long period
orbits are too close to each other, we can’t separate them in the figures. We just use “left”
and “right” to indicate them. The curve denoted as “3D family” is the T –C curve of the 3D
periodic family. The period of the 3D periodic orbits is multiplied 6 times in order to show
it in the same figure as the families B(Lle f t , 6P) and B(Lright , 6P). Shown in Fig. 8 are the
stability curves p1 and p2 for the two families, with the smooth one corresponding to the
family B(Lright , 6P). The unsmoothness of the stability curves is due to the following fact.
In continuation of periodic families, we may encounter unstable members with eigenvalues
of the λ = α +βi, |λ| > 1 type. So p1 or p2 may be complex. That means D may be smaller
than zero during the numerical continuation. In order to avoid this uncertainness, we take |D|
instead of D in Eq. 4, and this choice leads to the unsmoothness. Nevertheless, the validity
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Vertical bifurcation families from the long and short period families 315

Fig. 6 Stability curves of the 3D family for mass ratios µ′
6, µ′

2 and µ′√
2

Fig. 7 The vertical stability curve for the mass ratio µ11/2 + 6×10−4 and the T –C curves for the two vertical
bifurcation families B(Lle f t , 6P) and B(Lright , 6P)

of the continuation process can be guaranteed by the continuity of the T –C curves. Table 1
gives out initial conditions for the two bifurcation long periodic orbit. From left to right are
values for x, y, ẋ, ẏ, T, C . Table 2 gives out initial conditions of one member of each family.
In each row, from left to right are values for x, y, z, ẋ, ẏ, ż, T, C .

There are two 2-bifurcation long period orbits (with stability index −2) in the left figure
of Fig. 7. They are also very close to each other. We cannot tell them in the figure. They
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Fig. 8 The stability curves p1 or p2 for the two brides B(Lle f t , 6P) and B(Lright , 6P)

Table 1 Initial conditions for the bifurcation long periodic orbit le f t and right in Fig. 7

Orbits x y ẋ ẏ T C

Left 0.55735842 0.97524293 0.17233433 −0.094181765 37.62225141 3.00530435
Right 0.55732988 0.97519323 0.17225074 −0.094122691 37.62028766 3.00530578

Table 2 Initial conditions for one member of families B(Lle f t , 6P) and B(Lright , 6P)

Bridges x y z ẋ ẏ ż T C

B(Lle f t , 6P) 0.54354320 0.95118448 0.20697067 0.14278533 −0.07925192 0.02312004 37.6272188 2.96837188
B(Lright , 6P) 0.55271068 0.96714914 −0.01749487 0.17535085 −0.09008381 0.17390770 37.6281296 2.96848535

are connected with a 11-bifurcation orbit in the 3D periodic family with stability index
−2 cos(2 · 2π/11) in the curve p1. Shown in the left figure of Fig. 9 are the T –C curves for
the two single-lane bridges. The period of the 3D family is multiplied 11 times (in the figures,
L ′ indicates the 2-bifurcation long period orbit on the left). To save space, we didn’t give the
curves p1 and p2 of these two bridges. For the 3-bifurcation long period orbits, the left one
denoted as L ′ in Fig. 1 is the long period orbit with vertical stability index 2 cos(16 · 2π/3),
it is connected with a 16-bifurcation orbit in the 3D periodic family with stability index
−2 cos(3 · 2π/16) in the curve p1. The right one denoted as L in Fig. 10 is the long period
orbit with vertical stability index cos(17 ·2π/3), it is connected with a 17-bifurcation orbit in
the 3D periodic family with stability index −2 cos(3 · 2π/17) in the curve p1. Shown in the
right figures of Fig. 9 are T –C curves for these two families. The period of the 3D periodic
family is multiplied 16 times and 17 times respectively. The difference of these two bridges
is that they are double-lane bridges. But since the two lanes of the bridge are two close, they
are like one lane in the T –C curves.

For µ ∈ (µ′
k+1, µ

′
k), if p ≥ 2, the bridges B(pL , q P) satisfy

p/(k + 1)p < p/q < p/kp (5)

For example, p = 3, there are bridges (3L , (3k+2)P) and B(3L , (3k+1)P); for p = 5, there
are bridges B(5L , (5k +4)P), B(5L , (5k +3)P), B(5L , (5k +2)P) and B(5L , (5k +1)P).
q = k + 1 if p = 1.
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Vertical bifurcation families from the long and short period families 317

Fig. 9 The T –C curves for the single-lane bridge B(2L , 11P), B(2L ′, 11P) (top left figure) and the double-
lane bridge B(3L ′, 16P) (top right) and the double-lane bridge B(3L ′, 17P) (bottom left)

Fig. 10 The vertical stability curve of the long period family for µ′
8/3 − 2 × 10−5 and µ′

8/3 + 1 × 10−4

In fact, if µk > µ > µ′
q/p > µ(2k+1)/2, there are always two p-bifurcation long periodic

orbit (see the fourth figure in Fig. 3). We denote the one on the right of the stability curve
as the orbit with stability parameter 2 cos(m · 2π/p), m < p/2, and the one on the left as
the orbit with stability parameter 2(cos((p − m) · 2π/p). Numerical explorations prove the
following conclusion:
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318 X. Y. Hou, L. Liu

Fig. 11 The T –C curves of the bridge B(3L , 3L ′) and B(3L , 8P)

(1) When p is an odd number, there are totally p − 1 bridges B(pL , q P) for fixed p. With
µ < µ[p(k+1)−i]/p(1 ≤ i ≤ p − 1), from the studies above, we know there are no
p-vertical bifurcation long periodic orbit with stability index 2 cos(i · 2π/p), and there
is no [p(k + 1) − i]-bifurcation 3D periodic orbit in the curve p1 with stability index
2 cos(p · 2π/[p(k + 1)− i]). So the bridge B(pL , [p(k + 1)− i]P) does not exist. With
µ > µ[p(k+1)−i]/p , the p-vertical bifurcation long periodic orbit and the [p(k + 1) − i]-
bifurcation 3D periodic orbit appear, so does the bridge B(pL , [p(k + 1) − i]P).

(2) When p is an even number, the evolution details are similar, but the number of bridges
is different due to commensurability. For example, when p = 2, there is the bridge
B(2L , (2k + 1)P). When p = 4, there should be three bridges B(4L , (4k + 3)P),

B(4L , (4k + 2)P) and B(4L , (4k + 1)P). However, the bridge B(4L , (4k + 2)P) is in
fact the bridge B(2L , (2k + 1)P), so there are only two bridges B(pL , q P) for p = 2.
It’s not hard to prove that when p = 2n, there are only n bridges B(pL , q P). The bridge
B(pL , (p(k + 1) + 1 − 2i)P), 1 ≤ i ≤ n connects the p-bifurcation long period orbit
with the (p(k + 1) + 1 − 2i)-bifurcation 3D periodic orbit in the curve p1.

Except p = 1 or 2, all these bridges are double-lane bridges. Sometimes, the two lanes are
too close to be separated by our numerical algorithms due to the limitation of accuracy, but
they do be different lanes.

The existence of special critical values (Henrard 1970; Hou and Liu 2008a) may lead to
the appearance of bridges B(pL , pL ′), as in the planar case (Hou and Liu 2008b). Shown in
Fig. 10 are the vertical stability curves for mass ratios µ′

8/3 − 2 × 10−5 and µ′
8/3 + 1 × 10−4.

Due to the hollow in the stability curve, before µ increases to µ′
8/3, two 3-bifurcation peri-

odic orbits with stability index −1 appear. But the 8-bifurcation 3D periodic orbit doesn’t
appear yet. So the bridge B(3L , 8P) doesn’t exist. Instead, the two vertical bifurcation long
period orbits are connected by the double-lane bridges B(3L , 3L ′). When µ grows larger
than µ′

8/3, the orbit L ′ disappears and the 8-bifurcation 3D periodic orbit appears, the bridge
B(3L , 3L ′) disappears and the double-lane bridge B(3L , 8P) appears. Shown in Fig. 11 are
T –C curves for these two bridges.

The case of the vertical bifurcation families from the short period family is simpler. When
µ < µq/p , there is no p-bifurcation short period orbit and q-bifurcation 3D periodic orbit
in the curve p2, so the bridge B(pS, q P) does not exist. When µ < µq/p , the p-bifurcation
short period orbit and q-bifurcation 3D periodic orbit in the curve p2 appear, so does the
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Vertical bifurcation families from the long and short period families 319

Fig. 12 The T –C curves of the bridge B(3S, 4P) (left figure) and the bridges B(4S, 5P) and B(3L , 5P),
for the same q = 5

bridge B(pS, q P). Shown in the left figure of Fig. 12 are the stability curves of the family
B(3S, 4P). Remember, for the short period family, 1 < q/p <

√
2.

From the discussions above, we know the following facts: The p-vertical bifurcation long
period orbit is connected with a q-bifurcation orbit in the stability curve p1 of the 3D periodic
family by the bridge B(pL , q P). The p-vertical bifurcation short period orbit is connected
with a q-bifurcation orbit in the stability curve p2 of the 3D periodic family by the bridge
B(pS, q P). Even for the same q , the bridges B(pL , q P) and B(pS, q P) are different, as
shown in the right figure of Fig. 12. Except p = 1 or 2, all these bridges are double-lane
bridges.

4 Conclusion

In this paper, following the increase of µ, we studied the evolution details of the vertical
stability curves of the long and short period families and the 3D periodic family. We gave
out the construction rules of the bridges B(pL , q P) and B(pS, q P) which connect vertical
bifurcation long period and short period orbits with bifurcation orbits in the 3D periodic fam-
ilies. We also pointed out the existence of bridges of the kind B(pL , pL ′) for some specific
mass ratios.
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