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Abstract In a previous paper (Henrard, Celest. Mech. Dyn. Astron. 178, 144–153, 2005c)
we have developed an analytical theory of the rotation of the Galilean satellite Io, considered
as a rigid body and based on a synthetic theory of its orbital motion due to Lainey (Théorie
Dynamique des Satellites Galiléens. PhD dissertation, Observatoire de Paris, 2002) (see also
Lainey et al., A&A, 420, 1171–1183 2004a; A&A, 427, 371–376, 2004b). One of the most
important causes of departure of the actual rotation from the rigid theory is thought to be the
existence of a liquid core, the size of which is unknown but would be an important piece of
information concerning the structure of the interior of the satellite. In this contribution we
develop the analytical theory of a liquid core contained in a cavity filled by an inviscid fluid
of constant uniform density and vorticity. The theory is based on Poincaré (Bull. Astron.
27, 321–356, 1910) model and is developed by a Lie transform perturbation method, very
much like in our previous contribution. Our main conclusion is that the addition of a degree
of freedom (the spin of the core) with a frequency close to the orbital frequency multiplies
the possibility of resonances and that for some particular size of the core one may expect a
(possibly small) region of chaotic behaviour in the vicinity of the Cassini state.

Keywords Rotational dynamics · Liquid core · Jovian planets · Io

1 Introduction

Due to its proximity of Jupiter and the complexity of its orbits captured in the Laplacian reso-
nance with Europe and Ganymede, the rotational motion of Io is far from an uniform rotation
around a Cassini’s equilibrium. We have developed in a previous contribution (Henrard
2005c) a theory based on the assumption of a rigid satellite and a model of the orbital motion
given by the synthetic theory of Lainey (Lainey 2002).
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2 J. Henrard

The volcanic activity of Io is a clear evidence that it cannot be considered as a rigid body
as the moon might be, but that the existence of a core, more or less fluid must be considered.
In order to investigate the influence of such a core on the rotational motion of the satellite, we
have developed a theory of the rotation of Io modeled as a rigid ellipsoidal mantle containing
a cavity filled with an inviscid fluid of constant uniform density and vorticity. Poincaré (1910)
provided the foundations of a conservative model of the problem. Hence our previous work
can be naturally extended to include its effects. This is the aim of the present contribution.

2 Hamiltonian formulation

The differential equations describing the motion of a rigid mantle with a traxial ellipsoidal
cavity filled with inviscid fluid of constant uniform density and vorticity, have been derived
by Hough (1895), and Poincaré (1910). More recently, Touma and Wisdom (2001) have
derived a Hamiltonian formulation on the base of Poincaré’s formalism. We will adopt this
formalism in what follows.

The components (v1, v2, v3) of the velocity field at the location xi inside the liquid core,
in the frame of the principal axes of inertia of the mantle, are assumed to be:

v1 = [ω2 + (a/c)ν2] x3 − [ω3 + (a/b)ν3]x2

v2 = [ω3 + (b/a)ν3] x1 − [ω1 + (b/c)ν1]x3

v3 = [ω1 + (c/b)ν1] x2 − [ω2 + (c/a)ν2]x1,

(1)

where (a ≥ b ≥ c) are the principal elliptical radii of the cavity and where (ω1, ω2, ω3) are
the components of the angular velocity of the mantle with respect to an inertial frame. The
vector of coordinates (ν1, ν2, ν3) specify the velocity field of the core with respect to the
moving mantle. For a spherical cavity they reduce to the components of the angular velocity
of the core, moving as a rigid body. Both vectors are expressed in the frame of the principal
axes of inertia of the mantle. This velocity field (1) satisfy Helmholtz’s equation.

The angular momentum �N ′c of the core is obtained by integration of
∫
(�x × �v) ρdW :

�N ′c = Mc

5

[( c

b
ν1 + ω1

)
b2 +

(
b

c
ν1 + ω1

)

c2
]

�f1

+ Mc

5

[( c

a
ν2 + ω2

)
a2 +

( a

ac
ν2 + ω2

)
c2

] �f2

+ Mc

5

[(
b

a
ν3 + ω3

)

a2 +
(a

b
ν3 + ω3

)
b2

]
�f3, (2)

where �fi are the unit vectors along the principal moments of inertia and Mc is the mass of
the core. Considering that the moments of inertia of the core are:

Ac = Mc

5
(b2 + c2); Bc = Mc

5
(a2 + c2); Cc = Mc

5
(a2 + b2), (3)

and defining the following quantities:

D1 = 2Mc

5
bc; D2 = 2Mc

5
ac; D3 = 2Mc

5
ab, (4)

we obtain:

�N ′c = [Acω1 + D1ν1] �f1 + [Bcω2 + D2ν2] �f2 + [Ccω3 + D3ν3] �f3. (5)
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The rotation of Io with a liquid core 3

The total angular momentum of the system �N = �N m + �N ′c is then:

�N = [Aω1 + D1ν1] �f1 + [Bω2 + D2ν2] �f2 + [Cω3 + D3ν3] �f3, (6)

where (A ≤ B ≤ C) are the moments of inertia of the total system.
Consider the kinetic energy of the system:

2T = Aω2
1 + Bω2

2 + Cω2
3 + Acν2

1 + Bcν2
2 + Ccν2

3

+ 2D1ω1ν1 + 2D2ω2ν2 + 2D3ω3ν3, (7)

and its derivatives:

∂T

∂ω1
= Aω1 + D1ν1; ∂T

∂ω2
= Bω2 + D2ν2; ∂T

∂ω3
= Cω3 + D3ν3. (8)

We check that (∂T/∂ωi ) = Ni , the components of the total angular momentum. On the
other hand the derivatives:

∂T

∂ν1
= D1ω1 + Acν1; ∂T

∂ν2
= D2ω2 + Bcν2; ∂T

∂ν3
= D3ω3 + Ccν3, (9)

are not the components of the angular momentum of the core but are close to it for a cavity
close to spherical. Indeed, if we note (∂T/∂νi ) by N c

i , we have:

N c
1 − N ′c

1 = (Ac − D1)(ω1 − ν1) = Mc

5
(c − b)2(ω1 − ν1). (10)

Similar equations hold for the second and third components. The difference is thus of the
second order in the departure from sphericity.

With these notations, The Poincaré-Hough’s equations of motion, for the system mantle-
core in the absence of external torque, are (see Touma and Wisdom 2001):

d �N
dt

= �N × �� �N H; d �N c

dt
= �N c × ��− �N c H (11)

The function H is the kinetic energy expressed in terms of the components of the vectors
�N and �N c:

H = 1

2α
(Ac N 2

1 + A(N c
1 )2 − 2D1 N1 N c

1 ) + 1

2β
(Bc N 2

2 + B(N c
2 )2 − 2D2 N2 N c

2 )

+ 1

2γ
(Cc N 2

3 + C(N c
3 )2 − 2D3 N3 N c

3 ), (12)

where α = AAc − D2
1, β = B Bc − D2

2 , and γ = CCc − D2
3 .

3 Additional approximations

In order to define a simplified approximation, we will assume that the ellipsoid of inertia
of the core and of the mantle are aligned and proportional, i.e Ac = δA, Bc = δB, and
Cc = δC . Actually it may be more reallistic to assume that the core is axi-symmetric, as in
(Touma and Wisdom 2001) , but they assume also that the mantle is axi-symmetric which is
not compatible with the spin-orbit resonance assumption. In any case we have no indication
concerning the flattening of such an axi-symmetric shape and this parameter, the flattening,
is probably more significant than the (small) departure from axi-symmetry. Because of the
lack of knowledge of the physical parameters, our aim cannot be to provide a simulation of
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4 J. Henrard

the true motion but to explore the possible effects of a liquid core. A simplified model will
do that. We will also linearize the Hamiltonian (12) with respect to the ‘small” parameters:

ε1 = 2C − A − B

2C
; ε2 = B − A

2C
. (13)

With these notations, we have A = C(1 − ε1 − ε2), B = C(1 − ε1 + ε2), D1 = Ac,

D2 = Bc, D3 = Cc, and the Hamiltonian reads:

H = 1

2C(1 − δ)

[
3∑

i=1

N 2
i − 2

3∑

i=1

Ni N c
i +

(
3∑

i=1

(N c
i )2

) /

δ

]

+ ε1

2C(1 − δ)

[
(N 2

1 + N 2
2 ) − 2(N1 N c

1 + N2 N c
2 ) + ((N c

1 )2 + (N c
2 )2)/δ

]

+ ε2

2C(1 − δ)

[
(N 2

1 − N 2
2 ) − 2(N1 N c

1 − N2 N c
2 ) + ((N c

1 )2 − (N c
2 )2)/δ

]
. (14)

4 Andoyer variables

Let us introduce the two sets of Andoyer’s variables (Andoyer 1926), (
, g, h, L , G, H)

and (
c, gc, hc, Lc, Gc, Hc). The angles (h, K , g) are the Euler angles of the vector �n2,
node of the equatorial plane over the plane perpendicular to the angular momentun �N ; the
angles (J, 
) position the axis of least inertia ( �f1) with respect to �n2 (see Fig. 1 and De-
prit 1967). Correspondingly the angles (hc, Kc, gc) are the Euler angles of the vector �nc,
and (Jc, 
c) position the axis of least inertia with respect to �nc. The variables are (h, g, 
)
and (hc, gc, 
c) and the corresponding momenta (H = N cos K , G = N , L = N cos J )
and (Hc = N c cos Kc, Gc = N c, Lc = N c cos Jc). Expressed in Andoyer variables the
components of �N and �N c are:

N1 =
√

G2 − L2 sin 
, N c
1 =

√
G2

c − L2
c sin 
c

N2 =
√

G2 − L2 cos 
, N c
2 =

√
G2

c − L2
c cos 
c (15)

N3 = L , N c
3 = Lc.

In order to take into account the minus sign in the differential equation for �N c (11), we
change the sign of the

√
G2

c − L2
c and of Lc in (15) and obtain:

H = 1

2C(1 − δ)

[

G2 + G2
c/δ + 2L Lc + 2

√
(G2 − L2)(G2

c − L2
c) cos(
 − 
c)

]

+ ε1

2C(1 − δ)

[

(G2 − L2) + (G2
c − L2

c)/δ + 2
√

(G2 − L2)(G2
c − L2

c) cos(
 − 
c)

]

− ε2

2C(1 − δ)

[

(G2 − L2) cos 2
 + (G2
c − L2

c)/δ cos 2
c

+ 2
√

(G2 − L2)(G2
c − L2

c) cos(
 + 
c)

]

. (16)

Let us introduce the canonical change of variables:
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The rotation of Io with a liquid core 5

Fig. 1 The Andoyer’s variables (h, K ) locate the plane perpendicular to the angular momentum with respect
to the inertial frame (�e1, �e2, �e3) (the vector �n1 being along the ascending node of this plane) and the angles
(g, J, 
) locate the first vector of the body frame ( �f1, �f2, �f3) (the vector �n2 being along the ascending node
of the equatorial plane on the plane perpendicular to the angular momentum. The variables (Jc, 
c) locate the
pseudo angular momentum of the core with respect to the mantle body frame

p = 
 + g + h, P = G/N − 1, G = (1 + P)N

q = −
, Q = (G − L)/N , L = (1 + P − Q)N

r = −h, R = (G − H)/N , H = (1 + P − R)N

pc = −
c + gc + hc, Pc = Gc/N − δ, Gc = (δ + Pc)N

qc = 
c, Qc = (Gc + Lc)/N , Lc = −(δ + Pc − Qc)N

rc = −hc, Rc = (Gc − Hc)/N , Hc = (δ + Pc − Rc)N ,

(17)

of multiplier 1/N . The constant N (resp. δN ) is the norm G (resp. Gc) of the angular
momentum (resp. of the pseudo-angular momentum of the core). The Hamiltonian becomes:

H = ω

2(1 − δ)

[
P2 + 2P − 2(1 + P − Q)(δ + Pc − Qc) + (P2

c + 2Pc)/δ

+ 2
√

Q Qc(2 + 2P − Q)(2δ + 2Pc − Qc) cos (q + qc)
]

+ ωε1

2(1 − δ)

[
(2 + 2P − Q)Q + (2δ + 2Pc − Qc)Qc/δ

+2
√

Q Qc(2 + 2P − Q)(2δ + 2Pc − Qc) cos (q + qc)
]

− ωε2

2(1 − δ)

[
(2 + 2P − Q)Q cos 2q + (2δ + 2Pc − Qc)(Qc/δ) cos 2qc

+ 2
√

Q Qc(2 + 2P − Q)(2δ + 2Pc − Qc) cos (q − qc)
]
. (18)

We have used the fact that N/C = ω, the norm of the angular velocity of the full body.
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6 J. Henrard

5 Librations around the equilibrium

Let us introduce the cartesian coordinates x = √
2Q sin q, y = √

2Q cos q and xc =√
2Qc sin qc, yc = √

2Qc cos qc, and let us retain only the quadratic terms. We set P =
Pc = 0, and obtain:

H = ω

2(1 − δ)

[
δ(x2 + y2) + (x2

c + y2
c ) + 2

√
δ (yyc − xxc)

]

+ ωε1

2(1 − δ)

[
(x2 + y2) + (x2

c + y2
c ) + 2

√
δ (yyc − xxc)

]

+ ωε2

2(1 − δ)

[
(x2 − y2) + (x2

c − y2
c ) − 2

√
δ (yyc + xxc)

]
.

(19)

The two degrees of freedom (x, y) and (xc, yc) are not independent of each other. In
order to separate them, we use the canonical “untangling transformation” (see Henrard and
Lemaître 2005):

x = ξ1 cos β − ξ2 sin β, y = ρ[η1 cos β + η2 sin β]
(20)

xc = ρ[−ξ1 sin β + ξ2 cos β], yc = η1 sin β + η2 cos β

The multiplier of this canonical transformation is ρ cos 2β. Let us write the Hamiltonian
(19), as:

ω

2(1 − δ)

[
a11x2 + 2a12xxc + a22x2

c + b11 y2 + 2b12 yyc + b22 y2
c

]
, (21)

with:

a11 = δ + ε1 + ε2, a12 = −√
δ(1 + ε1 + ε2), a22 = 1 + ε1 + ε2

b11 = δ + ε1 − ε2, b12 = √
δ(1 + ε1 − ε2), b22 = 1 + ε1 − ε2.

(22)

After transformation, the cross product terms are:

ξ1ξ2[2a12ρ − (a11 + ρ2a22) sin 2β] + η1η2[2b12ρ + (b11ρ
2 + b22) sin 2β]. (23)

They disappears if sin 2β is defined by:

sin 2β = 2a12ρ

(a11 + a22ρ2)
= −2b12ρ

(b22 + b11ρ2)
= −2

√
δ

1 + δ

[

1 − (1 − δ)

(1 + δ)
ε1

]

. (24)

The above equalities are compatible if:

ρ2 = −a11b12 + a12b22

a12b11 + a22b12
= 1 − 2ε2. (25)

After transformation the Hamiltonian becomes:

H = ω

2

{[
ε1

1 − δ
+ ε2

1 − δ

]

ξ2
1 +

[
ε1

1 − δ
− ε2

1 − δ

]

η2
1

}

+ ω

2

{[

1 + ε1

1 − δ
− δε2

1 − δ

]

ξ2
2 +

[

1 + ε1

1 − δ
+ δε2

1 − δ

]

η2
2

}

. (26)

A change of scale (ξi → ξiαi ) and (ηi → ηi/αi ), with

α4
1 = ε1 − ε2

ε1 + ε2
; α4

2 = 1, (27)
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The rotation of Io with a liquid core 7

leads to:

H = ω1

2
(ξ2

1 + η2
1) + ω2

2
(ξ2

2 + η2
2), (28)

where the frequencies ωi are:

ω1

ω
=

√
ε2

1 − ε2
2

(1 − δ)
; ω2

ω
= 1 + ε1

1 − δ
− δε2

1 − δ
. (29)

When ε2 = 0 (i.e. when the body and the core are axisymmetric), we recover the result of
Touma and Wisdom (2001). Notice that when δ → 0, i.e. when the core vanishes, the angle
β → 0, hence the degree of freedom (ξ1, η1) corresponds to the wobble of the full body and
the degree of freedom (ξ2, η2) corresponds to the motion of the core, which is irrelevant as the
core has disappeared. In that case and when ε2 = 0 we have ω1 → ε1ω and ω2 → (1−ε1)ω.

6 Perturbation of Io by Jupiter

The gravitational pull of Jupiter on the rotation of the mantle of a satellite is modelized by
(see Henrard 2005c):

V = Cmn2
[

d0

d

]3
[

1 + δs

[
d0

d

]2
]

[
δ1(x2 + y2) + δ2(x2 − y2)

]
, (30)

where d is the distance between the planet and the center of mass of the satellite, d0 the
mean value of this distance, Cm = (1 − δ)C the largest moment of inertia of the mantle,
δ1 = −(3/2)(n∗/n)2 (2C − A− B)/2C and δ2 = −(3/2)(n∗/n)2 (B − A)/2C . The constant

n∗ =
√

G MJ /d3
0 is very close to the orbital frequency n = ω. Dividing the potential by ωC

as we did for the Hamiltonian of the free rotation, we obtain:

V

ωC
= ω

[
Cm

C

] [
d0

d

]3
[

1 + δs

[
d0

d

]2
]

[
δ1(x2 + y2) + δ2(x2 − y2)

]
. (31)

The components (x, y) of the unit vector pointing to Jupiter and the distance d are computed
on the basis of the synthetic theory of the motion of Io developed by Lainey (Lainey et al.
2004a,b) as in Henrard (2005c) (Tables 1, 2).

7 Cassini states and librations

As for most regular satellites in the Solar System, the spin period of Io is equal to its orbital
period. In such a case, as Cassini pointed out, the node of the orbit and the node of the equator
have, in the mean, the same period. There is thus a resonance between the angles λ1 and p

Table 1 Constants used in
the theory (Sohl et al. 2002;
Zhang 2003)

J2 = 1.828 × 10−3 C2
2 = 5.537 × 10−4

C ′/M R2
J = 0.376856 RJ /d0 = 0.1693

J2(Jup) = 1.475 × 10−2 C ′/MJ R2
J = 0.26

δ1 = −7.2761 × 10−3 δ2 = −4.4500 × 10−3
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8 J. Henrard

Table 2 The angular variables
in the description of Io orbit
(Lainey 2002)

Angle Frequency (in rd/day) Phase (in rd)

λ1 n1 = 3.551552283 1.446157
λ2 n2 = 1.769322710 5.909624
λ3 n3 = 0.878207924 0.287366
λ4 n4 = 0.376486233 5.921262
�1 �̇1 = 2.664253678 ×10−3 3.079509
�2 �̇2 = 6.779703374 ×10−4 2.934505
�3 �̇3 = 1.272739669 ×10−4 0.771520
�4 �̇4 = 3.206512586 ×10−5 2.407105
�1 �̇1 = −2.315095998 × 10−3 2.828461
�2 �̇2 = −5.692063559 × 10−4 1.047942
�3 �̇3 = −1.249130216 × 10−4 3.326428
�4 �̇4 = −3.056124106 × 10−5 1.655000

 = Laplace lib. 
̇ = 3.050991204 ×10−3 0.471900
λSun nS = 1.450097893 ×10−3 2.108700

Table 3 Obliquity and frequencies (in unit of the orbital frequency) of the free librations

Rc K ∗ (radian) Latitude (ωv) Wobble (ωw) Core (ωc)

δ = 0 0 0.76198 × 10−3 1.10993 × 10−2 0.76969 × 10−2

δ = 0.1 0.63 0.76699 × 10−3 0.99242 × 10−2 0.82848 × 10−2 1.00691
δ = 0.2 0.72 0.77334 × 10−3 0.87491 × 10−2 0.90555 × 10−2 1.00930
δ = 0.3 0.79 0.78166 × 10−3 0.75740 × 10−2 1.00794 × 10−2 1.01219
δ = 0.4 0.83 0.79303 × 10−3 0.63989 × 10−2 1.15087 × 10−2 1.01594

on one hand, and the angles �1 and r . To take this into account,we define the two resonance
angular variables σ and ρ and introduce a new set of canonical variables:

σ = p − L1 + π, P
ρ = r + �1, R.

(32)

The resonant angle σ is defined as the difference between the angle p and the mean
longitude of Jupiter as seen from Io. Similarly ρ is defined as the difference between the
angle h = −r and the ascending node of the orbit of Jupiter. The variable L1 in Lainey’s
theory is the mean longitude of Io as seen from Jupiter. The mean longitude of Jupiter as
seen from Io is thus L1 + π .

The transformation being time dependent we ought to add its remainder function −n1 P +
�̇1 R to the Hamiltonian.

As in (Henrard 2005a, b) we isolate K0 the part of the Hamiltonian which do not depend
on the angular variables describing the perturbed motion of Io. It corresponds to a problem
for which Io is on a circular Keplerian orbit around Jupiter.

Equilibria (the Cassini equilibria) are found for (σ = ρ = x = y = xc = yc = 0)
and P = P∗ and R = R∗ such that the derivatives of K0 with respect to P and R vanish.
The values of P∗ is extremely small (10−10) and the value of K ∗ = cos−1(1 − R∗) for
the main Cassini equilibrium is given in Table 3 for various values of δ. The value of the
mean radius of the core (considering that core and mantle have the same density) is also
given.
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The rotation of Io with a liquid core 9

Expanding K0 in powers of the small canonical departure from the main Cassini’ state:

ξσ = σ, ησ = P − P∗
ξρ = √

2(R − R∗) sin r, ηρ = η∗
ρ + √

2(R − R∗) cos r
ξw = x, ηw = y
ξc = xc, ηc = yc,

(33)

where η∗
ρ = √

2R∗, and keeping only the quadratic terms, we define a linear (and thus inte-
grable) system for which we introduce angle-action variables as in (Henrard 2005c) for the
first two degrees of freedom and as in (20) for the last two:

ξσ = √
2UU∗ sin u − γ

√
2V V ∗ sin v

ησ = (1 − αγ )
√

2U/U∗ cos u − α
√

2U/U∗ cos u

ξρ = α
√

2UU∗ sin u + (1 − αγ )
√

2V V ∗ sin v

ηρ = γ
√

2U/U∗ cos u + √
2U/U∗ cos u

ξw = cos β
√

2W W ∗ sin w − sin β
√

2Z Z∗ sin z

ηw = [cos β
√

2W/W ∗ cos w − sin β
√

2Z/Z∗ cos z]/ cos 2β

ξc = [− sin β
√

2W W ∗ sin w + cos β
√

2Z Z∗ sin z]/ cos 2β

ηc = sin β
√

2W/W ∗ cos w + cos β
√

2Z/Z∗ cos z.

(34)

The parameters α, β, γ and the scaling factors U∗, V ∗, W ∗, Z∗ are function of δ and
adjusted in such a way that, after transformation, the quadratic Hamiltonian reduces to

N = ωuU + ωvV + ωwW + ωz Z . (35)

The frequencies of the free libration in longitude (ωu), of the free libration in latitude (ωv),
of the wobble (ωw) and of the free libration of the core (ωc) are functions of δ and tabulated
in Table 3. The frequency of the free libration in longitude (ωu) does not depend on the value
of δ, and is equal to 0.133556.

8 Perturbation theory

We impose on the perturbation function P = H − N the transformations described in
the previous sections and expand it, up to the fourth degree, in powers of the amplitudes√

2U ,
√

2V ,
√

2W ,
√

2Z of the oscillations around the Cassini’s equilibrium. A fourth order
perturbation theory by Lie transform is now straightforward except that, because of the intro-
duction of an extra frequency ωc, close to the orbital frequency, several harmonics are close
to be resonant. An attempt at averaging all the quasi periodic contributions is bound to fail.
Instead we decided to eliminate from the Hamiltonian only the terms the frequency of which
were much larger than their amplitude. This partial averaging left us with a Hamiltonian
still containing quasi periodic terms such as the ones listed in Table 3. The first two are
not really dangerous. The amplitudes are small and the frequencies do not go to zero. They
can be eliminated in a further transformation with a rather small effect on the solution.
The other terms (and some smaller ones not listed) are of the second order in the ampli-
tudes

√
2U ,

√
2V ,

√
2W ,

√
2Z , which means that the origin (

√
2U = √

2V = √
2W =√

2Z = 0) is still an equilibrium of the partially averaged Hamiltonian. Nevertheless, the exis-
tence of those terms, the frequencies of which goes to zero for some values of the parameter δ

123



10 J. Henrard

Table 4 Frequencies (in unit of 10−2) of some resonant terms

Angular variable Amp. δ = 10−3 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4

λ1 − �1 − z 1 × 10−8 −0.421 −0.626 −0.865 −1.154 −1.529
λ1 − �2 − z 7 × 10−8 −0.471 −0.675 −0.914 −1.203 −1.578
λ1 − �1 + v − z 5 × 10−3 0.687 0.366 0.010 −0.397 −0.889
2λ2 − �2 − �1 + v − z 1 × 10−5 0.304 −0.016 −0.372 −0.779 −1.272
λ1 − 2λ2 + �1 − v − w 1 × 10−5 −0.042 0.134 0.329 0.549 0.809
2λ1 − 2λ2 + w − z 3 × 10−5 0.646 0.501 0.339 0.152 −0.080

Fig. 2 Two of the resonant
frequencies: above the frequency
of the angular variable
λ1 − �1 + v − z, below
the frequency of
2λ2 − �3 − �1 + v − z

(as shown in Table 4) is an indication that the averaging process may be flawed and that the
vicinity of the Cassini equilibrium may be chaotic for values of the parameter δ around
δ = 0.1, where the frequency of the perturbing term in cos(2λ2 − �2 − �1 + v − z) is
close to zero, or around δ = 0.2, where it is the frequency of the rather large perturbing
term cos(λ1 − �1 + v − z) which vanishes, or around δ = 0.4, where it is the frequency of
cos(2λ1 − 2λ2 + w − z) (Fig. 2).

Even if, for particular values of the parameter δ, the possibility of the existence of reso-
nances and chaotic motions in the vicinity of the Cassini equilibrium, may cast a doubt on
the validity of the perturbative approach we have taken, it may be useful to report the effects
of the partial averaging. We list in Table 5 the non-linear corrections to the frequencies of the
free libration (in unit of the orbital frequency). We list also in Tables 6 and 7 the expressions
of P1 and P2, the first two component of the unit vector perpendicular to Jupiter equator
(in the frame of the principal moment of inertia of Io), and, in Tables 8 and 9, the principal
terms of the free librations of these two components.

Tables 6 and 7 show that in general the presence of a liquid core does not modify consid-
erably the behaviour of the spin of Io except for some particular values of the parameter δ

which are such that some combination of frequencies goes to zero implying a second order
resonance. Close to these particular values (for instance for δ = 0.2 and δ = 0.4) new
combination of angular variables appear in the Fourier expansions.
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Table 5 Non-linear corrections to the frequencies of the free librations

Longitude (ωu ) Latitude (ωv) Wobble (ωw) Core (ωc)

δ = 0.001 −3.077 × 10−8 −3.371 × 10−5 −3.327 × 10−5 −0.003 × 10−5

δ = 0.1 −3.083 × 10−8 −3.044 × 10−5 −3.045 × 10−5 −0.296 × 10−5

δ = 0.2 −3.086 × 10−8 −2.689 × 10−5 −2.773 × 10−5 −0.522 × 10−5

δ = 0.3 −3.085 × 10−8 −2.340 × 10−5 −2.479 × 10−5 −0.675 × 10−5

δ = 0.4 −3.086 × 10−8 −1.979 × 10−5 −2.120 × 10−5 −0.812 × 10−5

Table 6 Expressions (truncated at 10−2) of 104 × P1 for different values of δ

δ = 0 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4

sin(λ1 − �1) −7.620 −7.656 −7.478 −7.570 −7.702
sin(λ1 − �2) −1.836 −1.815 −1.826 −1.850 −1.836
sin(λ1 − �3) −0.344 −0.351 −0.335 −0.332 −0.331
sin(λ1 − �4) 0.342 0.349 0.334 0.331 0.329
sin(λ1 − 2λ2 + �2) −0.006 −0.016 −0.007 −0.007 −0.002
sin(3λ1 − 4λ2 + �2) −0.051 −0.232
cos(2λ1 − 2λ2 + �3 − �2) −0.021 −0.004

Table 7 Expressions (truncated at 10−2) of 104 × P2 for different values of δ

δ = 0 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4

cos(λ1 − �1) −7.615 −8.096 −7.800 −7.943 −8.119
cos(λ1 − �2) −1.835 −1.838 −1.843 −1.850 −1.859
cos(λ1 − �3) −0.344 −0.346 −0.328 −0.322 −0.321
cos(λ1 − �4) 0.342 0.344 0.325 0.320 0.319
cos(λ1 − 2λ2 + �2) 0.035 0.017 0.020 0.013 0.004
sin(3λ1 − 4λ2 + �2) −0.012 −0.228

Table 8 Free librations of P1 (truncated at 5 × 10−1)

δ = 0.001 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4

√
2V sin(λ1 − �1 + v) −0.994 −0.990 −0.990 −0.992 −0.992√
2W sin w −0.502 −1.371 −0.854 −1.009 −1.179√
2Z sin z −0.999 −1.700 −1.213 −1.347 −1.507

Table 9 Free librations of P2 (truncated at 10−1)

δ = 0 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4

√
2V cos(λ1 − �1 + v) −0.982 −0.991 −0.986 −0.990 −0.992√
2W cos w 2.008 1.131 1.610 1.440 1.281√
2Z cos z −0.049 −0.331 −0.327 −0.349 −0.349

123



12 J. Henrard

9 Conclusion

This preliminary investigation shows that the consideration of a liquid core introduces in
the problem of the rotation of Io a new frequency (the frequency of the spin of the core)
close to the orbital frequency. The orbital motion and the rotation of Io is already charac-
terized by long period contributions. The introduction of a new frequency close to the main
frequency multiplies the possibility of commensurability and resonance. We have detected
three possible such resonances for values of δ (ratio of the core inertia to the full inertia of
the body) close to 0.1, 0.2 and 0.4. These are second order resonances which do not displace
the Cassini state but might generate a chaotic vicinity around it. Of course, this is a very
preliminary exploration of the effect of a liquid core on the rotation of Io. Our assumptions
on the shape of the cavity containing the core may not be optimal but we do not think this
should alter significantly the results. We plan to test an axi-symmetric model of the cavity
in a further publication. What could be more important is our neglect of the effects of the
possible dissipation occuring at core-mantle boundary. Such effects will also be investigated
in further publications.
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