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Abstract Possible rotation states of two satellites of Saturn, Prometheus (S16) and Pandora
(S17), are studied by means of numerical experiments. The attitude stability of all possible
modes of synchronous rotation and the motion close to these modes is analyzed by means
of computation of the Lyapunov spectra of the motion. The stability analysis confirms that
the rotation of Prometheus and Pandora might be chaotic, though the possibility of regular
behaviour is not excluded. For the both satellites, the attitude instability zones form series
of concentric belts enclosing the main synchronous resonance center in the phase space
sections. A hypothesis is put forward that these belts might form “barriers” for capturing
the satellites in synchronous rotation. The satellites in chaotic rotation can mimic ordinary
regular synchronous behaviour: they preserve preferred orientation for long periods of time,
the largest axis of satellite’s figure being directed approximately towards Saturn.

Keywords Resonances · Chaotic motion · Rotational dynamics · Satellites of Saturn:
Prometheus, Pandora · Chaotic satellite rotation

1 Introduction

In 1980s, Wisdom et al. (1984) and Wisdom (1987) demonstrated theoretically that a plane-
tary satellite of non-spherical shape in an elliptic orbit can rotate in a chaotic, unpredictable
way. They found that the most probable candidate for the chaotic rotation, due to pronounced
shape asymmetry and significant orbital eccentricity, was the satellite of Saturn Hyperion
(S7). Later on, a direct modelling of observed light curves of Hyperion (Klavetter 1989a,b,
Thomas et al. 1995, Black et al. 1995, Devyatkin et al. 2002) confirmed the chaotic character
of its rotation.
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32 A. V. Melnikov, I. I. Shevchenko

Recently it was found in a theoretical research (Kouprianov and Shevchenko 2005), that
two other satellites of Saturn, Prometheus (S16) and Pandora (S17), can also reside in a state
of chaotic rotation. Contrary to the case of Hyperion, chaos in rotation of these two satellites
is due to fine-tuning of the dynamical and physical parameters rather than simply to a large
extent of a chaotic zone in the rotational phase space.

It is remarkable that the orbital dynamics of Prometheus and Pandora are known to be cha-
otic with the Lyapunov time of only 3 years, and this dynamical chaos is directly observed
(see Goldreich and Rappaport 2003a,b, Cooper and Murray 2004, Farmer and Goldreich
2006). However note that the theoretical inferences on chaos in rotation of these satellites
are completely independent from the existence of orbital chaos.

In the present paper we study the problem of rotational dynamics of these two satel-
lites in detail, exploring the attitude stability not only in the centers of synchronous reso-
nances, but also in the phase space in the vicinities of the resonances. Our analysis includes
period-doubling bifurcation modes of synchronous spin–orbit states. We take into account
all available modern observational data.

An important problem, first of all from the observational point of view, is the following:
whether there exists a preferred orientation of the satellites rotating chaotically, or all orienta-
tions are equiprobable? The orientation of a satellite in chaotic rotation, generally speaking,
is not necessarily isotropic. This was demonstrated in a numerical experiment by Wisdom
(1987) in calculating the rotation of Phobos in the vicinities of the separatrices of the 1:2
spin–orbit resonance (see Fig. 5 in Wisdom 1987).

The plan of the present work is as follows. First, we study the attitude stability of the planar
rotation of Prometheus and Pandora with respect to tilting the axis of rotation. The stability
analysis is carried out for all possible exact modes of synchronous resonance (α-resonance,
β-resonance, and the period-doubling bifurcation mode of α-resonance), as well as for the
trajectories of all possible kinds (periodic, quasiperiodic, chaotic in the planar problem) on a
representative section of the phase space of planar rotation. Then the problem on the preferred
orientation of Prometheus and Pandora in chaotic rotation is considered.

2 The reference frame and the equations of motion

We suppose that a satellite represents a non-spherical rigid body moving around a planet
(a gravitating point) in a non-perturbed elliptic orbit with the eccentricity e. Location of
the satellite in the orbit is determined by the true anomaly f or the eccentric anomaly
E . The shape of the satellite is described by a triaxial ellipsoid with the principal semiaxes
a > b > c and the corresponding principal central moments of inertia A < B < C . The
size of the satellite is much less than the radius of the orbital motion. The dynamics of the
three-dimensional rotation of the satellite is determined by the parameters e, b/a, c/b and
the initial conditions of the motion. The angular velocities of rotation are expressed in the
units of the orbital mean motion, and the “satellite–planet” distance is expressed in the units
of the semimajor axis of the orbit. One orbital period corresponds to 2π time units.

The oblateness of Saturn causes precession of the pericenters of the orbits of the satel-
lites, the precession rate being equal to 3.1911 × 10−5◦s−1 in the case of Prometheus and
3.0082 × 10−5◦s−1 in the case of Pandora (Goldreich and Rappaport 2003b). Hence the
periods of precession are equal to 0.36 and 0.38 year, respectively. This is much greater that
the Lyapunov times (<1 d; see Kouprianov and Shevchenko 2005) of the rotation of these
satellites, if it were chaotic. Since the timescales are so different, we ignore the precession
of orbits in our study.
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On the rotational dynamics of Prometheus and Pandora 33

For describing the orientation of the satellite we use an inertial frame identical to that used
in Wisdom et al. (1984) and Melnikov and Shevchenko (1998, 2000). This Oxyz frame is
defined initially at the pericenter of the orbit as follows: the x axis is directed along the “orbit
pericenter–planet” vector, the y axis is parallel to the vector of the orbital velocity at the
pericenter, the z axis is orthogonal to the orbital plane and completes the reference system to
a right-handed system. Orientation of the satellite with respect to the axes of the Oxyz frame
is defined by a sequence of imaginary rotations of the satellite by the Euler angles θ , φ, ψ
from an initial position until the satellite reaches its actual orientation. In the initial position
the axes a, b, c coincide with the axes x , y, z, respectively. The axes a, b, c are directed along
the principal axes of inertia with the moments A, B, C , respectively, and are “frozen” in the
satellite. The imaginary rotations are carried out in the following sequence: first, rotation by
θ about c, second, rotation by φ about a, and third, rotation by ψ about b.

The definition of the Euler angles adopted here is identical to that described and used by
Wisdom et al. (1984) and is different from the usual one. The reason for using the alterna-
tive Euler angle set is that the standard one has a coordinate singularity at the point where a
satellite’s c axis (the axis of the maximum moment of inertia) is orthogonal to the orbit plane.
In the adopted frame this position corresponds to φ = 0, while the singularity is shifted to
φ = ±π/2. The latter value corresponds to the satellite’s axis of rotation lying in the orbit
plane.

Rotation of the satellite is described by Euler’s dynamic and kinematic equations. The
dynamic equations (Beletsky 1965, Wisdom et al. 1984) can be written as

⎧
⎪⎨

⎪⎩

A dωa
dt − ωbωc(B − C) = −3 G M

r3 βγ (B − C),

B dωb
dt − ωcωa(C − A) = −3 G M

r3 γα(C − A),

C dωc
dt − ωaωb(A − B) = −3 G M

r3 αβ(A − B).

(1)

Here G is the gravitational constant; M is the mass of the planet; ωa , ωb, ωc are the projec-
tions of the vector of the angular velocity ω on the axes a, b, c; r = a(1 − e cos E) is the
“satellite—planet” distance, a is the semimajor axis of the orbit; α, β, γ are the direction
cosines of the principal axes of inertia with respect to the direction to the planet.

The kinematic equations and expressions for direction cosines, in the reference frame used
here, according to (Wisdom et al. 1984, Melnikov and Shevchenko 1998), are given by

⎧
⎪⎨

⎪⎩

ωa = dθ
dt sin φ sinψ + dφ

dt cosψ,

ωb = dθ
dt sin φ cosψ − dφ

dt sinψ,

ωc = dθ
dt cosφ + dψ

dt ,

(2)

⎧
⎨

⎩

α = cos(θ − f ) cosψ − sin(θ − f ) cosφ sinψ,
β = − cos(θ − f ) sinψ − sin(θ − f ) cosφ cosψ,
γ = sin(θ − f ) cosφ.

(3)

Eqs. 1–3 are used in what follows for calculation of the rotational dynamics.

3 Synchronous resonance regimes and attitude stability of rotation

3.1 The “Amalthea effect”

In Melnikov and Shevchenko (1998, 2000) it was found for Amalthea (J5) that two different
synchronous regimes of rotation, “α-resonance” and “β-resonance”, coexist in the phase
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space of rotation of this satellite. By means of calculation of the Lyapunov characteristic
exponents (LCEs), Melnikov and Shevchenko (1998) showed that the planar rotation of
Amalthea in the β-resonance center and its neighbourhood was stable with respect to tilting
the axis of rotation, while its rotation in the α-resonance center and its neighbourhood was
unstable. (Note that the terms “α-resonance” and “β-resonance” had not yet been used in that
paper.) In Melnikov and Shevchenko (2000) by means of calculation and statistical analysis
of the multipliers of the periodic solutions corresponding to the α- and β-resonances, the
stability of rotation of Amalthea at the centers of the both modes was investigated on a grid
of values of the inertial parameters. The conclusion was made that Amalthea could not reside
in α-resonance.

Let us introduce the parameter ω0 = √
3(B − A)/C , which is the frequency of small-

amplitude oscillations of a satellite in synchronous resonance (see Wisdom et al. 1984,
Shevchenko 1999). It roughly characterizes the dynamical asymmetry of the satellite shape.
If we accept the data of EA (1999), then ω0 = 1.058 for Prometheus and ω0 = 0.812 for
Pandora.

For two centers of synchronous resonance to coexist in the phase space of rotational
motion (the “Amalthea effect”), the ω0 parameter must exceed unity slightly; see Figs. 1
and 2 in Melnikov and Shevchenko (2000) and also Fig. 3 in the present paper. Note that, in
addition, the orbital eccentricity must obey a certain constraint: it must not be too high. The
limit on the eccentricity, which allows coexistence of the periodic solutions corresponding to

Fig. 1 (a) Location of the
satellites with known values
of the shape parameters in the
“e–ω0” diagram. (b) Location
of Prometheus (crosses) and
Pandora (circles) in the diagram
“e–ω0” according to Table 1

a

b
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On the rotational dynamics of Prometheus and Pandora 35

Fig. 2 The phase space section of the planar rotational motion of Prometheus. The exact synchronous reso-
nance modes are indicated

Fig. 3 The dθ/dt coordinates of the centers of synchronous resonance in the phase space section in depen-
dence on the ω0 parameter. The curves starting on the left side of the plot correspond to α-resonance, those
starting on the right side correspond to β-resonance

α-resonance and β-resonance, is as follows: e < 4
√

3
9 (ω0 − 1)3/2 (Beletsky 1965, Chap. 2;

Markeev 1990, p. 366).
The “Amalthea effect” takes place for prolate satellites. Indeed, ω0 = √

3(B − A)/C =√
3(a2 − b2)/(a2 + b2) for a triaxial ellipsoid with homogeneous density (see Kouprianov

and Shevchenko 2006, p. 396). The parameter ω0 > 1 if c < b < a/
√

2. In other words, two
semiaxes should be less than ≈0.7 of the third one. The “Amalthea effect” was considered
and discussed in detail in Kouprianov and Shevchenko (2006) and Melnikov and Shevchenko
(2007). It was shown that this effect might be abundant amongst minor planetary satellites
(the satellites with diameters < 100 km) moving in close-to-circular orbits.

3.2 Synchronous states: α-resonance, β-resonance and period-doubling bifurcation mode
of α-resonance

The available data on the parameters of the figures of Prometheus and Pandora are collected
in Table 1. Note that the data on the shapes of Prometheus and Pandora derived by Thomas

123



36 A. V. Melnikov, I. I. Shevchenko

Table 1 The shape parameters for Prometheus and Pandora

Prometheus (S16) Pandora (S17) References

b/a c/b b/a c/b

0.714 0.740 0.764 0.786 Wisdom (1987)
0.676 0.680 0.800 0.705 Thomas (1989)
0.586 0.706 0.737 0.738 Stooke (1993)
0.608 0.726 0.741 0.782 Goździewski and Maciejewski (1995)
0.676 0.680 0.800 0.705 EA (1999)
0.734 0.696 0.773 0.804 Porco et al. (2006)

(1989) are tabulated in the reports by Seidelmann et al. (2002, 2005, 2007). Besides, the
data on the adopted positions of the poles of Prometheus and Pandora can be found in these
reports; these data are the same in the three references. We set the orbital eccentricity equal
to e = 0.002 for Prometheus and e = 0.004 for Pandora, as in EA (1999). According to
(Goldreich and Rappaport, 2003a, Figs. 5 and 6), on the timescale of 20 years the eccentricity
of Prometheus varies in the limits 2.27×10−3–2.30×10−3, and that of Pandora in the limits
4.35 × 10−3–4.38 × 10−3 (see also French et al. 2003).

The “e–ω0” diagram for the satellites with known values of the shape parameters, based
on the data compiled in Kouprianov and Shevchenko (2005), is shown in Fig. 1a. The theoret-
ical boundaries of the zones of existence of α-resonance, β-resonance, and period-doubling
bifurcation mode αbif of α-resonance are indicated according to the data in Melnikov (2001).

As follows from Fig. 1a, period-doubling bifurcation mode αbif of α-resonance can be
present in the phase space of rotation of Prometheus and Pandora. For Pandora, this confirms
an earlier analysis by Melnikov (2001) made on the basis of a single estimate of the inertial
parameters. In Fig. 1b, a part of the “e–ω0” diagram with location of Prometheus and Pan-
dora indicated according to the data of Table 1 is given in higher resolution. In the case of
Pandora, β-resonance does not exist for all the data considered. In the case of Prometheus,
β-resonance does not exist only for the data due to Wisdom (1987) and Porco et al. (2006).
According to all other sources, Prometheus lies in the zone of existence of this mode. For
all the data on Prometheus and Pandora, period-doubling bifurcation mode of α-resonance
exists.

In Fig. 2, the phase space section of the planar rotational motion of Prometheus is shown.
The section is defined at the pericenter of the orbit; i.e., the variables are mapped each orbital
period. Note that the planar problem (that with φ = ψ = 0) has one and a half degrees of
freedom. The center of α-resonance (the lower one in the section) and that of β-resonance
(the upper one) are indicated in the section. Besides, there is period-doubling bifurcation
mode αbif , that manifests itself in the two prominent regular islands inside the chaotic layer
at the left and at the right sides from the center of β-resonance.

We see that Prometheus is subject to the “Amalthea effect”. In a different terminology this
was noted in Melnikov (2001). What is more, period-doubling bifurcation mode of α-reso-
nance is possible for this satellite, i.e., the potentially possible rotational dynamics are very
rich.

3.3 Attitude stability of exact synchronous rotation

Let us consider the stability of synchronous rotation of Prometheus and Pandora with
respect to tilting the axis of rotation in the cases of exact α-resonance, β-resonance, and
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On the rotational dynamics of Prometheus and Pandora 37

period-doubling bifurcation mode αbif . Melnikov and Shevchenko (2000) and Kouprianov
and Shevchenko (2005) performed a research of the stability on the (A/C , B/C) plane. Here
we use another plane, namely, the (c/b, b/a) plane1, which is more graphical.

In the cases of α-resonance and β-resonance we use a method based on the analysis of
the modal structure of the differential distribution of the computed modules of multipliers of
periodic solutions of the equations of motion. The method is described in detail in Melnikov
and Shevchenko (2000).

In the considered problem, the system of equations of motion in variations with respect
to the periodic solution consists of six linear differential equations of the first order with
periodic coefficients. Numerical integration of the system allows one to obtain the matrix
of linear transformation of variations for one period (see Wisdom et al. 1984). The periodic
solutions in the given problem are characterized by three pairs of multipliers. The distribu-
tions of the modules of multipliers are built for a set of trajectories corresponding to a center
of synchronous resonance on a grid of values of the b/a and c/b parameters. Analysis of the
distributions (see Melnikov and Shevchenko 2000) allows one to separate orbits stable with
respect to tilting the axis of rotation from those which are unstable.

Analysis of the attitude stability of period-doubling bifurcation mode αbif is carried out
by means of computation of the whole spectrum of the LCEs for a set of values of the b/a
and c/b parameters, followed by analysis of the differential distributions of the computed
values of the LCEs. By means of a similar method we investigated the stability of rotation
of planetary satellites (Melnikov and Shevchenko 1998) on sets of initial data of the trajec-
tories. Here the distributions of the LCE values for the trajectories with the initial data taken
at exact period-doubling bifurcation mode αbif are built on a grid of values of the b/a and
c/b parameters. We set the grid resolution equal to 0.001 in both b/a and c/b axes. Analysis
of the modal structure of the distributions allows one to separate the stable trajectories, for
which all three indices are zero, and the unstable ones for which at least one of the LCEs is
distinct from zero.

The true values of the LCEs are supposed to be the limits of the computed values when the
time of computation tends to infinity. The time of computation is necessarily finite. However,
it is implied henceforth that the obtained numerical values in the case of chaotic trajectories
represent the true LCE values, because the time of computation was taken to be long enough
for the computed LCEs of the chaotic trajectories to saturate (i.e., increasing the computation
time would not make the computed LCE values less; a “plateau” is reached in each case).
In what concerns the regular trajectories, the obtained numerical values of the LCEs tend to
zero with increasing the computation time.

For the computation of the LCE spectra, we use the HQRB method (von Bremen et al.
1997), programmed as a software package in Shevchenko and Kouprianov (2002)
and Kouprianov and Shevchenko (2003). The Dormand–Prince integrator DOPRI8
(Hairer et al. 1987), realizing in Fortran the 8th order Runge–Kutta method with the step
size control, is used for integration of equations of motion (1), (2).

In Fig. 3, the dθ/dt coordinates of the centers of synchronous resonance in the phase
space section in dependence on the ω0 parameter are shown for the values of the orbital
eccentricities of both satellites. The curves starting on the left side of the plot correspond to
α-resonance, those starting on the right side correspond to β-resonance. As it is clear from
Fig. 3, α- and β-resonances coexist in a substantial interval of ω0, if the orbital eccentricities
are so small. β-resonance is born at ω0≈1; α-resonance disappears at a large value of ω0, out

1 We are grateful to A. Doborovolskis for the advice to use the given coordinates.
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of the presented plot limit. The problem of bifurcations causing the birth and disappearance
of α- and β-resonances is considered in brief by Melnikov and Shevchenko (2000).

The computed regions of stability and instability are shown in Fig. 4 (for Prometheus)
and in Fig. 5 (for Pandora). The regions of stability are shown in light gray, the regions of
minimum (one degree of freedom) instability are shown in dark gray, and the regions of
maximum (two degrees of freedom) instability are shown in black. The lines of constant
value of the ω0 parameter are depicted for orientation.

It follows from the diagrams in Fig. 4a, b that α-resonance is attitude unstable for most of
the observational data for Prometheus. Earlier this instability was noted in Melnikov (2001)
and Kouprianov and Shevchenko (2005) on the basis of a single estimate of the inertial param-
eters. In the case of the data due to Porco et al. (2006), α-resonance is close to instability.
Rotation of Prometheus in β-resonance is close to instability, in agreement with an inference
by Kouprianov and Shevchenko (2005). In the case of Pandora (see Fig. 5a), rotation in α-
resonance is close to instability for the data of Wisdom (1987), Thomas (1989) and Porco
et al. (2006) and is unstable for the data of Stooke (1993) and Goździewski and Maciejewski
(1995), in general agreement with Kouprianov and Shevchenko (2005), where the stability
analysis was based on a single estimate of the inertial parameters.

From the diagrams in Figs. 4c and Fig. 5b it is clear that synchronous rotation in the αbif

mode is attitude unstable for both Prometheus and Pandora.

3.4 Attitude stability in the general case

Not only the stability in exact synchronous rotation is of interest. Let us study the attitude
stability of the trajectories in the vicinities of the exact synchronous states on representative
sets of initial data. Computation of the LCEs on a grid of initial data, followed by analysis of
the distributions of the computed LCEc, enables one to accomplish such a study. A similar
study with the use of the maximum LCEs was carried out in Melnikov and Shevchenko (1998)
for Phobos, Deimos, Amalthea, and Hyperion. Here we study Prometheus and Pandora by
means of analysis of the LCE spectra. Besides, we significantly increase the resolution of
the initial data grid, as well as the time interval on which the LCEs are computed. For the
surface of section we choose the (θ , dθ/dt) plane taken at t = 2πm, m = 0, 1, 2, . . ., i.e.,
defined at the orbit pericenter. In the computations we adopt the values of b/a and c/b as
given in EA (1999) (see Table 1).

The computation of the LCEs has been carried out for two sets of trajectories, (i) and
(ii), defined by the following choice of initial data: (i) θ = 0, (ii) θ = π/2; and in the both
sets dθ/dt is taken in the range from −0.5 to 2.5 with the step equal to 0.003 in the case
of Prometheus, and in the range from 0.0 to 2.0 with the step equal to 0.002 in the case of
Pandora. The initial conditions also include φ = ψ = 0, dφ/dt = dψ/dt = 0; the motion
starts (i.e., t = 0) at the pericenter. Thus the LCEs have been computed for 2000 trajectories
for each satellite.

Following Melnikov and Shevchenko (1998), in order to separate the regular and cha-
otic orbits, we build differential distributions of the computed LCE values. The distribution
has two peaks; one of them corresponds to the chaotic orbits, and one to the regular orbits.
On increasing the time interval of integration, the peak corresponding to the chaotic orbits
remains motionless, while the abscissa of the peak corresponding to the regular orbits tends
to zero (or to minus infinity in the logarithmic scale). Thus the sets of regular and chaotic
trajectories are separated. The abscissa of a point between the peaks gives the numeric crite-
rion for separation of the sets. Increasing the time interval of integration allows one to make
this numeric criterion more precise.
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On the rotational dynamics of Prometheus and Pandora 39

Fig. 4 Regions of stability and
instability with respect to tilting
the axis of rotation; e = 0.002
(Prometheus): (a) for the center
of α-resonance, (b) for the center
of β-resonance, (c) for the exact
period-doubling bifurcation mode
of α-resonance. The locations of
Prometheus according to the data
of Table 1 are indicated by crosses
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Fig. 5 Regions of stability and instability with respect to tilting the axis of rotation; e = 0.004 (Pandora):
(a) for the center of α-resonance, (b) for the exact period-doubling bifurcation mode of α-resonance. The
locations of Pandora according to the data of Table 1 are indicated by crosses

The LCE dependences on the initial value of dθ/dt in the case of θ = 0 are shown in Fig. 6.
They have been computed on the time intervals t = 104 and 105. From the plots it is clear that
with increasing the integration time the computed LCE values for the chaotic trajectories re-
main constant, while the computed LCE values for the regular trajectories decrease. The hori-
zontal dashed lines in the plots correspond to the adopted value of the LCE decimal logarithm
(equal to −3 in all cases) separating the chaotic and regular trajectories. This criterion has been
derived by means of building the distributions of the computed values of the LCEs at t = 105.
It separates the peaks corresponding to the chaotic and regular trajectories in the distributions.

The separation of the regular and chaotic orbits, accomplished by means of analysis of
the LCE distributions, allows one to build two variants of the phase space section, one for all
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On the rotational dynamics of Prometheus and Pandora 41

Fig. 6 The dependence of the
LCEs on initial data. (a)
e = 0.002, ω0 = 1.058
(Prometheus); (b) e = 0.004,
ω0 = 0.812 (Pandora). The gray
curves correspond to the
computation time t = 104, the
black curves to t = 105. The
horizontal dashed lines
correspond to the adopted value
of the LCE decimal logarithm
(equal to −3 in all cases)
separating the chaotic and
regular trajectories

a

b

trajectories, and the other one only for the attitude stable trajectories. These double variants
are shown for Prometheus in Figs. 7a, b, and for Pandora in Figs. 8a, b. The phase space
sections for all trajectories are shown in Figs. 7a, 8a, while those for the attitude stable tra-
jectories solely are shown in Figs. 7b and 8b. In order that structure of the section containing
all trajectories were clearly discernible, it is constructed with a relatively low resolution of
the initial data grid.

In the case of Prometheus (Figs. 2, 7a), there are two centers of synchronous resonance:
α-resonance (the lower one in the section) and β-resonance (the upper one). Besides, there
exists period-doubling bifurcation mode αbif , located inside the chaotic layer at the left and
right sides of the center of β-resonance. The librational trajectories are attitude stable only
in the nearest neighbourhood of the center of β-resonance. Alternation of ring-like zones of
stable and unstable motion is clearly seen for the librational trajectories enclosing the major
synchronous state. This alternation is also clearly noticeable in Fig. 6a, where the computed
values of the LCEs are given in function of the initial dθ/dt value. A broad band of quasipe-
riodic trajectories under the lower branch of the basic chaotic layer is attitude unstable. On
the contrary, the motion above the upper branch of the layer is stable.

In the case of Pandora (Fig. 8), there exists period-doubling bifurcation mode αbif located
inside the chaotic layer at the left and right sides of the center of α-resonance. Alternation
of ring-like zones of attitude stable and unstable librational trajectories enclosing the main
synchronous state is even more pronounced than in the case of Prometheus.
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42 A. V. Melnikov, I. I. Shevchenko

Fig. 7 The phase space section for e = 0.002, ω0 = 1.058 (Prometheus): (a) all trajectories, (b) only attitude
stable ones

During the process of tidal capture in synchronous resonance, both satellites inevitably
cross these intermittent belts of attitude instability. When such belts are present, attaining
exact resonance might be more difficult in comparison with the usual situation when they are
absent, because the satellite would tend to deviate from planar rotation in these zones, due
to the attitude instability. So, one can put forward a hypothesis that these belts might form
“barriers” for capturing the satellites in synchronous rotation. Some numerical-experimental
as well as theoretical work is necessary to infer whether this hypothesis is right or not. In
particular, it is necessary to compare the timescale of developing the attitude instability in a
belt with that of crossing the belt due to tidal evolution.

4 Preferred orientation in chaotic rotation

In a theoretical research (Kouprianov and Shevchenko 2005) it was found that Prometheus
and Pandora are likely to be in a state of chaotic rotation. An important problem is whether
there exists a preferred orientation of the satellites in chaotic rotation, or their “chaotic tum-
bling” is isotropic? This is important for drawing conclusions about the character of rotation
from observational data.
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Fig. 8 The phase space section for e = 0.004, ω0 = 0.812 (Pandora): (a) all trajectories, (b) only attitude
stable ones

For describing rotation of a satellite we use a set of Euler angles adopted in Wisdom
(1987). It is different from that used above. The reason for the change is that the anisotropy
of orientation with respect to the direction to the planet is described straightforwardly in the
new set. The difference between the old set and the new one consists in the sequence of
imaginary rotations by the angles from the initial position (identical to that in the old system;
see above) to the actual orientation of the satellite. In the new set, the rotation is made first
by θ about c, second, by φ about b, third, by −ψ about a, until the axes of inertia of the
satellite coincide with the actual orientation.

Therefore the angle φ in the new set is the angle between the largest axis of satellite’s
figure (the axis of the minimum moment of inertia) and the orbit plane, and the angle (θ − f )
is the angle between the direction to the planet and the plane containing the largest axis of
satellite’s figure and orthogonal to the orbit plane.

Wisdom (1987) constructed projection of a chaotic trajectory of spatial rotational motion
of Phobos to the plane (φ, θ −nt), where n is the orbital mean motion (see Fig. 5 in (Wisdom
1987); note that θ− f ≈θ−nt for small eccentricities). The rotation of Phobos with the model
initial conditions close to the separatrices of the 1:2 spin–orbit resonance was considered.
Planar rotation of Phobos is unstable with respect to tilting the axis of rotation not only near
the separatrices of this resonance, but also practically in the whole 1:2 resonance zone in the
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b

a

Fig. 9 Orientation of Prometheus in chaotic rotation. (a) Projection of the chaotic trajectory to the (φ, θ − f )
plane. The integration time is 1,000 orbital periods. (b) A three-dimensional density plot of the discrete
projections of the trajectory to the plane (φ, θ − f ). The integration time is 10,000 orbital periods

phase space (Wisdom 1987). Figure 5 in Wisdom (1987) shows that spatial rotation of Phobos
with such initial conditions is not totally chaotic: there is a preferred orientation of the largest
axis of satellite’s figure in the direction to the planet. Let us consider an analogous graph for
the chaotic motion of Prometheus close to synchronous 1:1 resonance. In the computation we
adopt the values of b/a and c/b as given in EA (1999) (see Table 1). The resulting projection
of the spatial chaotic trajectory to the plane (φ, θ − f ) is shown in Fig. 9a.

Besides, in Fig. 9b, we build a three-dimensional density plot of the discrete projections
of the trajectory to the plane (φ, θ − f ). The output time step is taken equal to 0.01 of the
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orbital period. The square (φ, θ − f ) ∈ (−π/2, π/2)× (−π/2, π/2) is divided in a grid of
40 × 40 pixels. The quantity N designates the number of the trajectory output points in a
given pixel.

The initial data is taken inside the chaotic layer of the resonance in the phase space section
of planar rotation. The graph in Fig. 9a is built for a trajectory on the time interval of 1,000
orbital periods, and that in Fig. 9b is built for the same trajectory on the time interval of
10,000 orbital periods. We present the graphs only for Prometheus; in the case of Pandora
they look very similar.

The semimajor axes of the orbits of Prometheus and Pandora are equal to 139,400 km
and 141,700 km, respectively (French et al. 2003); the mean radius of Saturn is equal to
57,600 km. It follows then that the relative area of Saturn’s disk as seen from the satellite
(with respect to the area of the celestial hemisphere) is 8.9% for Prometheus and 8.6% for
Pandora. These values give the average relative time that the largest axes of figures of these
satellites would be oriented in the direction to Saturn, if orientations of the satellites during
the chaotic “tumbling” were isotropic. For the chaotic trajectory presented in Fig. 9 we have
calculated the values of the average relative time of orientation towards Saturn; they have
turned out to be equal to ≈30% for Prometheus and ≈22% for Pandora for the time interval
of integration of 10,000 orbital periods, i.e., the “isotropic norm” is exceeded 3.3 and 2.6
times, respectively. From the plots in Fig. 9a, b and these numerical estimates it is clear that
there exists preferred orientation of the largest satellites’ axes in the direction to Saturn, at
least for the given test trajectory.

More extensive additional test computations show that for the used time interval of inte-
gration of 10,000 orbital periods the values of the average relative time of orientation towards
Saturn depend on the choice of initial data. The obtained values are in the range of 20–30%.
The deviations may indicate that the observed anisotropy is a temporary effect due to specific
initial conditions, and long term diffusion leads to its disappearance. This remains an open
problem.

5 Conclusions

We have studied possible rotation states of two small moons of Saturn, Prometheus and
Pandora. There are two different regimes of synchronous rotation in the phase space of pla-
nar rotational motion of Prometheus: α-resonance and β-resonance, i.e., it is subject to the
“Amalthea effect”. Pandora has α-resonance only. Our analysis of stability of planar rotation
of these satellites with respect to tilting the axis of rotation has shown that α-resonance for
Prometheus is unstable or close to instability, i.e., the satellite most probably cannot reside
in the given regime of synchronous rotation. Rotation of Prometheus in β-resonance, as well
as rotation of Pandora in its only possible α-resonance, is close to the attitude instability.
Both satellites also possess period-doubling bifurcation mode of α-resonance in the phase
space of rotation. Rotation of both Prometheus and Pandora in this mode is attitude unstable.
With respect to multiplicity of synchronous states in the phase space, Prometheus is unique
amongst the satellites with known inertial and orbital parameters. So, whether it is in chaotic
rotation or not, its potential rotational dynamics are rich and complicated. To a less extent
the same is true for Pandora.

Our analysis of the attitude stability of planar rotation of Prometheus and Pandora for
trajectories of various sort (periodic, quasiperiodic, chaotic) on a representative set of initial
data, carried out by means of computation of the Lyapunov spectra, has shown presence of
alternating concentric ring-like zones of stable and unstable trajectories around the major
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synchronous states for both satellites. Hypothetically, the belts of attitude instability might
form “barriers” for capturing the satellites in synchronous rotation.

In a numerical experiment we have demonstrated that the satellites in chaotic rotation can
mimic ordinary regular synchronous behaviour: they can have preferred orientation for long
periods of time, the largest axis of satellite’s figure being directed approximately towards
the planet. The presence of such anisotropy of orientation of the satellites in chaotic rotation
might prevent clearing up the character of rotation in observations. Whether this anisotropy
is a temporary effect due to specific initial conditions, with long term diffusion leading to its
disappearance, remains an open problem.
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