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Abstract The motion of charged particle in longitudinal waves is a paradigm for the
transition to large scale chaos in Hamiltonian systems. Recently a test cold electron beam
has been used to observe its non-self-consistent interaction with externally excited wave(s)
in a specially designed Traveling Wave Tube (TWT). The velocity distribution function of
the electron beam is recorded with a trochoidal energy analyzer at the output of the TWT.
An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the
slow wave structure (a 4 m long helix) of the TWT. The resonant velocity domain associated
to a single wave is observed, as well as the transition to large scale chaos when the reso-
nant domains of two waves and their secondary resonances overlap. This transition exhibits
a “devil’s staircase” behavior when increasing the excitation amplitude in agreement with
numerical simulation. A new strategy for control of chaos by building barriers of transport
which prevent electrons to escape from a given velocity region as well as its robustness are
also successfully tested. Thus generic features of Hamiltonian chaos have been experimen-
tally observed.

Keywords Hamiltonian chaos · KAM tori · Resonance overlap · Devil’s staircase ·
Traveling wave tube · Large scale chaos (LSC) · Control of chaos

PACS 52.35.Fp · 05.45.−a · 05.60.−k

F. Doveil (B) · A. Aïssi
Équipe Turbulence Plasma, Physique des Interactions Ioniques et Moléculaires,
UMR 6633 CNRS–Université de Provence, case 321, Centre de Saint-Jérôme,
13397 Marseille cedex 20, France
e-mail: doveil@up.univ-mrs.fr

A. Aïssi
e-mail: aaissi@up.univ-mrs.fr

A. Macor
Association Euratom-CEA, CEA/DSM/IRFM, CEA/Cadarache,
13108 Saint Paul-lez-Durance cedex, France
e-mail: alessandro.macor@cea.fr

123



256 F. Doveil et al.

1 Introduction

The destruction of KAM tori is at the root of the transition to chaos in non integrable
Hamiltonian systems (Arnold 1974). Beside Celestial Mechanics this transition governs the
understanding of many physical systems and examples of applications can be found in many
branches of physics: beam collimation in particle physics, chaotic mixing in hydrodynam-
ics, plasma confinement in magnetic fusion devices. Another example is the motion of a
charged particle in the field of longitudinal waves. This latter case can even be considered as
a paradigm for the transition to large scale chaos.

Wave particle interaction is central in the operation of a Traveling Wave Tube (TWT).
In such a device a cold electron beam is used to transfer its energy to a wave through
self-consistent effects where the wave acts on the beam electrons by electrostatic forces but
the modulated beam charge also reacts on the wave propagation and may produce exponen-
tial growth of the wave amplitude. Actively developed just after second world war as radar
amplifiers, TWTs are still commonly used owing to their great robustness and wide band
capability. We present recent experiments in a specially designed TWT where a very low
intensity electron beam is used. The beam is unable to self-consistently induce any appre-
ciable wave growth along the length of the device. The beam particles merely behave as test
electric charges and we are thus in a good position to observe the motion of charged particles
in externally launched waves.

The paper is organized as follows. In Sect. 2, we recall how the 1,5 degree of freedom
Hamiltonian system describing the motion of a charged particle in longitudinal waves can be
considered as a paradigm for Hamiltonian systems. In Sect. 3, we present the TWT. Section 4
deals with the case where a single wave is launched and the resonant domain associated to
the wave in phase space is experimentally measured. Section 5 considers the case of two
launched waves: resonance overlap is observed as well as the transition to large scale chaos
with the underlying devil’s staircase. Section 6 reports how a new strategy of control of chaos
has been successfully tested: it consists in adding a small apt perturbation in the form of a
third wave to locally restore a KAM barrier in phase space. Section 7 gives our conclusion
and states the perspectives opened by this work.

2 A paradigm Hamiltonian

We will restrict to two degrees of freedom Hamiltonian systems. If we consider an integra-
ble Hamiltonian described by H0(A), where A = (A1, A2) are action variables canonically
conjugated to angle variables θ = (θ1, θ2), we know that the dynamics evolves periodically
or quasi-periodically on invariant tori in phase space. The question that naturally arises is
the persistence of these regular structures when the system is perturbed and we consider
H = H0(A)+ V (A, θ). KAM (Kolmogorov, Arnold, Moser) theorem gives the right answer
(Arnold 1974). Under prescribed hypothesis for the perturbation, and if the perturbation is
sufficiently weak, some invariant tori are preserved. When the amplitude of the perturbation
increases, more and more tori are destroyed, giving birth to trajectories which are no more
confined on tori and may wander chaotically in phase space (Laskar et al. 1992).

We define ω(A)= d H0/dA. We intend to study the motion in the vicinity of a torus char-
acterized by a frequency ω(Ar)=ωr and related to a value of the action Ar in the absence
of the perturbation. By definition ωr is normal to the energy curve H0(A)= E . Let r be a
vector normal to ωr at Ar , and therefore tangent to the energy curve at this point. Fourier
expanding the perturbation, we get
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V (A, θ) =
∑

q

Vq(A)× cos[q · θ ]. (1)

The first approximation consists in replacing Vq(A) by its constant value at Ar in this
expansion. The canonical transformation generated by

F(I, θ) = (Ar + I1r + I2ωr) · θ. (2)

defines new variables I and φ and allows to decompose the motion in the frame (r, ωr ) in
the vicinity of Ar . In these new variables the Hamiltonian writes

Hr (I, φ) = ωr
2 I2 + 1

2
aI1

2 +
∑

q

Vq(Ar)× cos[αqφ1 + βqφ2], (3)

where we dropped the constant term, a = r · σ r with σ = dω/dAr and αq and βq are the
projections of q on r andωr. With a judicious choice of time origin, the dynamics of variables
I1 and φ1 is described by the time dependent one degree of freedom Hamiltonian system

hr (I1, φ1, t) = 1

2
aI1

2 +
∑

q

Vq(Ar)× cos[αqφ1 − γq t], (4)

where γq = − βqωr
2. The first term in this equation can be considered as the kinetic energy

of a particle with mass 1/a and charge e moving in the potential of electrostatic waves with
wavenumber αq , pulsation γq and amplitude Vq(Ar)/e.

If, in the previous expansion, we only retain the two terms for which the phase variation is
the slowest in the vicinity of Ar, we end up with considering the motion of a charged particle
in two waves which therefore appears as a paradigm for the dynamics of two degrees of free-
dom Hamiltonian systems. With proper normalization of time and space, this Hamiltonian
writes

h(v, x, t) = 1

2
v2 − M × cos x − P × cos [k (x − t)], (5)

where v and x are canonically conjugated variables and M, P , and k are constant parameters.
It can also describe the motion of a non linear pendulum with periodic forcing. The libra-
tion of the pendulum around its stable equilibrium point corresponds to the trapping of
the charged particle in the potential well of a single wave with a finite exploration in position;
the particle velocity exploration is then limited to the so-called resonant domain centered
on the wave phase velocity and with amplitude equal to twice the square root of the wave
amplitude with our normalization. The rotation of the pendulum corresponds to the circula-
tion of the charged particle above the potential hills of the wave; this occurs when the particle
energy is larger than the amplitude of the wave with our normalization. In the presence of
two waves, it is usual to define the overlap parameter

s = 2
(√

M + √
P

)
, (6)

where s = 1 corresponds to the overlap of the resonant domains. Numerical calculations of
orbits are displayed in Fig. 1 for two different values of s.

For intermediate values of s, islets of stability with regular orbits persist in between the
two main resonances associated to the two waves. These secondary resonances can be easily
recovered analytically. Let us define by h0(J ) the integrable Hamiltonian that describes, in
action-angle variables (J, ψ), the motion of the non linear pendulum associated to a single
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Fig. 1 Poincaré surface of section for the dynamics given by ẍ = − ε(sin(x) + sin(x − t)). Left half for
ε= 1/64 (s = .5) exhibits island chains of secondary resonances at rational velocities m/(n + m); right half
for ε= 3/64 (s = .87) exhibits large scale chaos. Same 26 initial conditions for both halves

wave (P = 0). A Fourier analysis of Eq. 5 allows to describe the motion of a particle in two
waves by Hamiltonian

h′(J, ψ, t) = h0(J )− P
∑

n

Vn(J )× cos [(k + n) ψ − kt], (7)

where the coefficients Vn(J ) can be determined analytically (Escande and Doveil 1981).
We thus exhibit a first set of secondary resonances around velocities vn = k/(k + n) which
appear clearly on the left side of Fig. 1. This is the first step of an iterative process. Letting
the secondary resonances play the same role as the two first primary resonances allows to
describe the fractal structure of phase space, with the well-known devil’s staircase whose
steps are limited by persisting Kolmogorov-Arnold-Moser (KAM) tori (Doveil and Escande
1982).

As shown in the right part of Fig. 1 for a larger value of s merging of chaotic regions can
lead to the appearance of Large Scale Chaos (LSC) associated to resonance overlap or more
precisely to the destruction of the last KAM torus. The resonance overlap criterion s = 1 is
still commonly used to get an estimate of the threshold for the transition to LSC (Chirikov
1979; Escande 1985). The previous iteration scheme is at the root of an approximate renor-
malization theory that allows to more precisely address the destruction of KAM tori (Escande
and Doveil 1981).

If one considers a beam of initially monokinetic particles having a velocity equal
to the phase velocity of one of the waves, this chaotic zone is associated with a large spread
of the velocities after some time since the particles are moving in the chaotic sea created by
the overlap of the two resonances (Chirikov 1979; Escande 1985). As shown in Fig. 2, the
transition to large scale chaos occurs by vertical steps, related to the presence of the nested
secondary resonances. Therefore the border of the velocity domain over which the beam is
spread exhibits a devil’s staircase-like behavior (Macor et al. 2005).

Experimentally, resonance overlap was only observed so far through indirect effects, such
as particle heating in plasma physics (Doveil 1981; Skiff et al. 1987). In this paper, we report
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Fig. 2 Numerical devil’s staircase. (a) Probability distribution function f (v) (with logarithmically scaled
color coding) of the velocity for the dynamics given by ẍ = − ε(sin(x) + 0.16 sin κ(x − t)), with κ = 5/3,
as a function of overlap parameter s = 2.8

√
ε after a time t = 24π , i.e. 20 Poincaré stroboscopic periods

(inset, f (v) for the value of s indicated by the vertical dashed line). (b) Velocity frontiers of f (v) versus s for
t = 24π ; dashed oblique lines starting from v= 0 and v= 1 indicate the primary resonances trapping domains;
secondary resonances (n,m) are indicated at rational velocities mκ/(n + mκ)

the direct experimental evidence of the occurrence of this fundamental phenomenon obtained
by using a test electron beam in a TWT (Doveil et al. 2005a). This experiment also allowed
to observe the above-mentioned fractal structure of Hamiltonian phase space (Macor et al.
2005; Doveil et al. 2006). We will also show how by acting on secondary resonances we can
experimentally control chaos (Chandre et al. 2005).

3 Experimental set-up

The experiment is performed in a long Traveling Wave Tube (TWT). TWTs were devel-
oped shortly after second world war as radar amplifiers (Pierce 1950; Gilmour 1994). Due
to their wide band capability and their robustness, they still play an important role in pres-
ent days and a standard telecommunication satellite will commonly embark about fifty such
devices. Our experimental set-up was inspired by a somewhat unconventional TWT built
in San Diego in 1976 to investigate the nonlinear behavior of the small-cold-beam-plasma
instability (Dimonte and Malmberg 1978). It consists of three main elements: an electron
gun, a slow wave structure (SWS) formed by a helix with axially movable antennas, and an
electron velocity analyzer. Figure 3 shows a sketch and a picture of the device.

The electron gun creates a beam, with radius equal to 3 mm, which propagates along the
axis of the SWS and is confined by a strong axial magnetic field with a typical amplitude of
0.05 T. Beam currents, Ib < 1 mA, and maximal cathode voltages, |Vc|< 200 V, can be set
independently. Two correction coils provide perpendicular magnetic fields to control the tilt
of the electron beam with respect to the axis of the helix.

Waves are launched with an antenna at the gun end of the SWS. With the above parame-
ters, the SWS is long enough to allow nonlinear processes to develop. As sketched in Fig. 4,
it consists of a wire helix that is rigidly held together by three threaded alumina rods and is
enclosed by a glass vacuum tube. The pump pressure at the ion pumps on both ends of the
device is 2 × 10−9 Torr. The 4 m long helix is made of a 0.3 mm diameter Be-Cu wire; its
radius is equal to 11.3 mm and its pitch to 0.8 mm. A resistive rf termination at each end of the
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Fig. 3 Sketch of the TWT and picture of the disassembled device: (1) helix, (2) electron gun, (3) trochoidal
analyzer, (4) one of four axially movable probes, (5) glass vacuum tube, (6) slotted rf ground cylinder, (7)
magnetic coil, (8) square magnetic coils for beam tilt correction

helix reduces reflections. The maximal voltage standing wave ratio is 1.2 due to residual end
reflections and irregularities of the helix. The glass vacuum jacket is enclosed by an axially
slotted 57.5 mm radius cylinder that defines the rf ground. Inside this cylinder but outside
the vacuum jacket are four axially movable antennas which are capacitively coupled to the
helix and can excite or detect helix modes in the frequency range from 5 to 95 MHz. Only the
helix modes are launched, since empty waveguide modes can only propagate above 2 GHz.
These modes have electric field components along the helix axis (Dimonte and Malmberg
1978). Launched electromagnetic waves travel along the helix at the speed of light; their
phase velocities, vφ j , along the axis of the helix are smaller by approximately the tangent of
the pitch angle, giving 2.8 × 106 m/s<vφ j < 5.3 × 106 m/s. Since the pitch of the helix is
much smaller than its radius, the wave propagates along the axis of the helix with a phase
velocity which is much smaller than the velocity of light and can be resonant with the electron
beam.

The dispersion relation is shown in Fig. 11. Waves on the beamless helix are slightly
damped, with |k0i

j |/|k0r
j | ≈ 0.005 where k0 = k0r + i k0i is the beamless complex wave num-

ber. Further, on the beamless helix, both wave number and damping rate are somewhat
position dependent (|k0r | varies by 0.5% and |k0i | varies by 30% over the length of the
helix). The TWT has the advantage that the slow wave structure remains linear for the wave
amplitudes reached in the experiments; furthermore, it does not introduce noise.
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Fig. 4 Sketch of the wave guide
and SWS: (A) Beryllium-Copper
helix, (B) glass vacuum jacket,
(C) threaded alumina rods, (D)
slotted RF ground cylinder, (E)
antenna/probe

Finally, the cumulative changes of the electron beam distribution are measured with
the velocity analyzer, located at the end of the interaction region. This trochoidal analyzer
(Guyomarc’h and Doveil 2000) works on the principle that electrons undergo an E × B drift
when passing through a region in which an electric field E is perpendicular to a magnetic
field B.

Figure 5 shows a typical beam radial profile as measured by scanning the magnetic field
of the two perpendicular correction coils used to control the tilt of the electron beam. It shows
that the beam propagates along the 4 m long helix preserving its initial homogeneity across
the grounded anode hole. The superimposed circle sketches the entrance electrode hole of the
trochoidal analyzer. The surrounding halo is the result of selection of the gyrating electrons
passing through the electrodes holes and its width gives a measurement of twice the electron
Larmor radius (Macor 2007).

In this paper, we consider a very weak cold beam. The beam intensity is sufficiently weak
that the unstable waves exhibit a negligible growth upon the length of the experiment. The
beam electrons can thus be considered as test particles submitted to externally excited waves
with almost constant amplitude and the Hamiltonian dynamics of a charged test particle can
be experimentally explored.

4 Single wave

For a single wave, characterized by its amplitude φ and frequency f launched by a fixed
antenna at a given distance from the output of the device, the time-averaged velocity distribu-
tion function (vdf) of the test electron beam is measured at the device output. The plots of the
subsequent figures are the result of superposing measurements obtained by varying one of the
controlling parameter keeping all the others constant. For each value of the varying control
parameter (vcp), the output beam vdf is recorded after interaction of the test beam with the
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Fig. 5 Radial profile of a test cold beam at the output of the TWT

wave propagating along the helix: the vdf is obtained by scanning the retarding voltage with
a step of 61 mV. The zero level of each vdf is defined as the mean trochoidal collector current
averaged over 50 velocities in the tail of the vdf. Each beam vdf is then normalized to keep
the beam current constant. The final plot is obtained after an appropriate Matlab treatment
of the recorded output vdfs, giving a 3D plot of the vdf in (vcp, v) plane, or a 2D contour plot
of the amplitude of the distribution function in (vcp, v) plane.

4.1 Beam trapping

As explained before, Fig. 6 gives a 2D plot of the vdf detected by the trochoidal analyzer
when the varying control parameter is the wave amplitude for the case when the beam is
trapped inside the potential trough of the wave (libration of the classical non-linear pendu-
lum). Indeed the test beam with intensity Ib = 120 nA has an entrance velocity equal to the
phase velocity of the wave at 40 MHz launched by a fixed antenna at L = 230 cm from the
device output. In Fig. 6 the 2D plot of the amplitude of the vdf detected by the trochoidal
analyzer is the result of superposing measurements obtained for different wave amplitudes
of the single wave varying from 0 to 45 mV by steps of 3 mV.

We first notice that the shape of the velocity domain in which the test beam electrons
are spread increases like the square root of φ. This is explained by the fact that the beam
is trapped in the potential troughs of the wave. From the measured antenna coupling coef-
ficients (Malmberg et al. 1966), the helix wave amplitude φ can be estimated. The resonant
or trapping domain in velocity can thus be deduced and is indicated by the continous lines
in Fig. 6 which correspond to vφ ± 2

√
ηφ where η is the electron charge to mass ratio. We

observe a very good agreement with measurement.
Another feature appearing in Fig. 6 is a further velocity bunching of the electrons around

their initial velocity for an applied amplitude equal to 850 mV. This phenomenon is also
related to the trapping of the electrons in the wave. If we refer to the rotating bar model
(Mynick and Kaufman 1978) to describe the trapped electrons motion, we expect oscilla-
tions between small spread in velocity and large spread in position (corresponding to initial
conditions for a cold test beam) to large spread in velocity and small spread in position after
half a bounce or trapping period equal to Tb/2 = vφ/2( f

√
ηφ). To the bounce period, we can
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Fig. 6 Measured velocity domain for a test beam (Ib = 120 nA, vb = 3.55×106 m/s) trapped in a single wave
at 40 MHz with trapping domain (continuous curve) for increasing amplitude

associate a bounce length Lb = vφTb. An estimate of the wave amplitude φ can be obtained
by determining the emitting probe coupling coefficient C using 3 probes measurements
(Malmberg et al. 1966). We found C = 0.032 for a wave at 40 MHz, and for an amplitude of
the signal on the emitting probe equal to 850 V, we obtain φ= 27 mV. For this value, we get
Lb/2 = 230 cm which is precisely the interaction length L of Fig. 6. We thus confirm that
Fig. 6 is displaying the trapping of the test beam in the single wave.

4.2 Resonant domain

The 2D amplitude plot of Fig. 7 is obtained by using the entrance test cold beam velocity as
the vcp and keeping the wave amplitude constant φ= 150 mV for a fixed interaction length
L = 370 cm. To be more accurate, Fig. 7 is obtained by scanning the entrance energy of the
test beam from 32 to 65 eV by step of 0.5 eV. Two different regions are clearly apparent in
Fig. 7. For small or large values of vb, the distribution remains centered around its initial
velocity along the bisectrix of Fig. 7 with a small spread due to the electrons sloshing around
vb. For intermediate values of vb, the vdf is observed to spread over a wide domain. This
is explained by the fact that in the velocity domain explored by Fig. 7, the beam can be
trapped in the potential troughs of the wave. The central velocity of the domain where the
distribution is significantly spread is indeed v0 = 4.06 × 106 m/s which is the phase velocity
of the 30 MHz wave given by the dispersion relation of the helix and is indicated by a star
in Fig. 7. An estimate of the wave amplitude φ can be obtained by determining the emitting
probe coupling coefficient C using 3 probes measurements (Malmberg et al. 1966). We found
C = 0.065 for a wave at 30 MHz, and since the amplitude of the signal on the emitting probe
is A = 2.3 V, we obtain φ= 150 mV. The broken lines in Fig. 7 correspond to v0 ± 2

√
ηφ and

define the upper and lower velocity limits of the resonant region assuming a traveling wave
with constant amplitude φ. We observe that these broken lines correctly limit the domain
where vdf is no longer symmetrical around vb and this domain can therefore be seen as the
measured resonant zone.
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Fig. 7 Measured resonant velocity domain for a single wave at 30 MHz

From the wave amplitude, we can compute the trapping or bounce frequency of the
electrons in the bottom of the wave equal to ωb = k

√
ηφ from which a bounce length

L p = 2πvb/ωb is estimated. From the above value for φ we get L p = 3.2 m. This shows
that the TWT is sufficiently long to observe one complete trapping oscillation of the test
beam in the wave. This also explains why there are intricate structures inside the trapping
region of Fig. 7: a little more than one trapping oscillation can be observed in the device for
this frequency and the mixing due to anharmonicity of trapping oscillations is not complete. In
conclusion Fig. 7 gives a nice direct experimental evidence of the velocity resonant domain for
wave–particle interaction. By varying the amplitude of the launched wave, we also checked
that the width of the resonant domain scales as predicted by wave trapping theory.

5 Two waves

We now consider the case where two waves at different frequencies are launched by the same
fixed antenna.

5.1 Resonance overlap

Two waves at frequencies f1 = 30 MHz and f2 = 40 MHz are launched with amplitudes
A1 = 0.7 V and A2 = 0.8 V respectively. The measured dispersion relation gives vφ1 = 4.06×
106 m/s (resp. vφ2 = 3.55×106 m/s) for the phase velocity of the wave at frequency f1 (resp.
f2). Figure 8a is obtained in the same way as Fig. 7. We observe well separated resonant
velocity domains centered around vφ1 and vφ2 (shown as stars in Fig. 8a) since, for initial
velocities of the test beam in between the two resonant domains, the velocity distribution
does not spread very much around its initial velocity. As above, from the measured probe
coupling coefficients equal to 0.065 (resp. 0.04) at 30 MHz (resp. 40 MHz), the two resonant
or trapping domains in velocity can be estimated and are indicated by the broken lines in
Fig. 8a. We again observe that the regions where the perturbed distribution functions get
broader correspond to these domains. According to Eq. 6, this case corresponds to an overlap
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Fig. 8 Measured resonant velocity domain for two waves at 30 and 40 MHz: (a) s = 0.63, (b) s = 1.5

parameter s = 0.63 below the theoretical threshold for LSC (Escande and Doveil 1981). We
therefore cannot expect LSC, in agreement with what is observed on Fig. 8a.

On the contrary, Fig. 8b corresponds to larger amplitudes of the two launched waves
respectively equal to A1 = 3.0 V and A2 = 6.25 V. As expected, we observe an increase of
the velocity zone in which the normalized distribution function is considerably spread. Fur-
thermore we no longer observe, as we do in Fig. 8a, a peaking of the distribution function
for a velocity equal to (vφ1 + vφ2)/2 = 3.80 × 106 m/s and the two resonant domains are
merging in a single one. The upper (resp. lower) limit of the large resonant domain agrees
well with the velocity indicated by broken lines in Fig. 8b and defined as vφ1 +2

√
ηφ1 (resp.

vφ2 −2
√
ηφ2) obtained by using the emitting probe coupling coefficients as above. This case

corresponds to an overlap parameter s = 1.5, well above the theoretical threshold for LSC.
We thus have on Fig. 8b a direct experimental indication of resonance overlap.
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Fig. 9 2D contour plot of the measured vdf (with logarithmically scaled color coding) of a test beam
(Ib = 10 nA) interacting with two waves at 30 MHz and 60 MHz with trapping domains (continuous and
dashed curves) for increasing amplitude and fixed interaction length L = 3.6 m, vb = 4.06 × 106 m/s

5.2 Transition to large scale chaos (LSC)

In the next experiment, we apply, on an antenna chosen for its strongest coupling with the
helix and located at L = 3.5 m from the device output, a signal made of two components:
one at 30 MHz, and one at 60 MHz. According to the helix dispersion relation, two travelling
waves propagate along the helix, the former with a phase velocity vϕ1 = 4.06 × 106 m/s as
before, the latter with a different phase velocity vϕ2 = 3.08×106 m/s (the fact that the second
wave is a harmonic of the first one in the laboratory frame is irrelevant in the beam frame).

Figure 9 is obtained in the same way as Fig. 6 for a test beam, with intensity Ib = 10 nA and
initial velocity vb = vϕ1, whose vdf is measured at the outlet of the tube after its interaction
with the two propagating helix modes. As in Fig. 6 the continuous (resp. dashed) parabola
shows the trapping velocity domain associated to the helix mode at 60 MHz (resp. 30 MHz).
As it appears clearly, the amplitudes of the two modes have been appropriately chosen such
that these trapping domains approximately have the same velocity extension when taking into
account the coupling coefficient of the antenna at the two working frequencies. We observe
that, for a threshold amplitude exceeding the amplitude corresponding to overlap of the trap-
ping domains, the vdf exhibits a strong velocity spread. Electrons initially trapped inside
the potential well of one of the helix modes can escape the trapping domain and explore a
much wider velocity region in phase space. According to their initial velocity, electrons can
be strongly decelerated. We can therefore relate this behavior to the transition to large scale
chaos for the motion of a charged particle in two electrostatic waves.

5.3 Devil’s staircase

We again apply an oscillating signal at a single frequency of 30 MHz for an interaction
length L = 3.5 m. But we now consider a test beam, with intensity Ib = 10 nA and initial
velocity vb = 2.7 × 106 m/s much lower than vϕ , the phase velocity of the helix mode at
30 MHz. Figure 10a is obtained in the same way as Fig. 9. The continuous parabola indicates
the velocity domain associated to particle trapping in the potential troughs of the helix mode
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Fig. 10 (a) 2D contour plot of
the measured vdf (with
logarithmically scaled color
coding) of a test beam
(Ib = 10 nA, vb = 2.7 × 106 m/s)
with applied signal at 30 MHz for
increasing amplitude and fixed
interaction length L = 3.6 m
(trapping domains of helix and
beam modes are indicated by
continuous and dashed
parabolas); (b) Zoom of (a); (c)
Normalized upper velocity
frontier of f (v) versus overlap
parameter s; velocity
normalization is such that v= 0
(resp. 1) stands for the helix
(resp. beam) mode phase
velocity; secondary resonances
(n,m) are indicated at velocities
mκ/(n + mκ) with κ = vϕ/vb
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at 30 MHz. Since the initial beam velocity lies far out of this domain we expect that, for
moderate wave amplitude, the beam electrons will experience a mere velocity modulation
around their initial velocity, with a modulation amplitude increasing linearly with the applied
signal amplitude. This behavior has been studied in Doveil et al. (2005b) and would generate
two main peaks around the (oblique straight) continuous lines originating in vb.

In fact we observe that the electrons spread over a velocity domain with typical width
increasing as the square root of the applied signal amplitude as shown by the dashed parab-
ola. This strongly recalls the results of Fig. 6. Indeed the applied signal generates two waves:
a helix mode with a phase velocity vϕ , and a beam mode with a phase velocity equal to the
beam velocity vb. The beam mode with phase velocity vb is actually the superposition of
two indistinguishable modes with pulsation ω= kvb ±ωb corresponding to the beam plasma
mode with pulsation ωb =[nbe2/(mε0)]1/2 for a beam with density nb, Doppler-shifted by
the beam velocity vb, merging in a single mode sinceωb � ω in our conditions (Pierce 1950;
Gilmour 1994). Thus Fig. 10a shows the test electrons trapping into the beam mode. This is
confirmed by a careful analysis of Fig. 10a which exhibits the same velocity bunching of the
electrons around their initial velocity as in Fig. 6, for amplitudes obtained by equating the
interaction length to a multiple of half the trapping length. One also notices that the amplitude
of the beam mode is lower than the amplitude of the launched helix mode; this explains why
its influence has been neglected in the previous analysis of Fig. 9 where two helix modes are
externally excited. Since, when we increase the applied signal amplitude in Fig. 10a, the two
trapping domains of the helix and the beam mode overlap, we observe the same behavior as
in Fig. 9. Above a certain applied signal amplitude threshold the distribution function spreads
over a much wider velocity domain, and electrons can be strongly accelerated.

Another striking feature appears in Fig. 10a, which is best emphasized in the zoom of
Fig. 10b. The transition to large velocity spread does not occur continuously but rather occurs
by steps when the applied signal amplitude increases. Plateaus are formed in the measured
vdf for the maximum interaction length. A closer look at Fig. 9 also reveals the presence of
such steps in the zone between the two main resonances in the case of two independently
launched waves with equal amplitudes. This generic phenomenon is related to the intrinsic
structure of Hamiltonian phase space for non integrable systems briefly recalled in Sect. 2.
Figure 10a is the experimental counterpart of Fig. 2a, b. Figure 10c shows the upper border of
the measured vdf with superimposed the positions of the unperturbed higher order resonances
velocities given by vnm = mκ/(n + mκ) with κ = vϕ/vb (Doveil et al. 2006). It exhibits the
first steps of the “devil’s staircase” in phase space.

6 Control of chaos

We have used the same experimental conditions to test a new method of control of chaos
which aims at building barriers in phase space and hence confine all the trajectories rather
than following them individually. The reduction of chaotic behaviors is achieved by using
a small apt perturbation of the system which keeps its Hamiltonian structure. For the Ham-
iltonian given by Eq. 5, we use as a control term the opposite of the first term n = 1 in the
Fourier series of Eq. 7 (Chandre et al. 2005). This control term corresponds to the beating of
the two main waves. Physically it consists in destroying the largest secondary island chain
(n = 1,m = 1) in between the two main resonances of Fig. 1 which constitutes the largest
step of the previously observed staircase. In fact this control term is the most important term
of a more precise control theory (Chandre et al. 2006). Using this approximate control term
does not guarantee the existence of an invariant torus. However since the difference between
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this term and the exact one is small, it is expected that for a Chirikov parameter s not too
large, the approximate control term is still effective in reducing chaos.

The challenge is then to be able to launch three different waves with well controlled
amplitude, frequency and phases, the third one corresponding to the beating of the first two
ones with amplitude prescribed by control theory, pulsation ω1 +ω2, wave numbers k1 + k2,
and phase χ1 + χ2. This can be done using an arbitrary wave form generator. These three
waves must correspond to TWT modes. Due to the form of the dispersion relation, working
with pure helix modes would prove impossible. Working with the helix mode and the beam
mode at the same frequency as explained in the previous section provides an easy way to
satisfy the resonance condition. As shown in Fig. 11, the beam velocity (the phase velocity
of the beam mode) is then accurately set by the frequency choice.

Figure 12a shows the test beam vdf measured at the output of the TWT in the absence of
externally excited wave. The beam remains extremely narrow. We then apply an oscillating
signal at a frequency of 30 MHz on an antenna at the entrance of the TWT. As explained before,
this signal generates two waves: a helix mode with a phase velocity equal to vφ = 4.06 ×
106m/s; a beam mode with a phase velocity equal to the beam velocity vb. Figure 12b shows
the measured vdf of the beam after interacting with these two modes over the length of the
TWT. The right (resp. left) band gives the size of the resonant domain determined as the trap-
ping velocity width of the helix (resp. beam) mode vφ ± 2

√
eVh/m (resp. vb ± 2

√
eVb/m)

where Vh = 2.33V (resp.Vb = 0.17V ) is the amplitude of the helix (resp. beam) mode deter-
mined both from antennas and beam measurements. These two domains slightly overlap and
the breakup of invariant KAM tori results in a large spread of the initially narrow beam of
Fig. 12a over the chaotic region (note the change in scale for the vertical axis); only two
small bumps remain which correspond to nested regular regions in phase space as shown in
Fig. 1. The beam velocity of Fig. 12 has been chosen in such a way that the wave number
of the beating mode at 60 MHz properly satisfies the helix dispersion relation as shown by

Fig. 11 Resonance condition: TWT dispersion relation (circles) with the helix mode (square) and the beam
mode (triangle) at the same frequency. The beating of these two modes is the control mode which must belong
to the helix dispersion curve
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Fig. 12 Beam velocity distribution function at the output of the TWT: (a) test beam (Ib = 50 nA) without
electrostatic wave, (b) with helix mode [dark gray (blue)] and beam mode [light gray (yellow)] at 30 MHz
[phase velocity given by upper arrow and trapping domain of each mode given by shaded (coloured bands)],
(c) with an additional controlling wave at 60 MHz and phase velocity given by middle (red) upper arrow
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Figure 11. We then launch with the arbitrary wave form generator an additional wave at this
frequency with the amplitude given by the resonant term n = 1 in Eq. 7 and a well-defined
phase with respect to the main signal. As observed on Fig. 12c where the middle(red) arrow
indicates the phase velocity vc of the controlling wave, the beam recovers a large part of its
initial kinetic coherence and does not spread in velocity beyond vc. This control of the beam
coherence is realized with an additional cost of energy which corresponds to less than 1% of
the initial energy of the two-wave system. We stress the importance of a fine tuning of the
control term. The robustness of the method has been further tested in a situation of stronger
chaos (Macor et al. 2007a).

7 Conclusion and perspectives

The use of a TWT allowed us to explore experimentally the fractal phase space of the para-
digm Hamiltonian describing the motion of a charged particle in a spectrum of longitudinal
waves. The main features of non integrable systems have thus been recovered. The deep
knowledge of the system opened the way to the implementation of a method to channel
chaos in phase space by building barriers to chaotic diffusion.

A further development of the experiment would be to use bunches of electrons instead
of a continuous beam. By controlling the phase of the electron bunches with respect to the
phase of an injected wave, a still better exploration of the dynamics of test electrons could
be achieved. This very challenging project is under progress (Macor et al. 2007b).

The results reported in this paper were obtained with a very low intensity test electron
beam. By gradually increasing the beam intensity, it is now possible to tackle the fundamental
question of the role of chaos when self-consistent effects set in. Beyond the physics of elec-
tron devices, it is also a very important question in plasma physics where collective motion
of charged particles can induce the growth of unstable waves. An Hamiltonian description
is still valid where conjugate variables can be used to describe the coupled evolution of both
charged particles and electric fields (Elskens and Escande 2003).
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