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Abstract Using a 12th order expansion of the perturbative potential in powers of the
eccentricities and the inclinations, we study the secular effects of two non-coplanar planets
which are not in mean–motion resonance. By means of Lie transformations (which introduce
an action–angle formulation of the Hamiltonian), we find the four fundamental frequencies
of the 3-D secular three-body problem and compute the long-term time evolutions of the
Keplerian elements. To find the relations between these elements, the main combinations of
the fundamental frequencies common to these evolutions are identified by frequency analy-
sis. This study is performed for two different reference frames: a general one and the Laplace
plane. We underline the known limitations of the linear Laplace–Lagrange theory and point
out the great sensitivity of the 3-D secular three-body problem to its initial values. This analyt-
ical approach is applied to the exoplanetary system υ Andromedae in order to search whether
the eccentricities evolutions and the apsidal configuration (libration of �� ) observed in the
coplanar case are maintained for increasing initial values of the mutual inclination of the two
orbital planes.

Keywords Extrasolar planets · 3-D three-body problem · Secular motion · Analytical
expansion · Laplace plane

1 Introduction

The discovery of exoplanetary systems has opened a new field of research in Celestial
Mechanics. As the spatial resolution of the orbits are currently impossible, studies mainly
analyze the dynamics of the coplanar case. Due to the large eccentricities of the discovered
exoplanets, the Laplace–Lagrange theory is unable to depict correctly the motion of these
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planets. In a previous work (Libert and Henrard 2006), we introduced, for the planar problem,
a 12th order expansion of the secular potential in powers of the eccentricities and showed that
this analytical model can represent correctly the behavior of non-resonant planetary systems
with surprisingly large eccentricities. More precisely, we introduced action–angle variables
for the problem and by means of a Lie transformations perturbation technique obtained ana-
lytical expressions for the frequencies of the motion and for the secular evolution of the orbits.

The aim of the present contribution is to generalize this analytical approach to the non-
coplanar case. The 12th order (in the eccentricities and the inclinations) expansion of the
3-D secular three-body problem has already been introduced in our previous paper (Libert
and Henrard 2007b) where we study the dynamical features of the problem reduced to two
degrees of freedom by the adoption of the Laplace plane. We were mainly interested by the
position and stability of the equilibria, especially the fact that the stable equilibria related to
the Kozai resonances are generated by bifurcation from a central equilibrium which becomes
unstable for high mutual inclinations. Actually, the unstability of the central equilibrium and
of the family of periodic orbits emanating from it is responsible for a rather large chaotic
domain in the phase space.

The present work is based on the same 12th order expansion in the eccentricities and the
inclinations, which is recalled in Sect. 2. Applying a Lie transform perturbation technique,
we introduce, in Sect. 3, an action–angle formulation of the 3-D secular Hamiltonian and find
an analytical expression for the four fundamental frequencies of the 3-D secular three-body
problem. It also enables us to describe the long-term time evolution of the different Keplerian
elements.

In Sect. 4, we apply this study to a particular 3-D system considered in two different ref-
erence frames, a general one and the Laplace plane, and compare the results. Among others,
we identify, by frequency analysis, the main combinations of the fundamental frequencies
influencing each long-term time evolution in order to find which variables are strongly related
to each other. We also confirm our results by comparison with numerical integration.

Section 5 concerns the sensitivity of a 3-D system to its initial conditions. We explore
the effects induced on the fundamental frequencies and on the behavior of the angles by a
change of an angular initial condition.

In Sect. 6, we apply this analytical study to the exosystem υ Andromedae c-d and search
whether the eccentricities evolutions and the aspidal configuration (libration of�� ) observed
in the coplanar case are maintained for increasing initial values of the mutual inclination of
the two orbital planes. Finally, our results are summarized in Sect. 7.

2 Expansion of the Hamiltonian of the 3-D secular three-body problem

We consider a system consisting of a central star of mass m0 and two planets of mass m1 and
m2, with m1 closest to the central star. The canonical variables we choose to work with are
the classical modified Delaunay’s elements (truncated at the first order in the mass ratios)

λi = mean longitude of mi Li = mi
√

Gm0ai

pi = −the longitude of the pericenter of mi Pi = Li

[
1 − √

1 − ei
2
]

qi = −the longitude of the node of mi Qi = Li

√
1 − e2

1 [1 − cos ii ] ,

(1)

where ai , ei and ii are the semi-major axes, eccentricities and inclinations of the planets in a
Jacobi reference frame (see, for instance, Brouwer and Clemence 1961 or Laskar 1990). The
Hamiltonian which describes the dynamics of this system can be expanded in powers of the
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Secular frequencies of 3-D exoplanetary systems 211

eccentricities and the inclinations (see, for instance, Murray and Dermott 1999). Actually
we prefer to use the quantity Ei = √

2Pi/Li close to ei for small to moderate eccentricities
and directly related to the canonical momenta. For the same reason we use Si = √

2Qi/Li

which is proportional to sin(i/2). With these notations, the Hamiltonian function reads:

H = −Gm0m1

2a1
− Gm0m2

2a2

−Gm1m2

a2

∑
k,il , jl ,l∈4

Ak, jl
il

E | j1|+2i1
1 E | j2|+2i2

2 S| j3|+2i3
1 S| j4|+2i4

2 cos �, (2)

with � = [(k + j1 + j3)λ1 − (k + j2 + j4)λ2 + j1 p1 − j2 p2 + j3q1 − j4q2]. The indices
(k, il , l ∈ 4) are positive integers and the sum j3 + j4 is even. The coefficients Ak, jl

il
depend

only on the ratio a1/a2 of the semi-major axes.
To the first order in the mass ratios planet/star, and assuming that the system is not close to

a mean–motion resonance, the expansion of the secular perturbation is obtained by dropping
the terms depending upon the mean anomalies of the planets from the Hamiltonian (2):

K = −Gm1m2

a2

∑
k, j1, j2,il ,l∈4

Bk, j1, j2
il

E | j1|+2i1
1 E | j2|+2i2

2 S|k+ j1|+2i3
1 S|k+ j2|+2i4

2 cos �, (3)

where � = [ j1 p1 − j2 p2 − (k + j1)q1 + (k + j2)q2]. This amounts to an “averaging by
scissors”. All ai , Ei , Si , pi and qi designate now values averaged over the fast variables λi .
As the mean longitudes are ignorable, the associated momenta Li are constant and so are
the semi-major axes ai . The first two terms can be dropped from the Hamiltonian as they
depend only on L1 and L2 which are constant. So the secular Hamiltonian is a four degrees
of freedom problem.

Actually the Hamiltonian depends on only three angular variables as we can rewrite the
angle � in the following way :

� = j1(p1 − q1) − j2(p2 − q2) − k(q1 − q2). (4)

This is due to the fact that the Hamiltonian is a sum of terms of the kind cos(i1 p1 + i2 p2 +
i3q1 + i4q2) with i1 + i2 + i3 + i4 = 0.

The expansion was performed by computer using the formulae of Abu-el-Ata and Chapront
(1975) and our own algebraic manipulator. We decided to keep in the Hamiltonian
all the terms such that the sum of the exponents of E1, E2, S1 and S2 is lower or equal to 12.

As shown in Libert and Henrard (2007b), the numerical convergence of the series (3) is
very good for a large set of parameters. We think that this good numerical behavior is an
indication that the radius of convergence of the secular part of the perturbation is larger than
the radius of convergence of the full perturbation.1 But we do not have a formal proof of this.
As in case of coplanar systems (see Libert and Henrard 2006), we quantify, in Table 1, this
better numerical convergence—the convergence au sens des astronomes (Poincaré 1892)—
by comparing, at each order, the largest (in absolute value) coefficient and the number of
individual terms of the secular and the full expansions.

In the following sections, we always check the numerical convergence of the secular
Hamiltonian of the considered exosystems. As already mentioned in Libert and Henrard
(2007b), we will see that the higher the values of the eccentricities or of the mutual incli-
nation, the weaker the numerical convergence. However, for small to moderate values, the

1 To have further information on the precision of the truncation of the full expansion, see Lemaître and Henrard
1988 (for asteroid studies) and Veras 2007 (for studies on resonant exoplanetary systems).
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Table 1 Comparison of the numerical convergence of the full expansion of the non-coplanar perturbation
function and the expansion reduced to the secular terms (for the semi-major axes ratio a1/a2 = 0.2) in function
of Ei and Si

Order in ei Full expansion Secular terms

Largest Number Largest Number
term of terms term of terms

0 1.01 18 1.01 1
1 1.03 74 0. 0
2 1.05 368 3.24 × 10−2 6
3 1.20 1118 0. 0
4 1.65 3180 8.81 × 10−2 31
5 3.15 7462 0. 0
6 5.65 16436 2.08 × 10−1 110
7 9.74 32742 0. 0
8 2.11 × 101 62071 3.83 × 10−1 326
9 4.40 × 101 110566 0. 0
10 8.95 × 101 189667 1.17 812
11 1.94 × 102 311594 0. 0
12 4.25 × 102 497348 5.33 1810

numerical convergence is enough to look for the frequencies of the problem and the long-term
time evolutions of the Keplerian elements.

3 Analytical frequencies of the 3-D secular three-body problem

3.1 Action-angle variables for the Laplace–Lagrange model

The quadratic terms in
√

Pi and
√

Qi of the Hamiltonian (3) are of the form:

K0 = −Gm1m2

a2

(
2δ

[
P1

L1
+ P2

L2
− Q1

L1
− Q2

L2
+ 2

√
Q1 Q2

L1L2
cos (q1 − q2)

]

+2γ

√
P1 P2

L1L2
cos (p1 − p2)

)

= − Gm1m2

a2

(
a P1 + bP2 + c

√
4P1 P2 cos (p1 − p2) + ãQ1 + b̃Q2

+ c̃
√

4Q1 Q2 cos (q1 − q2)
)

(5)

where δ = B0,0,0
1,0,0,0 > 0 and γ = B1,−1,−1

0,0,0,0 < 0. We note that the quadratic Hamiltonian is
such that the momenta Pi and Qi never appear simultaneously in a same term. Moreover, the
two sums of the momenta P1 + P2 and Q1 + Q2 are constants of motion. These properties
are no longer true at higher orders. As we have recalled in our previous paper (Libert and
Henrard 2007b), only the angular momentum deficit P1 + P2 + Q1 + Q2 is a constant of
the motion for the full problem.

The Hamiltonian K0 is the Hamiltonian of a linear problem in the Cartesian coordinates
Yi = √

2Pi sin pi , Xi = √
2Pi cos pi , Zi = √

2Qi sin qi , Wi = √
2Qi cos qi , the so-called

Laplace–Lagrange problem. In order to “untangle” the four degrees of freedom, we perform
two similar “reducing transformations” (Henrard 1988; Henrard and Lemaître 2005):
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Secular frequencies of 3-D exoplanetary systems 213

Y1 = Y ′
1 cos βp + Y ′

2 sin βp X1 = X ′
1 cos βp + X ′

2 sin βp

Y2 = −Y ′
1 sin βp + Y ′

2 cos βp X2 = −X ′
1 sin βp + X ′

2 cos βp

Z1 = Z ′
1 cos βq + Z ′

2 sin βq W1 = W ′
1 cos βq + W ′

2 sin βq

Z2 = −Z ′
1 sin βq + Z ′

2 cos βq W2 = −W ′
1 sin βq + W ′

2 cos βq ,

(6)

where the angles of the rotation are given by

tan 2βp = γ
√

L1L2

δ(L1 − L2)
and tan 2βq = −2

√
L1L2

L1 − L2
.

A return to polar coordinates Y ′
i =

√
2P ′

i sin p′
i , X ′

i =
√

2P ′
i cos p′

i , Z ′
i =

√
2Q′

i sin q ′
i and

W ′
i =

√
2Q′

i cos q ′
i introduces action–angle variables for the quadratic Hamiltonian which

becomes

K′
0 = −n2(m1 + m2)

m0

[
ν1 P ′

1 + ν2 P ′
2 + ν3 Q′

1 + ν4 Q′
2

]
, (7)

where n2 =
√

Gm0/a3
2 approximates the mean–motion of m2. We insist on the fact that,

after the reducing transformations (6), the indices 1 and 2 are no longer attached to the
planets 1 and 2, respectively (for instance, the quantity P ′

1 is a function of both planets m1

and m2). Note that the reducing rotations (6) leave unchanged the two sums of the momenta:
P1 + P2 = P ′

1 + P ′
2 and Q1 + Q2 = Q′

1 + Q′
2. As all the angles are ignorable, the actions

P ′
i , Q′

i are constant for the Laplace–Lagrange problem.
The frequencies νi are function of the semi-major axes ratio α (by means of γ and δ) and

the mass ratio of the planets µ = m1/(m1 + m2) and have the following values:

ν1 = µ[δ(L1 + L2) + √
δ2(L1 − L2)2 + γ 2 L1L2]/L1

ν2 = µ[δ(L1 + L2) − √
δ2(L1 − L2)2 + γ 2 L1L2]/L1

ν3 = −2µδ(L1 + L2)/L1

ν4 = 0.

(8)

The last frequency is zero and the sum of the others ν1 + ν2 + ν3 is also equal to zero. This
relation between the frequencies of the linear Laplace-Lagrange problem has already been
pointed out by Murray and Dermott (1999) and Abdullah and Albouy (2001) where it is
called the Herman’s resonance.

3.2 Action–angle variables for the non-linear problem

In the action–angle variables of the Laplace–Lagrange problem, the non-linear Hamilto-
nian (3) (truncated at order 12 in the eccentricities and inclinations) becomes:

K′=K′
0−

Gm1m2

a2

∑
k, j1, j2,il ,l∈4

B ′k, j1, j2
il

E ′| j1|+2i1
1 E ′| j2|+2i2

2 S′|k+ j1|+2i3
1 S′|k+ j2|+2i4

2 cos �′, (9)

where �′ = [ j1 p′
1 − j2 p′

2 − (k + j1)q ′
1 + (k + j2)q ′

2]. E ′
i and S′

i have the same relation
to the actions P ′

i , Q′
i as Ei , Si to the momenta Pi , Qi . Once again we see that the sum of

the coefficients of the angles is null. In fact, it is equivalent to say that the function remains
the same after a translation of each of the angles by an arbitrary quantity. By inspecting the
formulas of the reducing transformations (6), we see that a translation by some constant of
the angles (p1, p2, q1, q2) is equivalent to the translation by the same constant of the angles
(p′

1, p′
2, q ′

1, q ′
2). So the Hamiltonian after translation is such as the sum of the coefficients of
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the variables p′
1, p′

2, q ′
1 and q ′

2 is null again. Furthermore, as highlighted in the previous sec-
tion, the relations (6) also show that the sum of the momenta is unchanged after the reducing
rotations: P1 + P2 + Q1 + Q2 = P ′

1 + P ′
2 + Q′

1 + Q′
2.

In order to develop an analytical non-linear theory, we use the Lie transform perturbation
scheme (Hori 1966; Deprit 1969) to average the Hamiltonian (9) of the secular three-body
problem over the angular variables p′

i and q ′
i . For practical purposes, at each order, the homo-

logical equation is solved in such a way that all the terms are integrated to form the generator
of the transformation, excepted those inducing small denominator problems (i.e. those con-
taining angular combinations for which the first order frequency is nearly zero). These last
terms are kept in the averaged Hamiltonian. As the sum of the linear frequencies ν1 +ν2 +ν3

and the last frequency ν4 are both equal to zero, the averaged Hamiltonian not only con-
tains terms without angular variable, but also terms of the form cos k(p′

1 + p′
2 + q ′

1 − 3q ′
2).

Indeed they are the only combination of angular variables which is of zero frequency and
which respects the symmetry described in the previous paragraph. These last terms could in
principle appear at order 6 and above due to the d’Alembert characteristic, but, actually, they
are present only at order 10 and 12 with k = 1. So the averaged Hamitonian is of the form
(hereafter we omit the factor −Gm1m2/a2):

K̄′ =
∑

l1+l2+l3≤6

Cl1,l2,l3 Ē ′
1

2l1
Ē ′

2
2l2

S̄′
1

2l3

+
∑

ml ,l∈4

Dml Ē ′
1

m1
Ē ′

2
m2

S̄′
1

m3
S̄′

2
m4

cos ( p̄′
1 + p̄′

2 + q̄ ′
1 − 3q̄ ′

2). (10)

We found that the first sum in this expression does not depend on the variable Q̄′
2, as it is the

case in the Laplace–Lagrange model; we do not have an explanation of this hidden symmetry,
but it is very clear from our computations. The constants Ē ′

i and S̄′
i designate values averaged

over the secular motion. These averaged values can be computed, on the basis of the initial
Keplerian values, by implementing the inverse of the averaging Lie transformation with the
algorithm of the inverse (see Henrard 1973).

To obtain an action–angle formulation of the secular Hamiltonian, it is still necessary to
average it over the remaining combination of the angular variables. First we perform a canon-
ical transformation in order to reduce the averaged Hamiltonian to one degree of freedom,
namely the angle p̄′

1 + p̄′
2 + q̄ ′

1 − 3q̄ ′
2:

u1 = p̄′
1 − q̄ ′

1 U1 = (P̄ ′
1 − Q̄′

1)/2
u2 = p̄′

2 − q̄ ′
2 U2 = P̄ ′

2 − (P̄ ′
1 + Q̄′

1)/2
v1 = p̄′

1 + p̄′
2 + q̄ ′

1 − 3q̄ ′
2 V1 = (P̄ ′

1 + Q̄′
1)/2

v2 = q̄ ′
2 V2 = P̄ ′

1 + P̄ ′
2 + Q̄′

1 + Q̄′
2.

(11)

The angles u1, u2, v2 are ignorable, which means that U1, U2 and V2 are first integrals of the
averaged problem of one degree of freedom (v1, V1). So the objective is the averaging over
the angular variable v1. In the variables (11), the quadratic averaged Hamiltonian writes

K̄′
0 = (ν1 − ν3)U1 + ν2U2. (12)

As the quadratic terms are constant and independent of the moment V1, the kernel of the
elimination of v1 is composed by the fourth degree (in the eccentricities and the inclinations)
terms of the Hamiltonian, which contain V1, namely

F0 = a1V 2
1 + a2V1U1 + a3V1U2. (13)
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Let us define N its derivative with respect to V1

N = 2a1V1 + a2U1 + a3U2, (14)

where the ai are all negative, preventing that N vanishes except, of course, for V1 = U1 =
U2 = 0.

The homological equation defining the generator V1 of the transformation, which elimi-
nates the angle v1 from the averaged secular Hamiltonian K̄′ = F0 + F1, is

N ∂V1

∂v1
= F1. (15)

We need only a first order elimination, as the small quantity F1/N is already of order 8 in the
Lie triangle (i.e. order 10 in the eccentricities and the inclinations) and it is enough to produce
the following formulation in action–angle variables of the secular non-linear Hamiltonian

¯̄K′ =
∑

l1+l2+l3≤12

Cl1,l2,l3
¯̄E ′

1

2l1 ¯̄E ′
2

2l2 ¯̄S′
1

2l3
. (16)

These two averagings leave the sum of the momenta invariant (
¯̄P ′
1 + ¯̄P ′

2 + ¯̄Q′
1 + ¯̄Q′

2 =
P̄ ′

1 + P̄ ′
2 + Q̄′

1 + Q̄′
2 = P ′

1 + P ′
2 + Q′

1 + Q′
2). Indeed the sums of the coefficients of the

angular variables p′
1, p′

2, q ′
1, q ′

2 and p̄′
1, p̄′

2, q̄ ′
1, q̄ ′

2 in the sine functions of the two generators
vanish.

Actually this second averaging, while theoretically necessary, is practically insignificant.
Indeed, all the terms of the second part of the Hamiltonian (10) have a power of S̄′

2 in factor,
and, as we shall point out in Sect. 4.2, this quantity vanishes in the frame based on the Laplace
plane. Hence the corrections brought by this second averaging are very small and even zero

in the frame based on the Laplace plane. So the constants ¯̄E ′
i and ¯̄S′

i can be considered

well approximated by their previous values Ē ′
i and S̄′

i . In the following we will work with
these approximated values and therefore we adopt the (−) notation for the double averaged
Hamiltonian.

The equations of motion derived from K̄′ are:

˙̄pi
′ = ∂K̄′

∂ P̄ ′
i

and ˙̄qi
′ = ∂K̄′

∂ Q̄′
i

. (17)

They lead to the expression of the four frequencies—hereafter we will call them the funda-
mental frequencies:

˙̄p1
′ = − (1−µ)√

α

∑
li ,i∈3

2l1Cl1,l2,l3 Ē ′
1

2(l1−1)
Ē ′

2
2l2

S̄′
1

2l3

˙̄p2
′ = −µ

∑
li ,i∈3

2l2Cl1,l2,l3 Ē ′
1

2l1
Ē ′

2
2(l2−1)

S̄′
1

2l3

˙̄q1
′ = − (1−µ)√

α

∑
li ,i∈3

2l3Cl1,l2,l3 Ē ′
1

2l1
Ē ′

2
2l2

S̄′
1

2(l3−1)

˙̄q2
′ = 0.

(18)

The unit of frequency is the Keplerian frequency n2 =
√

Gm0/a3
2 of the mass m2 multiplied

by the mass ratio (m1 + m2) / m0. The periods associated to these frequencies are inversely
proportional to the values of the real masses. For exoplanetary systems, Eq. 18 are associated
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216 A.-S. Libert, J. Henrard

with maximal values of the periods, since radial velocity measurements give only minimal
values of the masses of the exoplanets.

Finally, the Lie transform algorithm is also used to compute the expressions of the eccen-
tricities ei , the inclinations ii , the arguments of the pericenters ωi = −(pi −qi ), the difference
of the longitudes of the pericenters �� = �1 − �2 and the difference of the longitudes of
the nodes �
 = 
1 − 
2 = q2 − q1, as temporal functions of the averaged elements.

4 Comparison of the results for two different reference frames

Researches on the 3-D three-body problem are generally developped with the Laplace plane
as reference frame (for instance Michtchenko et al. 2006; Libert and Henrard 2007b). This
choice is based upon the invariance of the total angular momentum in norm and in direction,
and allows to reduce the secular Hamiltonian function to a two degrees of freedom function
only. In this section, we apply our analytical theory to a particular system considered in two
different reference frames, a general one and the Laplace plane, and discuss the differences.

To be more specific, we consider a system defined by the following osculating orbital
elements: the masses m0 = MSun , m1 = 2MJup and m2 = 4MJup , the semi-major axes
a1 = 0.5 AU and a2 = 2.5 AU, the eccentricities e1 = 0.1 and e2 = 0.2. In a general refer-
ence frame, we also consider the arbitrary values: i1 = 21.739◦, i2 = 3.369◦, ω1 = 270◦,
ω2 = 90◦, 
1 = 0◦ and 
2 = 0◦. This system is represented on Fig. 1 left.

4.1 General reference frame

First of all, it is useful to check the numerical convergence of the expansions (3) and (16)
applied to this system. The contributions from order 2 to order 12 in Ei and Si (or Ē ′

i
and S̄′

i ) are reported in Table 2. We see that the numerical convergence of the Hamiltonian
K is excellent. The numerical convergence of the averaged Hamiltonian K̄′ is weaker but, as
we will see, is enough to represent the orbits with accuracy.

Computing the inverse of the Lie transform, we obtain the following averaged elements:
ē′

1 = 0.152, ē′
2 = 0.191, ī ′1 = 16.86◦ and ī ′2 = 7.43◦. They are related to Ē ′

i and S̄′
i by

the same relation than ei , ii to Ei , Si . Using Eq. 18, we compute the values of the non-zero
fundamental frequencies of the problem: ˙̄p′

1 = −3.953 × 10−2, ˙̄p′
2 = −9.130 × 10−3 and

˙̄q ′
1 = 6.149 × 10−2. They correspond to periods of Tp̄′

1
= 17,456 years, Tp̄′

2
= 75,578 years

ω2=90°
i1

i2

Ω1=Ω2=0°

ω1=270°

Reference 
plane

Laplace
plane

C

i1 i2

Ω1=180°
x

y

Ω2=0°

ω2=90°

 ω1=90°

Fig. 1 Same planetary system represented in two different reference frames: a general one (left) and the
Laplace plane (right)
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Secular frequencies of 3-D exoplanetary systems 217

Table 2 Numerical convergence of the expansions K (3) and K̄′ (16) for the application of Sect. 4.1. The
last three columns show calculations of the periods for truncations at different orders

K K̄′ Tp̄′
1

Tp̄′
2

Tq̄ ′
1

Order 2 −6.6 × 10−4 −7.9 × 10−3 14 046.32 69 313.98 11 679.50
Order 4 −1.7 × 10−4 −2.0 × 10−3 17 213.12 74 653.89 11 269.42
Order 6 −6.7 × 10−6 −6.6 × 10−4 17 467.37 75 526.56 11 226.50
Order 8 2.7 × 10−7 −2.9 × 10−4 17 460.73 75 577.26 11 220.90
Order 10 3.9 × 10−8 3.6 × 10−5 17 456.92 75 577.72 11 220.51
Order 12 1.0 × 10−9 2.1 × 10−4 17 456.48 75 577.55 11 220.55

and Tq̄ ′
1

= 11,221 years. An interesting remark can be made regarding the first-order Laplace–
Lagrange theory. The first-order values of the periods are quite different from the non-linear
ones: Tp̄′

1
= 14,046 years, Tp̄′

2
= 69,314 years and Tq̄ ′

1
= 11,679 years, namely a difference

of nearly 20% for the first frequency. These differences illustrate the well-known limitations
of the Laplace–Lagrange theory to predict the secular motion of exoplanetary systems. To
better illustrate the gap between order 2 and order 12 results, we list in Table 2 the values of
the three non-zero fundamental periods from order 2 to order 12 in the eccentricities and the
inclinations. The numerical convergence of the results is obvious and explains the limitation
to order 12 expansion only. In case of good numerical convergence, approximation limited
to order 8 or 10 seems already satisfactory.

We can use the Lie transform algorithm to compute the long-term behavior of the eccen-
tricities ei , the inclinations ii , the arguments of the pericenters ωi = −(pi −qi ), the difference
of the longitudes of the pericenters �� = �1−�2 and the difference of the longitudes of the
nodes �
 = 
1 −
2 = q2 −q1. These time variations (over 1.75×105 years) are displayed
in Fig. 2, from top to bottom respectively. The long-term behavior of each element is influ-
enced by different linear combinations of the fundamental frequencies. Our analytical theory
lets us know the main frequencies acting on the variables (E ′

i , S′
i , p′

i , q ′
i ), but the reducing

transformation makes it difficult to do the same for the initial variables (Ei , Si , pi , qi ). In
order to avoid lengthy analytical transformation, we performed a frequency analysis on the
data sets obtained analytically and represented on Fig. 2, the algorithm of which was first
introduced by Champenois (1998). This algorithm is based on the original work of Laskar
(1993). For more details we refer to Lainey et al. (2006).

As suggested by Fig. 2, the eccentricities e1 and e2 are influenced by the same com-
binations of fundamental frequencies. The same is true for the inclinations i1 and i2. The
frequency analysis enables us to approximate the inclinations (expressed in radians) by the
following trigonometric functions:

i1 ≈ 0.2789 + 0.1147 cos (0.00055997t) − 0.01204 cos (0.0011199t)
− 0.004413 cos (0.0018398t) + 0.002619 cos (0.0016799t)

i2 ≈ 0.1251 − 0.05719 cos (0.00055997t) − 0.006908 cos (0.0011199t)
− 0.000259 cos (0.0018398t) − 0.001719 cos (0.0016799t).

(19)

where the frequencies are this time expressed in radians per year. In this work, we limit the
approximation to the four trigonometric terms with the largest amplitudes. It is already a
very good approximation since the maximal error is less than 0.5◦ for the inner inclination
and less than 0.2◦ for the outer inclination. The detected frequencies can be recognized as
integer combinations of the fundamental frequencies, i.e. respectively ˙̄q ′

1 − ˙̄q ′
2, 2 ˙̄q ′

1 − 2 ˙̄q ′
2,
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Fig. 2 Time variations on 1.75 × 105 years of the system of Sect. 4.1: from top to bottom, the eccentricities
ei , the inclinations ii , the arguments of the pericenters ω1 and ω2, the difference of the longitudes of the
pericenters �� and the difference of the longitudes of the nodes �
. In the two upper graphs, the dotted
lines stand for the outer body m2

−2 ˙̄p′
1 + 2 ˙̄q ′

1 and 3 ˙̄q ′
1 − 3 ˙̄q ′

2. Similar trigonometric approximations can be found for the
eccentricities.

Concerning the angles represented on Fig. 2, we see that they all circulate with preces-
sion rates which can be detected by the frequency analysis. Then this linear contribution is
removed from the graphic and the resulting oscillation can in turn be analyzed. For instance,
we find the following approximation of �
 (expressed in radians):

�
 ≈ −0.00055997t − 0.2228 sin(0.0011199t)

− 0.07188 sin(0.00055997t) − 0.02524 sin(0.0022399t)

− 0.02032 sin(0.0018399t). (20)

For this order of truncation, the maximal error is less than 3.5◦. The precession rate of �
 is
− ˙̄q ′

1 + ˙̄q ′
2 and the frequencies of the expression (20) may be easily identified as: 2 ˙̄q ′

1 − 2 ˙̄q ′
2,

˙̄q ′
1 − ˙̄q ′

2, 4 ˙̄q ′
1 − 4 ˙̄q ′

2 and −2 ˙̄p′
1 + 2 ˙̄q ′

1.
Table 3 summarizes the main frequencies which dominate the long-term behavior of each

graphic of Fig. 2. They are listed by decreasing amplitude of the trigonometric term and
noted c1 (largest amplitude) to c5. Bold type c1 indicates the precession rate of an angular
variable in circulation. Last column displays the identification of the different combinations
of the fundamental frequencies which all respect the symmetry resulting from the invariance
by rotation. We remark that the decomposition in frequencies of ei is strongly related to the
�� ’s one. Among others, the main frequency of the eccentricities is the precession rate of
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Table 3 Main results concerning the long-term behavior of the system of Sect. 4.1, obtained by decomposi-
tions in frequencies of the elements reproduced on Fig. 2

Periods e i ω1 ω2 �� �
 2ω1 Identification

22699 c1 c2 c4 c1, c2 c2 − ˙̄p′
1 + ˙̄p′

2
3415 c2 c3 c4 c5 c1, c5 −2 ˙̄p′

1 + 2 ˙̄q ′
1

11350 c3 c5 c3 −2 ˙̄p′
1 + 2 ˙̄p′

2
4020 c4 − ˙̄p′

1 − ˙̄p′
2 + 2 ˙̄q ′

1
2969 c5 −3 ˙̄p′

1 + ˙̄p′
2 + 2 ˙̄q ′

1
6830 c1 − ˙̄p′

1 + ˙̄q ′
1

75578 c1 − ˙̄p′
2 + ˙̄q ′

2
11221 c1 c3 c2 −c1, c3 c3 ˙̄q ′

1 − ˙̄q ′
2

5610 c2 c4 c3 c2 c4 2 ˙̄q ′
1 − 2 ˙̄q ′

2
3740 c4 c5 3 ˙̄q ′

1 − 3 ˙̄q ′
2

2805 c4 4 ˙̄q ′
1 − 4 ˙̄q ′

2

The periods are expressed in years

the difference of the longitudes of the pericenters. It explains that, abstraction made of the
shorter periods, the extrema of ei are reached when sin(��) = 0. We observe the same link
between the decompositions of ii and �
.

4.2 Laplace plane

In this section, we keep the same exosystem but adopt another reference frame: the Laplace
plane. To explore the 3-D three-body problem, one usually performs the Jacobi’s reduction,
also called elimination of the nodes (Jacobi 1842). Thereby the secular Hamiltonian function
(3) is reduced to a two degrees of freedom function and so is also the parameter space to
study.

The invariance of the total angular momentum
−→
C in norm and in direction defines an

invariant plane perpendicular to this vector. This plane is known as the invariant Laplace
plane. The choice of this plane as reference plane implies the following relations (see for
instance Laskar 1990):

q1 − q2 = ±180◦ (21)

(L1 − P1) cos i1 + (L2 − P2) cos i2 = C (22)

(L1 − P1) sin i1 + (L2 − P2) sin i2 = 0 (23)

with C the norm of the total angular momentum. Generally another quantity related to the
total angular momentum is used, the angular momentum deficit. It is defined (see Laskar
1997) as

AMD =
2∑

i=1

Li

(
1 −

√
1 − e2

i cos ii

)
= L1 + L2 − C. (24)

This angular momentum deficit is precisely the sum of the momenta P1 + P2 + Q1 + Q2 and
we have shown in the previous section that this sum is invariant by the reducing rotations and
the averaging process. For a fixed value of the total angular momentum C or equivalently
for a fixed value of the angular momentum deficit, the relations (22) and (23) allow us to
calculate the values of the inclinations as functions of the eccentricities.
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In this reference frame, we have (for the system of Sect. 4.1) i1 = 15.0006◦, i2 = 3.3694◦,
ω1 = 90◦, ω2 = 90◦, 
1 = 180◦ and 
2 = 0◦ (see Fig. 1 right). The numerical conver-
gence of the Hamiltonian K is once again excellent; contributions from order 2 to order 12
are −6.6 × 10−4, −1.7 × 10−4, −5.8 × 10−6, 2.7 × 10−7, 3.3 × 10−8 and 6.0 × 10−10. The
inverse of the Lie transform gives the following averaged elements: ē′

1 = 0.152, ē′
2 = 0.191,

ī ′1 = 16.86◦ and ī ′2 = 0◦. They are the same as in the other reference frame except for the
last one ī ′2 which vanishes. This does not mean of course that the averaged inclination of the
second planet is zero. We recall that after the rotations (6) the indices 1 and 2 are no longer
attached to the planets 1 and 2, respectively. The quantity i ′2 is a function of both planets, and
we have found, in all the examples we have run, that, in the Laplace plane reference frame, it
is quite small (at most of the order of 10−7). The surprizing fact is that, in all the examples,
the averaged value ī ′2 vanishes down to the level of accuracy we can claim (less than 10−10).
This is a puzzling fact to be considered on the same level as the hidden symmetry we have
already mentioned. This second hidden symmetry has also the very interesting consequence
that the second averaging transformation (see Eq. 15) is no longer necessary. All the terms
in the second sum of (10) have S̄′

2 as factor and thus vanish.
As the averaged Hamiltonian K̄′ is evaluated for the same values of the momenta, we find

the same numerical convergence of K̄′ and the same fundamental frequencies as previously.
The time variations of the different variables (on 1.75×105 years) are displayed in Fig. 3.

We directly recognize the same long-term behavior of the eccentricities and of the difference
of the longitudes of the pericenters as in Sect. 4.1. The difference of the longitudes of the
nodes is constant to 180◦, as requested by Eq. 21. The change of reference frame is also
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Fig. 3 Same representation as Fig. 2 for the same system situated, this time, in the Laplace plane (see Sect. 4.2)
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Table 4 Main results concerning the long-term behavior of the system of Sect. 4.2, obtained by decomposi-
tions in frequencies of the elements reproduced on Fig. 3

Periods e i ω1 ω2 �� 2ω1 Identification

22699 c1 c3 c2 c2 c1, c2 c2 − ˙̄p′
1 + ˙̄p′

2
3415 c2 c1 c4 c3 c4 c1, c4 −2 ˙̄p′

1 + 2 ˙̄q ′
1

11350 c3 c3 c3 c3 −2 ˙̄p′
1 + 2 ˙̄p′

2
4020 c4 c2 c4 − ˙̄p′

1 − ˙̄p′
2 + 2 ˙̄q ′

1
2969 c5 c5 c5 −3 ˙̄p′

1 + ˙̄p′
2 + 2 ˙̄q ′

1
6830 c1 − ˙̄p′

1 + ˙̄q ′
1

4885 c4 c5 −2 ˙̄p′
2 + 2 ˙̄q ′

1
9770 c1 − ˙̄p′

2 + ˙̄q ′
1

The periods are expressed in years

clearly visible on the graphs of the arguments of the pericenters and on the graph of the
inclinations where the amplitudes of the oscillations are very much reduced.

In order to quantify these differences, we resort to the frequency analysis and produce
the results on Table 4. The choice of the Laplace plane induces no change on the coupling
between the eccentricities and the difference of the longitudes of the pericenters. On the other
hand, the inclinations are no longer related to the difference of the longitudes of the nodes
(which is constant in the Laplace plane) but to two angles: 2ω1 and �� (see Fig. 4). In fact,
the main frequency of the inclinations is the precession rate of 2ω1, so that, abstraction made
of the other periods, the local extrema of ii are reached when sin (2ω1) = 0. Furthermore,
contrary to the previous reference frame, the inclinations ii are mainly influenced by the main
frequency of ei (or equivalently the precession rate of �� ). Then, abstraction made of the
other periods, the global extrema of ii are reached when sin (��) = 0. So the relationships
between the motions of the eccentricities and of the inclinations are more clear in the Laplace
plane than in the previous reference frame.

Finally, concerning the identification of the frequencies of Table 4, we remark that all the
frequencies in the Laplace plane are linear combinations of only two frequencies: − ˙̄p′

1 + ˙̄p′
2

and − ˙̄p′
1 + ˙̄q ′

1. In the previous reference frame, combinations including the fundamental
frequency ˙̄q ′

2, like − ˙̄p′
2 + ˙̄q ′

2 and ˙̄q ′
1 − ˙̄q ′

2, were also present.

4.3 Accuracy of the analytical approach

We have already considered, in Table 2, the error induced by the limitation of our analytical
development to different orders in the eccentricities. In this section, we are concerned with
the comparison of the long-term time behavior of the system of Sect. 4, given by our ana-
lytical approach (limited to order 12) and by a numerical integration of the full three-body
problem. We have performed the numerical integration with the SWIFT software package
developed by Duncan and Levison (Wisdom and Holman 1991). In Fig. 5, we have plotted
the time evolutions of the inner eccentricity and of the difference of the longitudes of the
pericenters obtained with the numerical integration (solid lines) together with the results of
our analytical theory (dotted lines). The agreement is good, considering the fact that our
analytical approach neglects the non-secular perturbations which, for a system not too close
to mean–motion resonances, are the source of a small deviation like the one observed in
Fig. 5. Let us also point out that the analytically averaged evolution over time is computed
on the basis of osculating initial conditions. We have shown in (Libert and Henrard 2007a),
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Fig. 4 Long-term behavior of, from top to bottom, the inner eccentricity, the inner inclination, the difference
of the longitudes of the pericenters and the angle 2ω1 of Fig. 3 limited at 5 × 104 years. The influence of
the precession rate of �� on e1 and i1 is obvious (long period of 22,699 years), as well as the one of 2ω1
(short period of 3,415 years). These interrelations between the eccentricities and the inclinations are specific
features of the Laplace plane

that the difference between averaged values of the eccentricities and osculating ones is of the
order of 10−2 which also may explain the small deviation observed in Fig. 5.

Finally, it is also interesting to remark that our perturbation technique cannot cover secular
resonance regimes. So far, no exoplanetary systems are located in such a resonance. Remem-
ber that the libration of the difference of the periapses of exosystems (e.g. υ Andromedae
system) is only a kinematical feature and not a secular resonance.

5 Variation of the secular frequencies with initial conditions

As the uncertainties in the observational data are large, it may be useful to see the long-
term effect of a change of the initial parameters values. Such a study of sensitivity to initial
conditions can be easily performed with our analytical theory. In this section, we observe
the sensitivity of the system of Sect. 4.1 to the initial values of the arguments of the peri-
centers (ω1 and ω2) and the longitudes of the nodes (
1 and 
2). For each set of initial
parameters, we always check that the 12th order expansion and the averaged Hamiltonian
both converge numerically. As the variations of initial ω1 and ω2 (or 
1 and 
2) values
lead to similar results, we only discuss the variation of the angles of the mass m1. Since the
results in Table 2 obtained with the order 10 expansion are accurate enough, we limit here
the calculation to this order.
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Fig. 5 Comparison between the time evolution of e1 (top) and �� (bottom) of the system of Sect. 4, as given
by our analytical theory (dotted lines) and the numerical integration of the full three-body problem computed
using SWIFT (with M1 = 50◦ and M2 = 0◦) (solid lines). The agreement is very good

First we pay attention to the changes produced on the fundamental frequencies. Figure 6
shows the calculation of the three periods Tp̄′

1
, Tp̄′

2
and Tq̄ ′

1
when initial ω1 varies from 0◦

to 360◦ (solid lines). All the other parameters are fixed to the same initial values as those
of Sect. 4.1. We do the same for different initial values of 
1 (dotted lines). We see that
the changes induced on the values of the periods are weaker for different initial ω1 values
(changes of a hundred years) than for different initial 
1 values (changes of a thousand
years). So the influence of the longitudes of the nodes on the fundamental frequencies is
larger than the one of the arguments of the pericenters.

Moreover, we look at the changes produced on the difference of the longitudes of the
pericenters �� and on the difference of the longitudes of the nodes �
 by a variation in
the initial ω1 value. Figure 7 gives the oscillation amplitude evolution of �� (left) and of
�
 (right) when initial ω1 varies from 0◦ to 360◦. These values are calculated by means
of the analytical expressions of the long-term time evolutions of these two Keplerian ele-
ments. Libration angle set to 180◦ represents a circulating case. It is the case of the system
of Sect. 4.1 which is fully inside the circulating region of Fig. 7. However we observe that,
for some initial values of ω1, oscillation around �� = 0◦ occurs. These values are centered
around initial ω1 = 90◦ for which the oscillation amplitude of �� is the smallest and which
corresponds to an initial value of �� of 0◦. Concerning the difference of the longitudes of
the nodes, only circulation of �
 is possible for all the initial values of ω1.

Figure 8 shows that different initial 
1 values produce, like previously, either a circulation
or a libration (around 0◦) of the difference of the longitudes of the pericenters �� (left).
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Fig. 7 Sensitivity of the difference of the longitudes of the pericenters �� (left) and of the difference of
the longitudes of the nodes �
 (right) to the initial ω1 value. Oscillation amplitudes are given in degrees.
An amplitude of 180◦ stands for circulation

The new feature is the possibility of libration of the longitudes of the nodes �
 around 180◦
(right).

Eventually, graphics of this section show that a little variation of the initial conditions can
produce very different long-term results. Oscillation period and amplitude are quite sensitive
to the initial configuration. It gives an idea of the consequences on the secular behavior which
may be produced by imprecisions in the observations.

A last interesting remark can be made regarding the mutual inclination. To vary the inner
longitude of the node (or equivalently the difference of the longitudes of the nodes �
)
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Fig. 8 Sensitivity of the difference of the longitudes of the pericenters �� (left) and of the difference of the
longitudes of the nodes �
 (right) to the initial 
1 value

amounts to vary the mutual inclination Imut . In fact, if we consider the spherical triangle
formed by the two orbital planes (of the masses m1 and m2) and the basic plane, we find the
relation:

cos Imut = cos i1 cos i2 + sin i1 sin i2 cos �
. (25)

Thus, �
 = 0◦ corresponds to the minimal value of Imut , namely i1 − i2. The maximal value
of Imut , i1 + i2, is given by �
 = 180◦. For the system of Sect. 4.1, the increase of initial 
1

from 0◦ to 180◦ is equivalent to an increase of the initial mutual inclination from 18.37◦ to
25.11◦. In the next section, we consider the υ Andromedae exoplanetary system and observe
the changes induced on the dynamics by an increase of the initial mutual inclination.

6 Increasing values of mutual inclination: application to the exosystem
υ Andromedae

In this section, we study the long-term behavior of the exoplanetary system υ Andromedae
c-d. In the coplanar case, the angular difference of the apsidal lines, �� , is in libration around
0◦. Here, we determine whether this apsidal configuration is maintained for increasing values
of the initial mutual inclination of the two orbital planes.

As seen previously, the secular frequencies and behavior of the angles are very sensitive
to the initial configuration of the system. Currently, the observations of exosystems do not
give any information on the inclination of the orbits and thus provide only a part of the
Keplerian elements. The lack of knowledge leads also to a poor determination of the masses:
only minimal masses can be inferred, which correspond to the real ones only in the case of an
inclination of 90◦ of the two orbital planes to the plane of the sky (orbits seen on the edge).
So there is a great space of parameters (inclinations and longitudes of the nodes) to study to
characterize the possible dynamics.

To explore this space of initial conditions, we choose to work in the same way as Stepinski
et al. (2000): considering fixed values of the inclinations of the orbital planes to the plane
of the sky, we observe the changes of the dynamics induced by a variation of the initial
longitude of the node of the outer body (or equivalently by a variation of the initial difference
of the longitudes of the nodes). It amounts to look at the changes produced by a variation of
the mutual inclination Imut (see Eq. 25). In order to compare the results, we adopt the same
parameters of υ Andromedae c-d system as the “Lick” ones used in Stepinski et al. (2000)
(m0 = 1.3MSun , m1 sin i1 = 1.88942MJup , m2 sin i2 = 3.90870MJup , a1 = 0.8282AU,
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a2 = 2.5334 AU, e1 = 0.3478, e2 = 0.2906, ω1 = 248.21◦ and ω2 = 242.99◦). The
reference frame we consider is such that the angle ii corresponds to the inclination of the
orbital plane of the mass mi to the plane of the sky.

Figure 9 represents the case of an initial inclination of 30◦ of both orbital planes to the plane
of the sky (sin i1 = sin i2 = 0.5). Consequently the masses of the planets given above have
to be doubled. We show the evolution of the dynamics for some values of the initial mutual
inclination Imut : 0◦ (
2 − 
1 = 0◦ first column), 7.5◦ (
2 − 
1 = 15◦ second column)
and 15◦ (
2 − 
1 = 30◦ third column). The time variations on 2 × 104 years represented
on Fig. 9 are, from top to bottom, the eccentricities, the difference of the longitudes of the
pericenters �� , the difference of the longitudes of the nodes �
 and the mutual inclination
Imut . The graphics of the first column correspond to the coplanar case of υ Andromedae
system (with double masses) and are obtained with our previous coplanar three-body study
(see Libert and Henrard 2006). We see that the inner body suffers from great variations in
eccentricities such that its orbit is nearly circular every 3, 718 years. The angular difference
of the apsidal lines �� librates around 0◦ with an amplitude of 61◦ and the same frequency
(− ˙̄p′

1 + ˙̄p′
2) which is the only one characterizing the motion in the coplanar case.
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Fig. 9 Time evolutions (on 2 × 104 years) of the sin i1 = sin i2 = 0.5 υ Andromedae system with different
initial mutual inclinations of the orbital planes to the plane of the sky: 0◦ (first column), 7.5◦ (second column)
and 15◦ (third column). Are represented, from top to bottom, the eccentricities, the difference of the longitudes
of the pericenters �� , the difference of the longitudes of the nodes �
 and the mutual inclination Imut
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At first sight, the second initial mutual inclination, 7.5◦ (second column), presents eccen-
tricities and �� evolutions very similar to those of the coplanar case. In fact, as seen previ-
ously, three fundamental frequencies are associated to this non-coplanar secular three-body
problem but the main combination of frequencies acting on the eccentricities and the angle
�� is − ˙̄p′

1 + ˙̄p′
2, as in the coplanar case. We see that its value decreases with increasing

initial mutual inclination (period of 4, 234 years for initial Imut = 7.5◦). Furthermore, the
difference of the longitudes of the nodes also oscillates around 0◦ with an amplitude close to
the initial difference 
2 − 
1. The mutual inclination always stays close to its initial value.
The large secular variations observed on the eccentricities were also shown by Stepinski et al.
(2000) in their numerical study. The good agreement between the two works gives an idea
of the accuracy provided by our analytical method, despite the large eccentricities and the
introduction of non-negligible mutual inclination of the two orbital planes.

For higher mutual inclinations (see for instance last column of Fig. 9), larger secular vari-
ations of the variables are observed. Minimal values of the inner body approach values as
close as 0.0001 and it explains the local singularities in the graphic of �� . However we still
note an increase in the amplitude of the �� motion. These features are also pointed out by
the numerical investigations of Chiang et al. (2001).

Finally, in order to see the influence of the masses of the planets on the dynamics of
the system, we consider different values of the initial inclination of the orbital planes to the
plane of the sky (sin i1 = sin i2 = 0.25, 0.75 and 1). For each value, we find the same kind
of results, namely larger secular variations for increasing initial mutual inclination Imut and
close proximity to zero of the minimum eccentricity of the inner body. The higher the value of
the initial inclination of the orbital planes to the plane of the sky (i1 = i2), or equivalently the
smaller planetary masses, the higher the value of initial Imut for which a very close relation
of the inner eccentricity to zero is observed (about 8◦ for sin i1 = sin i2 = 0.25 and about
16◦ for sin i1 = sin i2 = 1).

7 Conclusion

Our study of the secular evolution of two non-coplanar planets (which are not in mean–
motion resonance) is based on an analytical 12th order expansion in the eccentricities and
the inclinations of the perturbative potential. We apply a Lie averaging in order to introduce
an action-angle formulation of the 3-D secular Hamiltonian and in order to find analyti-
cal expressions of the fundamental frequencies and of the secular evolution of the elliptic
elements of the two planets.

This approach can be carried out in any inertial frame or in the frame based on the Laplace
plane. We have compared the results in both frames pointing out in this way the advantages
of using the special frame based upon the Laplace plane. The variations of the orbital ele-
ments are much simpler and the relations between the evolutions of the eccentricities and the
inclinations made clearer. In the general frame, the strong relations, on one hand, between
the eccentricities and the difference of the longitudes of the pericenters �� and, on the
other hand, between the inclinations and the difference of the longitudes of the nodes �


are already present. But, in the Laplace frame, we observe a closer relationship between
eccentricities, inclinations and the angles �� and 2ω1. The amplitudes of variation of the
inclinations are also much smaller.

We found in all the cases we have investigated (many more than the ones reported here)
two hidden symmetries of the averaged Hamiltonian: one valid in any inertial frame (see the
remark after Eq. 10), the other one valid only in the Laplace reference frame (annulation of
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the ī ′2 quantity which makes unnecessary the second averaging—see Eq. 15). On the same
level, we can point also to the fact that the special terms with zero first order frequency
(see the remark before Eq. 10) appear only at much higher order than expected. We do not
have a theoretical justification for these symmetries, but they appear to be real and useful.

As the uncertainties in the observational data are large, we have studied the sensitivity of
the frequencies and the evolution to the angular initial conditions and we have shown that
some little variations of initial values can produce very different long-term behaviors.

Finally, we have applied our analytical model to the well-known υ Andromedae c-d
exoplanetary system. We have studied the dynamics for different initial mutual inclinations
(Imut or equivalently different �
) and different initial orbital inclinations to the plane of
the sky (sin i1 = sin i2). Our results are in agreement with numerical results of previous
works and give an idea of the accuracy provided by our analytical model, despite the large
eccentricities and the possibly non-negligible mutual inclination of the two orbital planes of
an exoplanetary system.
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