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Abstract In a previous paper, we have developed an analytical model of the secular 3D
planetary problem by expanding the perturbation function up to the twelfth order in the eccen-
tricities and the inclinations. Although the expansion is limited the model is able to describe
with accuracy most of the observed systems of exoplanets. With the help of this model we
were able to describe the geometry of the phase space of a typical system. The kernel of this
description is a series of surfaces of section showing the chaotic and the regular domains of
the phase space. We have observed in this previous paper that a family of unstable periodic
orbits is responsible for the chaoticity, while we have hinted that the islands of stability are
organized around stable periodic orbits. In this contribution we compute the main families
of periodic orbits of the problem and show that indeed they are responsible for sculpting the
phase space.

Keywords Exoplanetary systems · Three body problem · Periodic orbits ·
Homoclinic orbits · Stability · Bifurcations

1 Introduction

In the last decade, more and more exoplanetary systems were found and, probably due to
observational bias, their orbital characteristics are quite different from the characteristics of
our own planetary system. Observational bias or not, these systems exist, and the formation,
evolution and stability of such systems are important questions which open new avenues of
research in Celestial Mechanics. Due to the difficulties of observation, the basic parameters
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178 J. Henrard, A.-S. Libert

(such as the masses) and orbital elements of these systems are not known with much accuracy
or even, for the inclinations, completely unknown.

With this in mind, we believe it is more important to try to understand the basic mechanisms
explaining the long term dynamics of arbitrary but typical systems rather than to develop
accurate theories of observed systems even if they are relatively well determined. Also,
because most, if not all, of the numerical studies concern the mean motion resonances (see
for instance Hadjidemetriou 2006; Voyatzis and Hadjidemetriou 2006; Callegari et al. 2006;
Michtchenko et al. 2006b), we decided to focus on the general secular motion outside reso-
nances. This was the aim of our previous contributions on the subject (Libert and Henrard
2005, 2007). In the last one, we observed that in the 3D problem (which has not been exten-
sively investigated because of the lack of knowledge of the inclination of observed systems)
the geometry of the phase space, i.e. the localization of regular and chaotic motions in
the phase space, was apparently controlled by a few families of periodic orbits associated
with the equilibria which were described by Jefferys and Moser (1966) for systems with
very small ratio of semi-major axis and very small eccentricities and inclinations. We were
able to extend this description to a very large range of parameters, including values typical
for the observed exoplanetary systems. We believe that the description we have made in
Libert and Henrard (2005, 2007) of the geometry of the phase space can be applied to many
(non resonant) exoplanetary systems. Of course for much lower or much higher values of the
angular momentum deficit, the topology could be quite different.

In this contribution we compute the main families of periodic orbits of the typical prob-
lem considered in Libert and Henrard (2007): mass ratio (µ = m1/(m1 + m2)) equal to 0.2,
ratio of semi-major axis (α) equal to 0.3 and non-dimensional angular momentum deficit
(�—see Eq. 8) equal to 0.03. This is to be compared for instance with the values attributed to
the system υ Andromedae c and d in a recent catalog (http://www.exoplanet.eu/catalog-RV.
php): mass ratio equal to 0.334, ratio of semi-major axis equal to 0.331 and non-dimensional
angular momentum deficit equal to 0.026 if the system is assumed to be coplanar.

In Sect. 2, we describe briefly the reduction of the 3D secular planetary three body problem
to a two degrees of freedom Hamiltonian system, and bring forward the symmetries which
are quite useful in the study of this reduced system. In Sect. 3, we recall in a few words our
findings concerning the geometry of the problem (Libert and Henrard 2007).

Section 4, the main contribution of this paper, is devoted to the description of the families
of periodic orbits emanating from the three equilibria of the problem: the central unstable
equilibrium and the two stable Kozai equilibria. The analogy between the development and
bifurcations of these families with the unstable family of periodic orbits emanating from L3,
and the stable families of periodic orbits emanating from L4 and L5, is quite striking. In the
final Sect. 5 we demonstrate step by step how the principal features of the dynamics of the
system as described in our previous contribution (Libert and Henrard 2007) are connected
with the evolution of these families.

2 Analytical modelization of the problem

We consider a system consisting of a central star of mass m0 and two planets of mass m1

and m2, with m1 the one closest to the central star. The Hamiltonian of the dynamics of this
system, in the usual Jacobi coordinates and limited to the second degree in the mass ratios
m1/m0 and m2/m0, is:

H = −Gm0m1

2a1
− Gm0m2

2a2
− Gm1m2

[
1

|−→r1 − −→r2 | − (
−→r1 |−→r2 )

r3
2

]
, (1)
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Periodic orbits in the secular 3D planetary three body problem 179

where ai ,
−→ri and ri are, respectively, the osculating semi-major axis, the position vector and

the norm of the position vector of the mass mi (see for instance Laskar 1990).
A set of canonical variables is formed by the classical modified Delaunay’s elements

(to the second degree in the mass ratios):

λi = mean longitudes, Li = mi
√

Gm0ai

pi = longitudes of the pericenter, Pi = Li

[
1 − √

1 − ei
2
]

qi = longitudes of the node, Qi = Li

√
1 − e2

i [1 − cos ii ] ,

where ei and ii are the eccentricities and inclinations of the planets. In order to expand the last
term of Eq. 1 in powers of the eccentricities and the inclinations, we prefer to use the (non-
dimensional) expressions Ei = √

2Pi/Li instead of the eccentricities ei and Si = √
2Qi/Li

instead of the inclinations ii ; they are immediately related to the Delaunay’s canonical vari-
ables, and, at least for small to moderate eccentricities and inclinations, they have similar
meanings and values.

We assume that the system is not close to a mean motion resonance and we average the
Hamiltonian function over the “fast variables” λi , and obtain an averaged Hamiltonian

K =
∑

k, j1, j2,il ,l∈4

Bk, j1, j2
il

E | j1|+2i1
1 E | j2|+2i2

2 S|k+ j1|+2i3
1 S|k+ j2|+2i4

2 cos �, (2)

where � = j1(p1 − q1) − j2(p2 − q2) − k(q1 − q2). All variables ai , Ei , Si , pi and qi

now designate values averaged over the fast variables λi . Actually, we have implemented the
averaging by simply removing from the expanded Hamiltonian the terms depending upon the
mean anomalies of the planets. This amounts to a first order (in the mass ratios) averaging.
As the mean longitudes are ignorable, the associated moments Li are constant and so are the
semi-major axes ai . The first two terms and the factor −Gm1m2/a2, which can be absorbed
by redefining the time scale, have been dropped from the Hamiltonian as they depend only
on L1 and L2 which are constant. So the secular Hamiltonian is a four degrees of freedom
problem.

These expansions were performed by computer using our own algebraic manipulator.
We decided to keep in the Hamiltonian all the terms such as the sum of the exponents of
E1, E2, S1 and S2 is lower or equal to 12.

In the case of the three-body problem, the Jacobi’s reduction, also called elimination of
the nodes (Jacobi 1842), allows us to reduce the Hamiltonian function (2) to a two degrees
of freedom function only. It is based on the invariance of the total angular momentum, �C ,
in norm and in direction. The constant direction of the vector �C defines an invariant plane
perpendicular to this vector. This plane is known as the invariant Laplace plane. The choice
of this plane as reference plane implies the following relations

q1 − q2 = ±180◦ (3)

(L1 − P1) cos i1 + (L2 − P2) cos i2 = C (4)

(L1 − P1) sin i1 + (L2 − P2) sin i2 = 0 (5)

with C the norm of the total angular momentum.
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180 J. Henrard, A.-S. Libert

In order to take advantage of these relations, we introduce the following canonical
transformation:

w1 = p1 − q1 W1 = P1

w2 = p2 − q2 W2 = P2

r1 = q1 − q2 R1 = P1 + Q1

r2 = q2 R2 = P1 + P2 + Q1 + Q2.

(6)

The angle wi corresponds, in this definition, to the opposite of the (averaged) argument of the
pericenter. Only the three first angles are present in the Hamiltonian (r2 is ignorable), which
means that R2 is a first integral of the problem. This constant is related with the constant
norm of the total angular momentum and is often introduced in the literature (see for instance
Laskar 1997) as the angular momentum deficit:

AMD =
2∑

i=1

Li

(
1 −

√
1 − e2

i cos ii

)
= L1 + L2 − C, (7)

where the last equality is due to the definition of the Laplace plane (4). In the following
sections, we prefer to refer to a non-dimensional angular momentum deficit, denoted by the
symbol � :

� = AMD

L2
(1 − µ) (8)

where µ = m1/(m1 + m2).
Also, the angle r1 is constant (see (3)) and the problem is reduced to two degrees of

freedom (w1, w2, W1, W2). Then, for a fixed value of the total angular momentum C or
equivalently for a fixed value of the angular momentum deficit �, the relations (4) and (5)
allow us to calculate the values of the inclinations as functions of the eccentricities.

We execute a last transformation of coordinates to the usual Poincaré like canonical
variables

xi = √
2Pi cos wi and yi = √

2Pi sin wi , (9)

and the Hamiltonian becomes

K =
∑

nl ,l∈5

Enl x
n1
1 yn2

1 xn3
2 yn4

2 χn5 , (10)

where χ is the part of the angular momentum deficit due to the mutual inclination of the
orbits, i.e.

χ = AMD − P1 − P2 = AMD − (x2
1 + y2

1 + x2
2 + y2

2 )/2. (11)

The coefficients Enl depend on the three parameters of the problem: the ratio of the semi-
major axes α, the mass ratio µ and the value of �. We refer to Libert and Henrard (2007) for
more details.

The fact that the expansion (2) is an even function of the angular variables implies that in
the expansion (10) the sum n1 + n3 and n2 + n4 are always even. From this observation it
follows that:

ẋi = − ∂K
∂yi

= Fi (xi , yi ) = Fi (−xi , yi ) = −Fi (xi ,−yi ) = −Fi (−xi ,−yi ),

ẏi = − ∂K
∂xi

= Gi (xi , yi ) = Gi (xi ,−yi ) = −Gi (−xi , yi ) = −Gi (−xi ,−yi ).

(12)
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Periodic orbits in the secular 3D planetary three body problem 181

Hence, for each solution (xi (t), yi (t)) of the differential equations, we can define three
other solutions:

(−xi (−t), yi (−t)), (xi (−t), −yi (−t)), (−xi (−t), −yi (−t)). (13)

These symmetries are similar to the symmetries of the restricted problem with equal
masses and are quite handy in the computation of surfaces of section or of periodic orbits.
Indeed, as in the restricted problem with equal masses, there exist three types of symmetric
periodic orbits; orbits symmetric with respect to the yi axis, orbits symmetric with respect
to the xi axis and orbits symmetric with respect to all axes (see also Muñoz-Almaraz et al.
2007).

As a further consequence of the evenness of n1 + n3 and of n2 + n4 in the expansion (10),
we also derive the following useful observation:

ẏi = dK
dxi

= x1 A1(xi , yi ) + x2 A2(xi , yi )

ẋi = − dK
dyi

= y1 B1(xi , yi ) + y2 B2(xi , yi ).

(14)

Hence whenever x1 = x2 = 0, the velocities ẏi vanish, and similarly the velocities ẋi

vanish whenever y1 = y2 = 0. A first consequence is that the origin is always an equilibrium.

3 The geometry of the phase space

The equilibrium at xi = yi = 0, corresponds to circular orbits, and (according to (7)) to the
maximal mutual inclination compatible with a fixed value of �. Let us remark that this equi-
librium of the reduced secular problem corresponds in the physical space to a quasi periodic
orbit. When the angular momentum deficit is small, the equilibrium is stable. To keep the
same terminology as in our previous work we refer to it as the central equilibrium. It is this
equilibrium which Poincaré (1892) used as a stepping stone in order to show the existence of
the periodic orbits de la troisième sorte in the case of planets with vanishingly small masses.
Jefferys and Moser (1966) and Robutel (1995) have shown that for vanishingly small ratios
of semi-major axis this equilibrium becomes unstable at a large value of � (corresponding
to a mutual inclination of 39◦, 23◦) and generates by bifurcation two stable equilibria.

In a previous contribution (Libert and Henrard 2007) and with the help of the expansions
described in the previous section, we have computed the critical value of the mutual incli-
nation (which corresponds to the change of stability of the central equilibrium) for different
values of the ratio of semi-major axis and of the mass ratio compatible with exoplanetary
systems.

We have found that the zone of chaotic motion, described by Michtchenko et al. (2006a)
for the case of the c–d υ Andromedae system, is due to the tangles of stable and unstable man-
ifolds associated with the unstable family of periodic orbits emanating from the central equi-
librium. For values of the parameters close to the υ Andromedae system (α = 0.3, µ = 0.2
and � = 0.03) we have explored in details the dynamics of the system by means of a series
of surfaces of section for different values of the energy. We found that in the vicinity of
the stable equilibria created by bifurcation from the central equilibrium, regions of regular
motions are centered around the Lyapunov families of periodic orbits emanating from them.
These regions have been called Kozai resonances (Michtchenko et al. 2006a), by analogy
with the restricted problem (see Kozai 1962; Kinoshita and Nakai 2007).
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182 J. Henrard, A.-S. Libert

4 The web of periodic orbits emanating from the central equilibrium
and the Kozai equilibria

The family of unstable periodic orbits emanating from the central equilibrium is doubly
symmetric; the four orbits obtained by the symmetry described in Eq. 12 form one and only
one orbit. On the other hand, the Lyapunov families emanating from the Kozai equilibria are
simply symmetric with respect to the yi axes and the families associated with each of the
two Kozai equilibria are mirror images of each other traveled in an opposite direction. This
is analogous to the relation between the Lyapunov families emanating from the equilateral
equilibria of the restricted problem (for small mass ratio). As we shall see the analogy is
even more profound as the family of unstable periodic orbits emanating from the central
equilibrium plays, with respect to them, a role very similar to the role played by the family
emanating from the L3 equilibrium with respect to the families emanating from L4 and L5.

The fact that they are symmetric is quite helpful in computing them. We set x1 and x2

to zero, pick a value of y1 and adjust y2 so that the orbit lies on a given energy level. We
compute the orbit until it reaches again x2 = 0, and redefine the value of y1 so that at the
same time x1 vanishes also. Once the symmetric orbit is reached we integrate the variational
equations in order to compute its stability. We use a Runge–Kutta fourth order integrator with
a time step adjusted so that the local error is less than 10−12. The constancy of the energy is
monitored as well as the fact that the velocity is a solution of the variational equations.

We plot in Fig. 1, the initial values of periodic orbits associated with the equilibria of the
secular 3D planetary three body problem with α = 0.3, µ = 0.2 and � = 0.03. We plot the
energy versus e1 affected with the sign of x1 (i.e. positive when ω1 = 90◦ and negative when
ω1 = −90◦). The initial values correspond to the point where the orbits cross the surface
of section x2 = 0 with a negative velocity. As the orbits around the two Kozai equilibria
are traveled in opposite direction, these points are not the same for both orbits although the
orbits are mirror images of each other (see the little sketches in Fig. 2). This is why the graph
is not symmetric.

We show in Fig. 3 a sample of the periodic orbits under consideration. Their place on
Fig. 1 is identified by the letters A, B, C, . . ., and f, g, h, . . .

As in the family of periodic orbits emanating from the L3 equilibrium in the restricted
problem, the family C emanating from the central equilibrium is first unstable (with a stability
index, U = 2cosh(λT)) large and positive—see for instance Deprit and Henrard (1968) for
a definition of the stability index. The value of the index goes down rapidly, reaches the
critical value U = 2 at K = −0.0139224396. At this point it serves as the termination of
the two short period Lyapunov families, S and S ′ emanating from the Kozai equilibria. It
is the same “non-generic” bifurcation by which the short period families of periodic orbits
of L4 and L5 in the restricted problem end on a symmetric orbit emanating from L3. It is
non-generic because of the symmetry which makes two simply symmetric orbits, symmetric
to each other, bifurcate from a doubly symmetric orbit (see Henrard 2002).

After the bifurcation, the family C becomes stable, reaches a maximum value of the
energy, where it changes again its stability. Later on, it gets stable again; its period increases
until it approaches a type of termination which has already been described in the context
of the restricted problem (Henrard 1965, 1983; see also Henrard 2002). This termination
is a generalization of the termination conjectured by Strömgren (1933) and investigated by
Henrard (1973) and Devaney (1977). The terminating feature is no longer a single homoclin-
ic orbit to an unstable equilibrium but a family of homoclinic orbits to a family of unstable
periodic orbits. In the case of the web of long periodic orbits emanating from L4, investi-
gated earlier (Henrard 1983), we have conjectured that the members of the web wind up
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Periodic orbits in the secular 3D planetary three body problem 183

Fig. 1 Graphs of energy versus
initial e1 of periodic orbits
associated with the equilibria of
the secular 3D planetary three
body problem with
α = 0.3, µ = 0.2 and � = 0.03.
The gray big dot stands for the
central equilibrium, the black
ones for the Kozai equilibria.
The letters refer to the drawing
of individual periodic orbits
in Fig. 3
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Fig. 2 Sketches explaining why
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other, but they are traveled in
opposite direction; which means
that the initial values (the point
where ẋ1 < 0) are not mirror
images of each other
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around a family of homoclinic orbits emanating from L3, getting closer to it while the period
increases.

In our case here, the family of homoclinic orbits which serves as the focus of the termi-
nating process is actually formed by a family of pairs of orbits homoclinic to members of
the family C of periodic orbits. We have plotted in Fig. 4 (left panel) such a homoclinic orbit.
By varying the energy of the C-orbit, two families of doubly-asymptotic orbits, symmetric
to each other, are generated. We call them 	 (the one corresponding to Fig. 4) and 	′ the
family symmetric to it. The termination under investigation is formed by the composition of
two homoclinic orbits of the same energy, one belonging to 	 and the other one to 	′, as
shown in the right panel of Fig. 4.

We have already mentioned the fate of the short period families S and S ′ emanat-
ing from the Kozai equilibria. The long period families L and L′ reach a maximum of
the energy and then, similarly to the web of long period orbits associated to L4 and L5
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Fig. 3 Graphs of periodic orbits at the level of energy K = −0.0185 (left) and K = −0.014 (right). The
orbits are identified on Fig. 1 by the letters f, g, h, . . ., A, B, C, . . .

x 50

ω

ω

ω

ω

Fig. 4 Homoclinic orbit to a small periodic orbit (for K = −0.01916)

in the restricted problem, proceed toward their terminations by increasing their periods
and winding around the family 	 (a specimen of which is depicted on the left panel of
Fig. 4) or 	′.

We have also plotted in Fig. 1, the family C′ of doubly symmetric periodic orbits, which
takes the relay of C as the backbone of the phase space for larger value of the energy. It goes
up to K = 0.002725 at which point the two planets are coplanar and the eccentricities are
constant (e1 ≈ −0.11977 and e2 ≈ 0.26776).

The projections of the orbit in the planes (e1 cos ω1, e1 sin ω1) and (e2 cos ω2, e2 sin ω2)

are two perfect circles, in conformity with the analysis done in Libert and Henrard (2005).
They correspond to one of the equilibria we called dynamical poles of the problem reduced
to one degree of freedom. At these equilibria the values of e1 and e2 are constant; hence
the fact that the projections are circles. This should be considered as the end of the family
of periodic orbits as far as the planetary problem is concerned, but it is not the end for the
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Table 1 How the families
C and C′ avoid to enter the
unstability domain U < −2

Family C′ Family C

K U K U

−0.003 −1.97 −0.013 −1.89
−0.0034 −1.996 −0.01315 −1.997
−0.0036275 −1.9999993 −0.0131725 −1.99993
−0.00363 −1.99999997 −0.0131775 −1.999997
−0.0036325 −1.9999997 −0.01318 −1.99996
−0.0039 −1.994 −0.0132 −1.998
−0.004 −1.98 −0.0133 −1.93

Hamiltonian problem described by (10). Indeed solutions of this Hamiltonian problem can
be found for negative values of the function χ , i.e. for imaginary values of the inclinations.

The other part of the family C′ run outside Fig. 1. We did not plot it because its evolution
is uneventful. While remaining stable, it goes up in eccentricity and in energy until it even-
tually ends up on the second periodic orbit of the coplanar problem at p1 − p2 = π, e1 =
0.65563792 and e2 = 0.0889325589 for an energy level of K = 0.016023520.

It may be worth mentioning a puzzling fact concerning the evolution of the stability index
U along the families C and C′. In both cases, the value of the stability index goes down from
the unstable region U > 2, to the stable region −2 > U > 2, but instead of going down to
the unstable region U < −2, it makes a sharp turn at precisely the critical value U = −2, to
return in the stable region. Table 1 illustrates this puzzling behavior which may be due to the
symmetries of the problem.

5 Periodic orbits as the backbones of the surfaces of section

In a previous paper (Libert and Henrard 2007), we have computed a sequence of surfaces of
section of the problem and we have hinted that their principal features are due to the existence
of the periodic orbits we have just described. We proceed now to clarify this point by produc-
ing six portraits. Each one corresponds to a particular value of the energy and is composed
of two panels. The lower one is a simplified reproduction of Fig. 1, in order to show what are
the periodic orbits belonging to this level of energy; the upper one is a reproduction of the
surfaces of section published in Libert and Henrard (2007). The correspondence between the
two panels is sometimes a little distorted as the scales of the x axis of the panels are slightly
different.

For a value of the energy just above the value corresponding to the Kozai equilibria (see the
left portrait of Fig. 5), the surface of section is composed of two separate regular domains,
formed by quasi-periodic motions centered around a periodic orbit belonging to one of the
Lyapunov families emanating from the equilibria, the family L and L′ respectively. They are
marked by X on the lower panel. This picture is a little deceptive. Actually the families S
and S ′ are also fixed points of the surface of section surrounded by quasi-periodic motions.
But the area covered by these motions is so small that it cannot be seen on the surface of
section pictured in the left panel of Fig. 5. We have shown in Libert and Henrard (2007), with
the help of a simplified model, how these two domains of quasi-periodic motions can coexist
without being separated by a critical orbit as it would be the case if we were confronted with
a resonance.

For a value of the energy slightly above the value corresponding to the central equilibrium
(see the right portrait of Fig. 5), the tangle of the stable and unstable manifolds of the unstable
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Fig. 5 Levels of energy K = −0.0195 (to the left) and K = −0.019 (to the right). See text for comments

periodic orbit belonging to the family C, generates a chaotic domain which surrounds the
regular domains around the orbits of the families L and L′. The small regular domains around
the orbits of the families S and S ′ are engulfed in the chaotic sea and can be barely seen;
one as a small dot close to the center of the graph, the other as an elongated island to the
left of the graph. We do not think that these regular domains can be described as resonances
separated from the main regular domain by a chaotic layer.

When we reach the level K = −0.017 (see the left portrait of Fig. 6), the regular regions
centered around L and L′ shrink as the stable segments of the families of periodic orbits
will soon disappear. The regular region around members of the S and S ′ families are still
hardly visible. But what becomes an important feature is the island to the right, surrounding
a periodic orbit member of the return segment of the family C. This island grows in impor-
tance at the level K = −0.015 (see the right portrait of Fig. 6), while the chaotic domain
shrinks, reflecting the fact that the unstable member of the family C becomes less unstable
(U approaches the stability limit U = 2). Also, the islands surrounding the families L and L′
have disappeared, while smaller islands surrounding this time the families S and S ′ are now
visible. The distortions in the curves to the left of the surface of section announce the future
intrusion of the family C′.

At the level K = −0.013 (see the left portrait of Fig. 7), the central member of the family
C is stable and the families S and S ′ have disappeared. The surface of section looks like
the surface of section of a resonance problem, with the largest member of the family C,
playing the role of the center of the resonance and a member of the family C′, playing the
role of the unstable orbit generating the separatrix. But this may be misleading. There is no
indication of commensurability between frequencies as it would be the case in a genuine
resonance.

Indeed at the level K = −0.0115, the member of the family C′ is stable destroying this
picture, while at a level a little higher (see the left panel of Fig. 8) the pattern is reversed, it
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Fig. 6 Levels of energy K = −0.017 (to the left) and K = −0.015 (to the right). See text for comments
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Fig. 7 Levels of energy K = −0.013 (to the left) and K = −0.0115 (to the right). See text for comments

is the member of C which is unstable and the member of C′ which is stable. For values of K
larger than −0.011, only the family C′ is present, and surrounded by regular quasi-periodic
motions (see the right panel of Fig. 8).
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Fig. 8 Levels of energy K = −0.011 (to the left) and K = −0.01 (to the right). See text for comments

6 Conclusion

We have shown that the dynamics of a typical case of the 3D secular planetary problem is gov-
erned by the evolution and the stability of the families of periodic orbits emanating from three
equilibria: the central equilibrium which, for the value of the parameters we have chosen,
is unstable and generates an unstable family of periodic orbits and the two Kozai equilibria
which are stable, each of them generating two Lyapunov families of stable periodic orbits.

The tangles of stable and unstable manifolds associated with the unstable periodic orbits
emanating from the central equilibrium, are responsible for a large chaotic sea, punctured by
the islands of regular motions surrounding the Lyapunov families emanating from the Kozai
equilibria.

For larger values of the energy K > −0.0139, the families emanating from the Kozai
equilibria have disappeared, one after the other and at K ≈ −0.0139 the family emanating
from the central equilibrium becomes stable. The chaotic domain has disappeared and the
surfaces of section are filled with what looks like regular orbits: the problem has become
quasi integrable. Up to K ≈ −0.011, the dynamics organizes itself around three periodic
orbits which change their stability several times. The unstable periodic orbits do not seem to
generate macroscopic domain of chaoticity.

For yet larger values of the energy K > −0.011, only one periodic orbit remains and
governs the dynamics.
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