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Abstract The conditions for relative equilibria and their stability in the Full Two Body
Problem are derived for an ellipsoid–sphere system. Under constant angular momentum it
is found that at most two solutions exist for the long-axis solutions with the closer solution
being unstable while the other one is stable. As the non-equilibrium problem is more common
in nature, we look at periodic orbits in the F2BP close to the relative equilibrium conditions.
Families of periodic orbits can be computed where the minimum energy state of one family
is the relative equilibrium state. We give results on the relative equilibria, periodic orbits and
dynamics that may allow transition from the unstable configuration to a stable one via energy
dissipation.

Keywords Full Two-Body Problem · Ellipsoid–sphere system · Relative equilibria ·
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1 Introduction

Over the past few decades, we witnessed a growing interest in studying small bodies of
our solar system. Some studies have indicated that about 16% of the Near-Earth Asteroids
may be systems of asteroid pairs, or binary asteroid systems (Margot et al. 2002). The prob-
lem formulation of the binary system itself has been posed and studied in earlier work, see
Maciejewski (1995), Scheeres (2003, 2006), Scheeres and Augenstein (2003), Fahnestock
and Scheeres (2006), Lee et al. (2007), Scheeres and Bellerose (2005), and Bellerose and
Scheeres (2007b). As the mass distribution of the bodies is considered, the problem is
referred to as the Full Two Body Problem (F2BP). Assuming a general formulation is possible
(Maciejewski 1995; Scheeres 2006). Fahnestock and Scheeres (2006) approached the prob-
lem using polyhedral mutual potential and potential derivatives while other studies have
used other mathematical methods such as Lie group computations (Lee et al. 2007).
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64 J. Bellerose, D. J. Scheeres

The conditions for relative equilibria and their stability in the F2BP are derived for a system
with one of the bodies being a sphere while the other one is of arbitrary shape (Scheeres
2006). An ellipsoid–sphere system was further investigated (Scheeres 2003; Scheeres and
Augenstein 2003) and equilibrium solutions and their stability for a spacecraft in this grav-
itational field have also been studied (Scheeres and Bellerose 2005; Bellerose and Scheeres
2007b).

In the first part of the current work, we investigate cases of relative equilibria for an
ellipsoid–sphere system under constant angular momentum. For convenience, we will refer
to this problem as the F2BP. We show existence and stability properties of these solutions and
give some results. We also look briefly at relative equilibria for different values of angular
momentum and give a short discussion on how these can be linked to the formation and
evolution of a binary system.

As the non-equilibrium problem is more common in nature, studies have looked at periodic
orbits in the F2BP for an ellipsoid–sphere system (Bellerose and Scheeres 2005, 2007a). As
a first approximation, the motion of the binary system was set as constant, where the ratio of
the angular spin of the general body to their system orbit rate was a free parameter. Although
useful for computations, this approximation allows systems that do not exist in nature. In
the present work, we solve for the real dynamics of the F2BP under non-equilibrium con-
dition. We can show existence of periodic orbits near relative equilibria where the stability
of the periodic orbits follows the relative equilibria stability properties. We also link these
two topics through energy consideration; for a family of periodic orbits, relative equilibrium
parameters give the minimum energy state for this family.

For computing periodic orbits, it is more convenient to choose a frame fixed to the
general body as this permits us to eliminate its attitude dynamics from consideration. We
define a surface normal to the flow and integrate the system until it crosses the surface of
section. Using this approach, we can converge on symmetric periodic orbits after correct-
ing the initial states and iterating until the difference between the initial and final state is
small. By linearizing the system near relative equilibria, an approximation method is
also derived in order to facilitate the computation and use of periodic orbits near relative
equilibria.

2 The Full Two-Body Problem

2.1 Geometry of the problem and equations of motion

The Two-Body Problem considers the dynamics of two spherical bodies in orbit about each
other. We refer to the Full Two-Body Problem (F2BP) when we consider the mass distribu-
tion of at least one of the two bodies. The general situation is shown in Fig. 1a. Without any
approximations, this system involves 12 degrees of freedom. The sphere restriction shown
in Fig. 1b reduces the problem to lower dimension. In total, six degrees of freedom can be
removed from the conservation of angular momentum and the rotational dynamics of the
sphere while keeping the interesting dynamical features (Scheeres 2006).

In the current work, we study the dynamics of an ellipsoid–sphere system, and refer to it
as the F2BP. In Fig. 2, we define M1 and M2 as the masses of the spherical and ellipsoidal
shapes, respectively, with a mass fraction defined as

ν = M1

M1 + M2
. (1)
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Fig. 1 (a) Restricted Full 2-Body Problem (F2BP). (b) F2BP under “Sphere Restriction”
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Fig. 2 F2BP: geometry of the problem

In dimensional form, the position of the two bodies relative to their center of mass are

re = −νrb (2)

and
rs = (1 − ν)rb, (3)

where subscripts e and s refer to the ellipsoid and the spherical body, respectively, and rb
is the position vector of the sphere relative to the ellipsoid. For a rotating coordinate frame
fixed to the ellipsoidal body, the two bodies’ relative dynamics are defined by

r̈b + 2� × ṙb + �̇ × rb + � × (� × rb) = G(M1 + M2)
∂Ũ

∂rb
(4)

and the rotational dynamics of the ellipsoid are described by

Î · �̇ + � × Î · � = −GM1rb × ∂Ũ

∂rb
, (5)

where � is the angular velocity of the ellipsoid and Î is its inertia matrix normalized by its
mass (Scheeres 1998). In the general case, Ũ is the mutual potential, defined as

Ũ = 1

M2

∫
β2

dm2(ρ̂)∣∣rb + ρ̂
∣∣ , (6)

where ρ̂ is the position vector of a mass element of the ellipsoid. Note that, since the frame is
fixed to the ellipsoidal body, the mutual potential is time-invariant. This is true independent
of whether the system is in relative equilibrium.
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66 J. Bellerose, D. J. Scheeres

To simplify the computation, the maximum radius of the ellipsoid, α, and the mean motion
of the system at this radius, n = √

G(M1 + M2)/α3, are chosen as length and time scales,
respectively. Let ω be the normalized angular velocity of the ellipsoid.

As derived in (Scheeres 1998), in Lagrangian form the F2BP dynamics can be written as
follows

r̈ + 2ω × ṙ + ω̇ × r + ω × (ω × r) = ∂U

∂r
(7)

and

I · ω̇ + ω × I · ω = −νr × ∂U

∂r
. (8)

Using the normalized units, the mutual potential, U , and the inertia matrix of the general
body, I, are expressed as

U = α

M2

∫
βe

dm(ρ)

|r + ρ| (9)

and

I = − 1

M2α2

∫
βe

ρ̃ · ρ̃dm, (10)

where ρ is the position vector of a mass element of the distributed body. Note that (.̃)

represents the cross-product matrix.
Since we model the general body as an ellipsoid, the mutual potential, U , can be written

in terms of elliptic integrals (Danby 1992). We use the normalization above to express

U = 3

4

∫ ∞

λ

φ(r, v)
dv

�(v)
(11)

with

φ(r, v) = 1 − (x + νr)2

1 + v
− y2

β2 + v
− z2

γ 2 + v
(12)

and

�(v) =
√

(1 + v)(β2 + v)(γ 2 + v), (13)

where 0 < γ ≤ β ≤ 1, γ and β correspond to the z and y radii of the ellipsoid, and λ satisfies
φ(r, λ) = 0.

In the x − y plane, the Lagrange form of the equations of motion is given by Eqs. (7, 8),
where

ω̇ = − ν

Izz

(
x

∂U

∂y
− y

∂U

∂x

)
, (14)

ẍ = ω2x + 2ωẏ + ω̇y + ∂U

∂x
, (15)

and

ÿ = ω2y − 2ωẋ − ω̇x + ∂U

∂y
. (16)

When considering planar motion, this model also allows us to write the system as a two
degree of freedom Hamiltonian system. The position of the sphere relative to the ellipsoid
in the plane is denoted as q = r, and the inertial velocity is, p = ṙ + ω × r. Using this set of
coordinates, we can write the energy and momentum integrals in normalized units as

E = 1

2
p · p + 1

2ν
Izzω

2 − U(q) (17)
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and

K = 1

ν
Izzω + ẑ · (q × p). (18)

We can solve for the rotation rate ω as function of K , q and p.

ω = ν

Izz

[
K − ẑ · (q × p)

]
. (19)

Hence, for given values of K , q and p, we can substitute for ω into the energy equation,
Eq. (17)

E = 1

2
p · p + ν

2Izz

[
K − ẑ · (q × p)

]2 − U(q). (20)

Note that in this case, the energy integral is the Hamiltonian, or E = H(q, p) with angu-
lar momentum K as a free parameter. For general three dimensional motion the angular
momentum cannot be eliminated in the same way, as its elimination would couple the rela-
tive attitude of the body into the energy (Scheeres 2006). In explicit form for planar motion,
Eq. (20) becomes

H(qx, qy, px, py) = 1

2
(px

2 + py
2) + ν

2Izz

[
K − (qxpy − pxqy)

]2 − U(qx, qy). (21)

We can compute the dynamics with

q̇x = Hpx = px + qy

ν

Izz

[
K − (qxpy − pxqy)

]
, (22)

q̇y = Hpy = py − qx

ν

Izz

[
K − (qxpy − pxqy)

]
, (23)

ṗx = −Hqx = py

ν

Izz

[
K − (qxpy − pxqy)

] + ∂U

∂qx

, (24)

and

ṗy = −Hqy = −px

ν

Izz

[
K − (qxpy − pxqy)

] + ∂U

∂qy

, (25)

where the subscripts denote partial differentiation.

2.2 Relative equilibria for an ellipsoid–sphere system

A particular solution of the F2BP is for the two bodies to be in relative equilibrium. Relative
equilibrium conditions are found by setting all velocities and accelerations to zero in
Eqs. (7, 8) or setting all time derivatives to zero in Eqs. (22–25). In the general case, this
involves six equations to solve for the position and angular velocity components or six for
position and momentum. Previous studies have looked at relative equilibria for arbitrary
mass distribution (Scheeres 2006). For the case of symmetry assumption on the gravitational
potential, Scheeres (2003) and Scheeres and Augenstein (2003) provide a discussion of the
properties of relative equilibrium in the F2BP and their stability. Note that only the planar
case is considered here.

Now consider the Hamiltonian system with an equilibrium solution where the two bodies
are aligned along the x-axis

q = [q, 0]T (26)

and
p = [0, p]T . (27)
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Short axis equilibriaLong axis equilibria

Fig. 3 Configurations investigated for the Full Two-Body Problem

We solve for q with q̇ = ṗ = 0 in Eqs. (23, 24) and obtain

1 = νq

Izzp
[K − qp] (28)

and
I (q) = νp

Izzq
[K − qp], (29)

where we express ∂U
∂qx

= ∂U
∂q

= −I (q)q, with

I (q) = 3

2

∫ ∞

λ

du

(u + 1)�(u)
(30)

and λ = q2 − α2. Note that ẑ · (q × p) = qp. From Eq. (28), we express

p = (νqK/Izz)(
1 + νq2/Izz

) , (31)

and substitute p in Eq. (29) to get

I (q) = (νK/Izz)
2

(
1 + νq2/Izz

)2 . (32)

Given values of angular momentum, mass ratio and ellipsoidal parameters, we solve for the
possible distances between the bodies, q, for which the system is in relative equilibrium. For
the case of an ellipsoid–sphere system, two configurations exist: with the minimum moment
of inertia aligned with the axis joining the two bodies and where it is perpendicular to it. The
two cases are shown on Fig. 3. In the present work, we only consider the long-axis case as
only it can have energetically stable solutions (Scheeres 2003).

Previous work has mapped these relative equilibria solutions as a function of the mass
ratio, also characterizing their stability and energy properties (Scheeres 2003). Figure 4 shows
results for an ellipsoid with semi-major axes of α = 1, β = 0.5 and γ = 0.25. On this plot,
every point is a relative equilibrium and the shaded region indicates the transition between
stable and unstable equilibrium. The solid line represents the transition from negative to
positive total energy of the system, i.e., E = 0. This indicates the capability of the binary
system to evolve into an escaping system with sufficient perturbation (possible for E > 0).
Finally the pointed dashed line indicates the distance between the bodies when resting on
each other assuming they have the same density. Note that each such relative equilibrium in
Fig. 4 corresponds to a different value of angular momentum in general.

As a binary system will most likely lose energy through internal dissipation and con-
serve angular momentum (see Scheeres et al. (2006) for a case study of 1999 KW4), we are
interested in studying its dynamics under constant angular momentum. For a given value of
angular momentum and a value for the system mass ratio in Eq. (32), we can solve for at most
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Energy and stability in the Full Two Body Problem 69

Fig. 4 Stability diagram for
planar motion in the long-axis
solution. The clear region denotes
spectral stability while the shaded
one denotes a single hyperbolic
manifold instability. The solid
line indicates transition from
positive to negative total energy
of the system and the pointed
dashed line assumes equal
density of the binary bodies.
Parameters are α = 1, β = 0.5,
γ = 0.25 (Scheeres 2003)
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Fig. 5 System with angular momentum, K = 1.715 (nondimensional), and ellipsoidal shape parameters
γ = 1

2 β = 0.5. (a) Locus of solutions q as function of the mass ratio, for a constant angular momentum.
The upper and lower branches represent stable and unstable solutions, respectively. (b) Energy plot of relative
equilibrium solutions as function of the mass ratio ν, with constant angular momentum. The lower and upper
branches represent unstable and stable solutions, respectively

two relative equilibria, shown on Fig. 5a. We refer to the second solution as the conjugate
solution. There is one single solution, or bifurcation value, at the mass ratio, ν∗, and solution
q∗, which is at the left end of the U -shaped curve on Fig. 5a. For ν > ν∗, the system has two
relative equilibrium solutions. Figure 5b represents the energy associated with the relative
equilibria of Fig. 5a; the upper and lower branches in (b) correspond to the lower and upper
branches in (a), respectively. It is clear that a system in the closer equilibrium configuration
has more energy. For the case of two solutions, in the next section we show that at a given
mass ratio ν the closer equilibrium is always unstable while its conjugate solution is always
stable.

We define the “free energy” as

�E = EURE − ESRE, (33)

where EURE is the energy at the unstable configuration and ESRE is the one at the sta-
ble equilibrium, which is also the minimum energy state. A binary system can be at a
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Fig. 6 Stability diagram for
planar motion in the long-axis
solution. The clear region denotes
spectral stability while the shaded
one denotes a single hyperbolic
manifold instability. The U -shape
represents a locus of solutions q

as function of the mass ratio, for
a constant angular momentum;
we can find at most two solutions
given a value of angular
momentum. The upper and lower
branches are stable and unstable
solutions, respectively. The
dashed and pointed dashed lines
are equal density solutions with
their conjugate. Ellipsoidal
parameters are α = 1, β = 0.5,
γ = 0.25
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relative equilibrium solution associated with a positive energy or not. For positive energy the
equilibria are found to always be unstable. Furthermore, a positive total energy indicates that
the system can disrupt under its mutual dynamics (Scheeres 2002). For negative energy the
system is bound and the solutions can be stable or unstable. For a system dissipating energy,
the free energy gives a measure of the energy that must be dissipated to transition from an
unstable to a stable state.

Comparing Figs. 4, 5a, the U -shaped curve has its tip sitting on the stability transition
of the relative equilibria solutions. The resulting plot is shown in Fig. 6. The lower branch
is situated in the unstable shaded region of the plot while the upper branch is in the stable
region. We also show how the U -shaped curve fits with the conjugate solutions; the dashed
line on Fig. 6 are the conjugate solutions to the equal density solutions (pointed dashed line).
The intersections of the U -shaped curve with the dashed line correspond to two solutions for
equal density and the same angular momentum, having mass ratios of ν = 0.5 and ν = 0.96
in this case.

In addition to energy and stability properties, we can extract further information on the
system evolution in terms of energy and momentum exchange. The U -shaped curve shifts
to the right as the angular momentum is decreased which is shown in more detail on Fig. 7.
Thus, for a system in relative equilibrium at a solution located on the lower branch of a given
U -shaped curve, that is, in an unstable configuration, loosing angular momentum would make
this solution move upwards. Hence the bodies become more distant when loosing angular
momentum while approaching more stable configurations. Finally, a system with a higher
value of angular momentum value may have a solution with its energy being positive. In this
case, the system would first need to loose energy in order to become bound (E < 0) and then
evolve towards a more stable configuration.

2.3 Notes on evolutionary scenarios for an ellipsoid–sphere system

The results on relative equilibria combined with analysis of the dynamics of particles in the
vicinity of a binary system locked in its long-axis configuration (Bellerose and Scheeres 2006)
provide insights on mass and momentum exchange that may occur between the two bodies.
Bellerose and Scheeres (2006) we investigated the location of the analogue Lagrangian points
and energy associated with a particle orbiting in this gravitational field. Since the mass
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Fig. 7 Bifurcation solution q as
function of the mass ratio ν, and
values of angular momentum K ,
from 1.65 to 1.85
(nondimensional) γ = 1

2 β = 0.5.
The lower and upper branches
represent stable and unstable
solutions, respectively
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distribution of one of the bodies is now taken into account, L1 is a key element for trans-
fers between the bodies. It was shown that L1 can be situated between or inside the bodies
depending on the free parameters of the system modifying the transfer possibilities.

For the planar dynamics of a particle in this gravitational field, referred to as the Restricted
Full Three-Body Problem, taken from Bellerose and Scheeres (2007b) the equilibrium
solutions are computed from

ω2x = ν(x − (1 − ν)r)[
(x − (1 − ν)r)2 + y2 + z2

] 3
2

+(1 − ν)(x + νr)Rjα, (34)

and
ω2y = νy[

(x − (1 − ν)r)2 + y2 + z2
] 3

2

+(1 − ν)yRjβ, (35)

where ω is given by the solution of the F2BP, Eq. (19), and, in this case, x and y are the
components of the position of the particle and r is the distance between the bodies in relative
equilibrium.

The limiting case is for L1 to sit on the ellipsoid facing the sphere. In this case, the location
of the L1 coordinate would be (xL1 , 0) where xL1 is

xL1 = 1 − νr. (36)

Substituting xL1 in Eq. (34), we obtain

ν = ω2 − I (q)(
ω2r − 1

(r−1)2 − I (q)
) . (37)

Equation (37) is plotted on Fig. 8 showing the distance between the primaries r as a function
of the mass ratio ν. The region above the solid line defines the parameters for which L1 is
outside of the ellipsoid; the region below the solid line represents cases of L1 being inside
the ellipsoid.

A reasonable assumption for binary systems is that they have the same density between
the two bodies. To provide a better physical insight we compare the results of having L1

sitting on the ellipsoid given above to the case of equal density between the two bodies. First,
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Fig. 8 Equations (37–41) are
plotted together. The dash line
represents the value of the two
body distance for the case of
constant density with the two
bodies in contact. The solid line
represents the locus of the mass
ratio ν and the distance r between
the bodies for L1 to be sitting on
the ellipsoid, facing the sphere.
For an equal density binary, the
transition for L1 from inside to
outside the ellipsoid happens at
r = 1.22, ν = 0.08. Ellipsoidal
parameters are
[α:β:γ ] = [1:0.5:0.25]
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let’s expand on an equal density binary system. From the definition of the mass ratio, ν,
we have

ν = M1

(M1 + M2)
=

4π
3 ρR3

s

4π
3 ρ(R3

s + αβγ )
, (38)

where Rs is the radius of the sphere. Solving for Rs , we obtain

Rs =
[
αβγ

(
ν

1 − ν

)] 1
3

. (39)

Since the distance between the bodies can vary, and hence the location of L1, the simplest
situation is to have the two bodies stay in contact with each other. Then the distance between
them can be varied. Here, with α = 1 from our normalization, we denote the distance between
the bodies as R and write

R = 1 + Rs. (40)

Substituting Rs from Eq. (39) into Eq. (40), we can express the distance between the
bodies as

R = 1 +
[
βγ

(
ν

1 − ν

)] 1
3

. (41)

Equation (41) is the dash line plotted on Fig. 8, the distance R as a function of the mass
ratio ν.

From Eqs. (37–41), we can find conditions for L1 to be inside or outside of a binary system
with equal density. Given a value of the distance between the two bodies, r , we compute the
required value of the mass ratio for L1 touching the ellipsoid, from Eq. (37). Using this same
mass ratio in Eq. (41), we then compute the corresponding distance R between two bodies
with the same density. The meeting point on Fig. 8 indicates that L1 is sitting on the ellipsoid
for a case of equal density, which occurs for r = 1.22 and ν = 0.08. Note that, in this
simple case, the sphere is also touching the ellipsoid. As β increases, this transition limit is
shifted up.

On Fig. 8, the region below the solid line indicates that r < R meaning L1 would be
located inside the ellipsoid if the bodies were to be of equal density and resting on each other.
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In the region above the solid line, r > R and L1 is in the exterior region of the ellipsoid. As
the distance between the bodies increases, the path from the sphere to the ellipsoid would be
open to particles leaving one of the body. The connecting region is found from computing
the zero-velocity limits on the spherical body given a value for the Jacobi integral. Certain
conditions would allow particles to transit from one body to the other, which are investigated
in Bellerose and Scheeres (2006).

2.4 Stability analysis of relative equilibria in the F2BP

2.4.1 Spectral stability

Stability of relative equilibria is composed of two parts, spectral stability and energetic stabil-
ity. The conditions for spectral stability of a relative equilibrium of the F2BP were derived in
Scheeres (2003). In this case it is more convenient to write them in terms of the Hamiltonian
form of the equations of motion.

Given Eqs. (22–25), a small perturbation to the nominal path is[
δq̇
δṗ

]
= JHxx

[
δq
δp

]
, (42)

where J has the form

J =
[

0 I

−I 0

]
(43)

and I is the identity matrix.
Hxx represents the second derivatives of the Hamiltonian defined by Eq. (20),

Hxx =

⎡
⎢⎢⎣

−σω2 + Uqxqx 0 0 ω(1 − σ)

0 Uqyqy −ω 0
0 −ω −1 0

ω(1 − σ) 0 0 −(1 + σ)

⎤
⎥⎥⎦ . (44)

In these expressions, σ = νqx
2/Izz, and we used ω = (νK/Izz)

(1+σ)
= √

I (q) from substi-
tuting the relative equilibrium equation for p, Eq. (31), into the angular velocity equation,
defined by Eq. (19). The second order derivatives Uqxqx and Uqyqy are given in the Appendix.

The characteristic equation of JHxx is found to be

ζ 4 + aζ 2 + b = 0, (45)

where
a = 2ω2(1 − σ) + B − (1 + σ)Uqyqy , (46)

b = ω2(1 − σ)2(Uqyqy + ω2) − B(Uqyqy + ω2)(1 + σ), (47)

and B = σω2 − Uqxqx .
For stability to hold, the conditions to satisfy are

a > 0, (48)

b > 0, (49)

and
a2 − 4b > 0. (50)
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In the case of a stable equilibrium solution, the system only has a center manifold and we
can compute two sets of imaginary eigenvalues. For an eigenvalue of the type ζ = ±iλ, the
period of oscillation is computed using

T = 2π

λ
. (51)

Hence, each stable solution has two frequencies associated with it.
An unstable solution will have one pair of imaginary and one pair of real eigenvalues.

The real eigenvalues are associated with a hyperbolic manifold which make the solution
unstable. Note that it is still possible to obtain the associated frequency of oscillation for the
system. Scheeres (2003) provides a more detailed derivation of these stability conditions. An
example of stability regions was shown in Fig. 4.

As mentioned in the previous section, in general it is possible to find two solutions for
given values of angular momentum, mass ratio and ellipsoidal parameters. There is always
one stable and one unstable solution which also correspond to the energetic stability of the
system discussed in the following section.

2.4.2 Energetic stability

Stability of a dynamical system can also be defined from its energy evaluation. A system is
energetically stable if there is no state at the same angular momentum with a lower energy
value. Scheeres (2006) energetic stability conditions are derived for a general gravity field
in the F2BP under constant angular momentum assumption. This corresponds to nonlinear
stability. In this section, we apply the method for our ellipsoid–sphere system model.

For stability of the equilibrium states, we need to investigate the second variation of the
energy functional. We can write it in the form

d2H = dx · Hxx · dx > 0, (52)

where Hxx is given by Eq. (44) and the dx are chosen arbitrarily.
We find the energetic stability conditions from the eigenvalues of Hxx . The characteristic

equation is found to be
η4 + α3η

3 + α2η
2 + α1η + α0 = 0, (53)

where the coefficients are expressed as

α3 = (
Uqyqy − 2 − σ − B

)
, (54)

α2 = B
(−Uqyqy + (2 + σ)

) + 1 + σ − Uqyqy (2 + σ) − ω2 − ω2(1 − σ)2, (55)

α1 = B
(
Uqyqy (2 + σ) + ω2 − (1 + σ)

) + ω2(−Uqyqy + 1)(1 − σ)2

+ (Uqyqy + ω2)(1 + σ), (56)

α0 = −B(Uqyqy + ω2)(1 + σ) + ω2(Uqyqy + ω2)(1 − σ)2, (57)

and B = σω2 − Uqxqx .
For a system to be stable, the real part of the eigenvalues all need to be positive. In this

case, the energy is at a local minimum and the system cannot decrease its energy with-
out decreasing its angular momentum. We can apply the Routh criteria to find analytical
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conditions for energetic stability. The Routh criteria states that all roots of a polynomial of
degree 4 have negative real parts if

α3 > 0, (58)

α3α2 − α1 > 0, (59)

α2α1 − α0α3 > 0, (60)

α0 > 0. (61)

Alternatively, we can also find the number of roots with positive real part by applying the
Descartes’ Law of Signs. This law states that the number of positive roots of a polynomial of
degree n is equal to the number of sign changes in its coefficients, or is less than that number
by a multiple of 2. In the present case, we would need

α3 < 0, (62)

α2 > 0, (63)

α1 < 0, (64)

α0 > 0. (65)

From investigating the conditions for spectral and energetic stability, we find a relation
that links the two types of stability in the F2BP. By comparing Eq. (45) and Eq. (53) we note
that the expression for b and α0 are equivalent. Also, we find that spectral stability is lost as
b transitions from b > 0 to b < 0. When the F2BP becomes spectrally unstable, α0 < 0
which makes one root of Eq. (53) to be in the left half plane. Hence, the system also becomes
energetically unstable. Conversely, when the system is spectrally stable it is energetically
stable.

In Fig. 5b we showed the corresponding energy of the relative equilibria under constant
angular momentum, Fig. 5a. For a given mass ratio, the two solutions don’t have the same
stability properties; they are either spectrally and energetically stable or unstable. The lower
branch of Fig. 5b corresponding to the upper branch of Fig. 5a are stable points. Hence, closer
relative equilibria are unstable and associated with a larger energy than the more distant rel-
ative equilibria, which are stable. We can naturally suspect that a system dissipating energy
could transition from a closer unstable configuration to a more distant stable one. Note that
the stability of the bifurcation point is indeterminate.

2.5 Periodic orbits in the F2BP

Non-equilibrium dynamics of the F2BP are more commonly found in nature. In this case, the
complete equations of motion defined by Eqs. (22–25) need to be solved. As a next step, we
are interested in investigating regions near relative equilibria, especially symmetric periodic
orbits. We can show that a small disturbance from the relative equilibria lead to periodic orbit
with the minimum energy value of the periodic orbit family being the corresponding relative
equilibria.

2.5.1 Poincaré map reduction method

Our computation of periodic orbits are performed using a Poincaré map reduction method
as discussed in Wiggins (1998). For this work, a surface of section, denoted S(q), is chosen
to be normal to the flow in the vicinity of a given solution, which allows to find symmetric
periodic orbits. A convenient surface is a coordinate axis, or qi = 0 in the Cartesian space.
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The Poincaré map is defined as the solution q(t) crosses the surface with the condition that
q(t)|qx=S ·∇(S) > 0. With this surface of section, it is possible to remove one dimension from
consideration using S(q) = 0. If the system has a conserved quantity, another dimension can
be removed.

We define the full state as

x =

⎡
⎢⎢⎣

qx

qy

px

py

⎤
⎥⎥⎦ , (66)

and C is a vector of parameters. If we write the first return of the Poincaré map as being

x1
i = Q(xi, C), (67)

where xi is a variable of the full state, then the nth iterate is

xn
i = Qn(xi, C). (68)

A periodic orbit is defined as a point x∗ such that

x∗ = Q(x∗, C). (69)

Since a given initial condition x0 would not necessary give a true periodic orbit, we need to
compute the correction to the state such that

x0 + �x = Q(x0 + �x, C) = Q(x0) + ∂Q

∂x

∣∣∣∣
x0

�x + · · · (70)

Then,
�x = [I − �(T )]−1 (Q(x0) − x0), (71)

where �(T ) = ∂Q
∂x

∣∣∣
x0

. The method converges if started close enough to the fixed point, x∗,

and if the matrix in Eq. (71) is nonsingular (Flannery et al. 1996).
This method is used with the Hamiltonian form of the equations of motion. The surface

of section is chosen to be the qx axis, i.e., qy = 0. To extend the map to its first linear
variation, we compute the four dimensional state transition matrix of the system, denoted
as �i,j , where i, j = 1, 2 . . . 4. Since in this time-invariant system, a closed trajectory has
two unity eigenvalues, the state transition matrix is degenerate at the periodic orbit. Due to
this, we must remove variations along the surface of section and the energy integral. In the
following, we apply the method described in Scheeres et al. (2000).

With the surface of section and the energy integral, it is possible to remove two coordinate
dimensions, qy and py , leading to a two-dimensional monodromy matrix. In order to do so,
we constrain the linear variation to lie on the Poincaré surface.

In the vicinity of a periodic orbit, the first return of qy is not necessary zero. It is expressed
as

�qy(T ) =
4∑

j = 1
j �=2

�2j (T , 0)�xj (0), (72)
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where i, j = 1, 3 or 4, and T is the return time. To force �qy(T ) to be zero, we introduce a
small variation of return time �T such that

�qy(T + �T ) =
4∑

j = 1
j �=2

�2j (T , 0)�xj (0) + q̇y�T = 0. (73)

In solving for �T , the linear variation of the Poincaré map becomes

�i,j = �i,j (T ) − ẋi

q̇y

�2j (T ). (74)

Now using the energy integral, we solve for the py coordinate which is transverse to the
surface of section to remove one more dimension. This gives

�py = − 1

Epy

(Eqx �qx + Epx �px), (75)

where E is the energy integral given by Eq. (20). We apply this at the initial time, t = 0, and
substitute for �py to end up with the final form of the 2 × 2 monodromy matrix, �(T )

�i,j = �i,j (T ) − ẋi

q̇y

�2,j (T ) − 1

q̇y(0)

[
�i,4(T ) − ẋi

q̇y

�2,4(T )

]
∂E

∂xj

(0), (76)

where i, j = 1, 3.
Therefore, we solve the dynamical system until the condition qy = 0 is met and we com-

pute the monodromy matrix from the state transition matrix using Eq. (76). If we define the
reduced state

y =
[

qx

px

]
(77)

in the vicinity of a periodic orbit, we can calculate the correction to the initial reduced state
from

�y = (I − �(T ))−1(Q(y0) − y0) (78)

where �(T ) is the 2 × 2 monodromy matrix, Q(y0) is the computed reduced state and y0 is
the initial reduced state.

This procedure gives correction to qx and px as we removed two degrees of freedom
from the map reduction method and energy integral. Correction to py is computed from
conservation of the energy integral evaluated after one period

�py = − 1

Hpy

(Hqx �qx + Hpx �px) (79)

or

�py = − 1

q̇y

(−ṗx�qx + q̇x�px). (80)

The new initial state is then updated by x0 = x0 + �x, and the process is iterated until
the difference between the computed state Q(y0) and the initial state y0 is comparable to
numerical solver tolerances. In the following sections, for convenience we report numerical
values that converge to within 1% after the first iteration. However, the simulations shown
were carried to absolute tolerance of 1 × 10−8.
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2.5.2 Stability analysis of periodic orbits

The stability of periodic orbits is analyzed from investigating the eigenvalues of the
monodromy matrix. In Hénon (1965) and Scheeres (1992) describe an analytical proce-
dure to characterize critical points of periodic orbits and perioic orbit families in the R3BP
and for motion close to rings, respectively. We apply the method for the current problem.

First, recall the general expression for the monodromy matrix in Eq. (76),

� =
[

�11 �12

�21 �22

]
. (81)

The monodromy matrix is a linearization around the fixed point of the full (nonlinear)
Poincaré map. Points on the surface of section are mapped according to

[
�qx

�px

]
=

[
�11 �12

�21 �22

] [
�qx0

�px0

]
. (82)

Note that the entries of the monodromy matrix are evaluated at the initial conditions for a
periodic orbit and its determinant is

�11�22 − �12�21 = 1. (83)

Since we start with the initial conditions, qy0 = 0 and px0 = 0, the symmetry of the periodic
orbit in space and time implies that qx(t) = qx(−t) and px(t) = −px(−t). Hence, we can
write, [

�qx0

�px0

]
=

[
�11 −�12

�21 �22

] [
�qx

�px

]
. (84)

Inverting Eq. (84) [
�qx

�px

]
=

[
�22 �12

�21 �11

] [
�qx0

�px0

]
. (85)

Comparing Eqs. (82–85), we need �11 = �22, or

[
�qx

�px

]
=

[
�11 �12

�21 �11

] [
�qx0

�px0

]
. (86)

Note that the determinant of the monodromy matrix is then written as,

�2
11 − �12�21 = 1. (87)

The stability of the periodic orbit is investigated using the eigenvalues of the monodromy
matrix, computed from Eq. (86),

λ2 − 2�11λ + 1 = 0. (88)

For the system to be stable, the only condition is on the first entry of the monodromy matrix,
�11, stated as

−1 ≤ �11 ≤ 1. (89)

Providing Eq. (89), λ will have unit magnitude or |λ| = 1, resulting in stable periodic orbits.
We see a change in stability as �11 goes through ±1.
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2.5.3 Continuation properties

It is possible to continue a periodic family with respect to one of the system parameters C.
From our assumption that a periodic orbit is expressed as y∗ = Q(y∗, C), a nearby periodic
orbit will satisfy

y∗ + �y = Q(y∗ + �y, C + �C) (90)

Expanding Eq. (90), we get

y0 + �y = Q(y0 + �y, C + �C) = Q(y0, C) + ∂Q

∂y

∣∣∣∣
y0

�y + ∂Q

∂C

∣∣∣∣
y0

�C · · · (91)

Let’s use the definition for the monodromy matrix as given by Eq.(81) and the following

expression for ∂Q
∂C

∣∣∣
y0

,

∂Q

∂C
= [h1, h2]T . (92)

Using Eqs. (81–92) into Eq. (91), we can express �y in the following form,

[
�qx

�px

]
=

[
�11 �12 h1

�21 �11 h2

] ⎡
⎣ �qx

�px

�C

⎤
⎦ . (93)

From the symmetry property in space and time, a variation in px will have no effect on
qx or the system parameter C, as px0 = 0. Hence, this allows us to decouple the system and
re-write Eq. (93) as [

0
0

]
=

[
�11 − 1 h1

�21 h2

] [
�qx

�C

]
(94)

and [
0 0

] = [
�12 �11 − 1

]
�px. (95)

For the system to have a non-trivial solution, from Eq. (94), we need
∣∣∣∣�11 − 1 h1

�21 h2

∣∣∣∣ = 0, (96)

giving
(�11 − 1)h2 − h1�21 = 0. (97)

In investigating for possible singular values in Eqs. (87–97), three cases need to be
considered, �11 = 1, �11 = −1 and �11 �= 1.

2.5.4 Case of �11 = 1

In the case �11 = 1, Eqs. (87–97) become,

�12�21 = 0 (98)

and
h1�21 = 0. (99)
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At this value a stability transition can occur. First, if �21 �= 0 and �12 = 0, we find an
explicit relation between �qx and �C,

�qx = − h2

�21
�C. (100)

In addition, h1 = 0 in order to satisfy Eq. (94). Then, from Eq. (95), we find that �px is
arbitrary implying an intersection with a non-symmetric periodic orbit of the same period
(Wiggins 1998).

On the other hand, if �21 = 0 and �12 �= 0, Eqs. (94) become

h1�C = 0 (101)

and
h2�C = 0. (102)

Also, from Eq. (95), we have now
�12�px = 0. (103)

From these equations above, we have that �px = 0 implying that intersection with a non-
symmetric family does not occur.

If h1 = h2 = 0, �qx and �C are arbitrary, not unique and free to vary indicating an
intersection with another symmetric family of the same period. On the other hand, if h1 or h2

are not null, we have �C = 0. In this case there is no intersection with another family and
the periodic orbit family is at a local extremum of the system parameter C (Wiggins 1998).

2.5.5 Case of �11 = −1

Now consider the case of �11 = −1. Again, a stability transition can occur. Equations
(87–97) become

�12�21 = 0, (104)

which we had before, and
h1�21 = 2h2. (105)

We can again consider both situations where �12 = 0 and �21 = 0. If �12 = 0, Eqs. (94,
95) become

−2�qx + h1�C = 0 (106)

and
�21�qx + h2�C = 0, (107)

with
�px = 0 (108)

and
−2�px = 0. (109)

This implies an intersection with a symmetric family of twice the period (Wiggins 1998). In
this case there is no condition on h1 and h2. A similar result is obtained when considering
�21 = 0. However, we need h2 = 0 to satisfy Eq. (105). From Eqs. (94, 95), we have

�qx = h1

2
�C. (110)
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Note that, in these cases, we can look at the nature of the double period family itself which
should be consistent with the current monodromy matrix analysis. If � is the monodromy
matrix for the single period family, then at the intersection point, the monodromy matrix of
the double period family should have the form �2. Hence, this should correspond to cases
described in Sect. 2.5.4 where the double period family would most likely be at an extremum
in one of its parameters.

2.5.6 Case of �11 �= 1

Finally, let’s consider the case of �11 �= 1. In this case we consider the general equations
given by Eqs. (87, 94, 97). Since both of the �px coefficients are non zero, �px = 0 which
indicate there is no intersection with a non-symmetric family.

Equation (94) define the tangent curves to the family

�qx = − h1

�11 − 1
�C (111)

and

�qx = − h2

�21
�C. (112)

The case h1 = 0 or h2 = 0 implies h2 = 0 or h1 = 0, respectively. This leads to having a
local extremum with respect to qx . Otherwise there is a one-to-one relationship between the
periodic family and parameter C. In general, we can find two solutions for �qx as shown in
Fig. 6.

Table 1 summarizes the cases mentioned. We can see that no cases lead to intersections
with asymmetric periodic orbits, and so we do not extend the methods to asymmetric periodic
orbits.

Table 1 Summary of stability conditions for a periodic orbit

Cases �11 �12 �21 h1 h2 �qx �px �C Remarks

a 1 0 �=0 0 �=0 − h2
�21

�C �=0 �=0 Intersection with an asymmetric periodic
orbit family of the same period

b 1 �=0 0 �=0 �=0 �=0 0 0 No intersection with symmetric families,
the periodic orbit family is at a local
extremum of C

c 1 �=0 0 0 0 �=0 0 �=0 Intersection with another symmetric
family of the same period

d −1 0 �=0 �=0 �=0 �=0 0 �=0 Intersection with a symmetric family of
twice the period

e −1 �=0 0 �=0 0 h1
2 �C �=0 �=0 Intersection with an asymmetric family of

twice the period
f �=1 �=0 �=0 �=0 �=0 2 RE 0 �=0 No intersection
g �=1 �=0 �=0 0 0 0 0 �=0 No intersection, local extremum in qx

�s are the components of the monodromy matrix while hs are derivatives with respect to a free parameter of
the system, like the energy, denoted C. qx and px are x-component of the position and inertial velocity. The
notation “2 RE” indicates two relative equilibrium solutions
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2.5.7 Continuation with respect to the energy and the period

We now apply these results to continuation with respect to the system energy and period.
Equation (91) can be re-written to express the new correction term, �yC, as a function
of �C,

�yC = [I − �(T )]−1 ∂Q

∂C

∣∣∣∣
y∗

�C. (113)

In the current problem, the method was applied for variation of the energy, E, and for the
period, T . In the case of energy, the new correction term, �yE, is found by,

�yE = [I − �(T )]−1 ∂y
∂E

∣∣∣∣
y∗

�E. (114)

The expression for ∂y
∂E

is given by,

∂yi

∂E
=

[
�ie − �peẏi

q̇y

]
1
∂E
∂py

, (115)

where i is either 1 (y1 = qx) or 3 (y3 = px), p is the index of the Poincaré map reduction
(2, for qy), and e is the index of the removed variable (4, for py).

Since the period is related to the energy, continuation with respect to the period has a
slightly different form to account for this,

�yT = [I − �(T )]−1

(
+ ∂y

∂T

∣∣∣∣
y∗

�T + ∂y
∂E

∣∣∣∣
y∗

�E

)
. (116)

From our Poincaré map definition, we have

qy(T + �T ) = 0 = qy(T ) + q̇y�T + ∂qy

∂E
�E. (117)

Or,

q̇y�T = − ∂qy

∂py

∂py

∂E
�E. (118)

For a variation in the state y, we also have that,

�y = ẏi�T + ∂yi

∂py

∂py

∂E
�E, (119)

where i takes value for qx and px , i.e., i = 1, 3. Hence, for a continuation using the period,
substituting Eq. (118) into Eq. (119), we arrive at the following final expression for the
correction term �yT,

�yT = [I − �(T )]−1
(

ẏi − q̇y

∂yi

∂py

∂py

∂qy

)∣∣∣∣
y∗

�T . (120)

The corrected initial state is then fed into the Poincaré map method to converge to a periodic
orbit again. Note that for cases of singularity with respect to the energy and the period, we
terminate the periodic orbit families by doing a linear analysis, such as in Sect. 2.5.4.
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2.5.8 Near relative equilibria approximation

To simplify the analysis, we also derive an approximation method to model the dynamics in
the F2BP near relative equilibria. We use the method of perturbations using eigenvalues and
eigenvectors to generate the appropriate dynamics and solve for periodic orbits.

Using the eigenvalues and eigenvectors of the system given by Eqs. (42–44), a solution
is given by [

δq
δp

]
= eλat

[
u
v

]
, (121)

where λa is an eigenvalue and u and v are the corresponding eigenvectors.
For stable motion, λa = ±iωa . And the general orbit is described by the corresponding

set of eigenvectors, u = α ± iβ. Therefore, the periodic perturbation can be written as[
δq
δp

]
= 1

2
(aα − bβ)

[
eiωat + e−iωat

]
− 1

2
(bα + aβ)

[
eiωat − e−iωat

]
. (122)

Note that the constants (a ± ib) satisfy the condition for a real solution.
Using trigonometric identities, we write Eq. (122) as[

δq
δp

]
= (aα − bβ) cos(ωat) − (bα + aβ) sin(ωat) (123)

In order to solve for the constant and initial conditions, first assume[
δqx0

δqy0

]
=

[
aαqx − bβqx

aαqy − bβqy

]
=

[
δq0

0

]
. (124)

Then, solving for a and b,[
a

b

]
= 1

αqyβqx − αqxβqy

[−βqyδq0

−αqyδq0

]
, (125)

we solve for initial conditions on δp,[
δpx0

δpy0

]
= δq0

αqyβqx − αqxβqy

[
0

αqyβpy − αpyβqy

]
. (126)

Hence, to first order approximation, a periodic orbit near a relative equilibrium is described
by [

qRE + δq
pRE + δp

]
, (127)

where qRE and pRE are values at relative equilibrium, δq, δp, a and b are given by Eq. (123)
and Eq. (125) respectively. The initial conditions are written as follows,

⎡
⎢⎢⎣

qx0

qy0

px0

py0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

qxRE + δq0

0
0

pyRE +
(

αqyβpy−αpyβqy

αqyβqx−αqxβqy

)
δq0

⎤
⎥⎥⎥⎦ . (128)

The method of eigenvalues gives a good approximation to the results obtained using
the Poincaré map method in the vicinity of the relative equilibria. It is important to note that
the two methods developed to find periodic orbits in the F2BP can complement each other.
The computations and initial guesses to converge to a periodic orbit using the Poincaré map
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can be tedious. By using the approximation method to generate the initial conditions, one
can then use these values as initial guesses to start the Poincaré map method. The procedure
is very useful to compute periodic orbits close to each other but from different families and
to converge on unstable periodic orbits.

2.6 Periodic orbits near relative equilibria for an ellipsoid–sphere system

Applying the method described in the previous sections, we investigate a family of periodic
orbits in the neighborhood of a given relative equilibrium. As a simple assumption we assume
the bodies have equal density and we investigate the system parameter space with this par-
ticular constraint. The second solution found for this same angular momentum defines the
“conjugate” relative equilibrium. As shown in Fig. 9, cases of mass ratio, ν = 0.15, ν = 0.5,
and ν = 0.85, were studied.

We first concentrate on an equal mass ratio, ν = 0.5, with equal density of the bodies.
Using Eq. (19), we compute the spin rate, ω, and the corresponding value of the angular
momentum, K . Then we solve for all solutions of the distance, qx , between the bodies from
Eq. (32). For this specific case, there exists two relative equilibrium at qx = 1.500 and
qx = 2.075, which are the unstable and stable solutions, respectively (also shown on Fig. 6).
Note that at qx = 1.500 the two bodies are sitting on each other.

For this specific value of the angular momentum, at qx = 1.500 we can compute one pair
of imaginary eigenvalues and two sets of stable eigenvalues for qx = 2.075. This allows
us to find one family of periodic orbit for the unstable point and two for the stable one.
The absolute minimum energy state, at qx = 2.075, is the stable relative equilibrium point
itself. Figure 10a, b show the evolution of one of the periodic orbits as they get closer to the
equilibrium point; these periodic orbits usually enclose the equilibrium point and shrink in
size as the energy is decreased. At the limit, the periodic orbit becomes a single point where
the period of the periodic orbit matches the period of oscillation of the relative equilibrium.
For the unstable family, for the unstable equilibrium, the period is TURE = 6.852. For the
stable equilibrium, we find the period to be TSRE = 13.558 or 38.336 in normalized time
units.

Fig. 9 Stability diagram for
planar motion in the long-axis
solution. We investigate families
of periodic orbits and the general
dynamics near ν = 0.15, ν = 0.5
and ν = 0.85. Ellipsoid
parameters are α = 1, β = 0.5,
and γ = 0.25
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Fig. 10 Periodic orbit families for ν = 0.5, K = 1.715 and ellipsoid parameters, α = 1, β = 0.5 and
γ = 0.25. Evolution of periodic orbits in a qx–qy coordinate frame near the qx = 2.075 relative equilibrium
having a period TSRE = 13.558. (a) Periodic orbit: qx0 = 3.021 and py0 = 0.507 with E = −0.176.
(b) Periodic orbit: qx0 = 2.182 and py0 = 0.698 with E = −0.195. The energy of the equilibrium solution,
indicated by the starred point, is E = −0.197
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Fig. 11 Periodic orbit families for ν = 0.5, K = 1.715 and ellipsoid parameters, α = 1, β = 0.5 and
γ = 0.25. Continuation for all three families of periodic orbits: qx0 vs. E. The two vertical dashed lines
indicate the location of the two periodic orbits shown in Fig. 10

From using the continuation method, Fig. 11 shows the unstable family near qx = 1.500
and the two families of periodic orbits, converging to qx = 2.075. Note that these families
have the same particular value of angular momentum but different energy. On this plot, the
distance between the primary, qx0 is plotted as a function of the energy of the system, E.
The star point represents the relative equilibrium or minimum energy point for this value of
angular momentum. From this point, the upper and lower branches of each family are the
two values of qx0 at which orbits of the family cross the qy axis.

On Fig. 11, we also note a change in stability at the “o” point. In the region closer to the
equilibrium point, the periodic orbits are stable. Otherwise, they are unstable. This critical
point is found from investigating the eigenvalues of the monodromy matrix but can also be
analyzed from entries of the monodromy matrix itself as described in the section on stability
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Fig. 12 (a) Periodic orbit: qx0 = 6.974 and py0 = 0.379 with E = −0.070. (b) Periodic orbit families
for ν = 0.15, shown as qx0 vs. E. Note that the unstable family exists but is not shown. In (a) and (b),
the ellipsoidal parameters are [α:β:γ ] = [1:0.5:0.25]. The vertical dashed line indicates the location of the
periodic orbit shown in (a). The starred point is the stable relative equilibrium state, which has E = −0.0696
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Fig. 13 (a) Periodic orbit: qx0 = 1.985 and py0 = 0.795 with E = −0.219. (b) Periodic orbit families
for ν = 0.85, shown as qx0 vs. E. In (a) and (b), the ellipsoida parameters are [α:β:γ ] = [1:0.5:0.25]. The
vertical dashed line indicates the location of the periodic orbit shown in (a). The starred point is the stable
relative equilibrium state, which has E = −0.222

and continuation properties and shown on Table 1. In the present case, the critical point on
Fig. 11 for which the stability changes has energy E = −0.186. This point intersects with a
space-symmetric family of twice the period and we retrieve conditions as specified by case e

on Table 1.
The previous analysis was obtained for an equally divided binary system. Having a domi-

nant ellipsoid or a dominant sphere also affects these periodic orbit families. On Figs. 12, 13
we plotted periodic orbits and family continuations for cases of equal density binary systems
with mass ratios of 0.15 and 0.85, respectively, in the vicinity of the stable relative equilibrium
(see Fig. 9). For ν = 0.15, stable and unstable equilibria are qx = 6.913 and qx = 1.285,
respectively, where the periods of the stable equilibrium are TSRE = 230.431 and 112.000,
labeled in Fig. 12b. Note that only the shorter period family is shown for ν = 0.85 in Fig. 13b,
where TSRE = 9.814 for its stable equilibrium at qx = 1.893. This stable equilibrium has
a long period TSRE = 27.988. We see that the periodic orbits are reduced in size for small
mass ratio; for similar wideness on the qx axis, the orbits become taller as the mass ratio
increases. Periodic orbits can also have the relative equilibrium solution outside of the orbit
for large mass ratio.
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Fig. 14 Dynamics in the F2BP when the bodies are close to being at the closer unstable relative equilibrium.
The trajectories following the unstable manifold cross the stable trajectories. Under energy dissipation, transi-
tion from an unstable to a stable state may be possible. The system mass ratio is ν = 0.15 with a “free energy”
�E = 0.335. Ellipsoidal parameters are [α:β:γ ] = [1:0.5:0.25]

We also note that periodic orbits can be found in the vicinity of the bifurcation point where
stable and unstable relative equilibria meet (see Fig. 6) for all values of the mass ratios. Look-
ing at the 2 × 2 monodromy matrix, we can link these points to the minimum energy case
in Table 1, i.e., case b. Finally, we retrieve case c for ν = 0.68 and qx = 1.641, associated
with an energy E = −0.223, which corresponds to the meeting point of the equal density
solution and its conjugate solution.

Current theories of binary systems formation included ones where a system may have
dissociated from a single body (Scheeres 2007). If we keep in mind that a closer equilibrium
configuration is unstable and the system may dissipate energy, it is natural to investigate
possible transition of the system to reach a more stable orbit. Figures 14–16 show simula-
tions for mass ratios of ν = 0.15, ν = 0.25 and ν = 0.5 when the equal density binary
system starts near an unstable relative equilibrium, with the bodies sitting on each other. In
Fig. 14, since the system starts with a positive energy, that is E = 0.265, the bodies may
escape from each other. However, we see that the trajectories following the unstable manifold
may cross the stable trajectories. Under energy dissipation, the system may eventually reach
stable periodic orbits or even arrive at a stable equilibrium configuration at the minimum
energy state, E = −0.070. Figure 15 shows the same simulation for ν = 0.25. In this case,
the system starts at the unstable configuration with a negative energy, E = −0.016. We see
that the orbit is bounded and the bodies do not escape. Reaching E = −0.119 from energy
dissipation, the system could achieve a stable configuration. The case of ν = 0.5 is described
in Fig. 16 where the two equilibria are much closer to each other, starting with E = −0.192,
and with a stable configuration at E = −0.196.

This possible transition between an unstable and a stable configuration can be quantified
from values of energy at the two relative equilibria, defined earlier by the “free energy” of
the system �E in Eq. (33). For the dynamics in Fig. 14, the system has �E = 0.335 starting
near the unstable point with a positive energy. It needs to dissipate 80% of its free energy
before getting bound, with E = 0. For ν = 0.25, the system is already bound and has a free
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Fig. 15 Dynamics in the F2BP when the bodies are close to being at the closer unstable relative equilibrium.
The trajectories following the unstable manifold cross the stable trajectories. Under energy dissipation, transi-
tion from an unstable to a stable state may be possible. The system mass ratio is ν = 0.25 with a “free energy”
�E = 0.135. Ellipsoidal parameters are [α:β:γ ] = [1:0.5:0.25]

Fig. 16 Dynamics in the F2BP
when the bodies are close to
being at the closer unstable
relative equilibrium. The
trajectories following the
unstable manifold cross the stable
trajectories. Under energy
dissipation, transition from an
unstable to a stable state may be
possible. The system mass ratio
is ν = 0.5 with a “free energy”
�E = 0.004. Ellipsoidal
parameters are
[α:β:γ ] = [1:0.5:0.25]
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energy of �E = 0.135. In Fig. 16, with a mass ratio of ν = 0.5, the system’s free energy
is low, �E = 0.004, making the trajectories near the unstable point stay close to the stable
orbits. At ν = 0.85, in this case there is no “free energy” at the unstable resting equilibrium
point since this point lies inside the ellipsoid. Hence, at qx = 1.893, the system is already at
its lowest energetic point.

3 Conclusion

We provide a general description of the dynamics near relative equilibria in the Full Two
Body Problem. We also compute and analyze the relative equilibria solutions and their sta-
bility for ellipsoidal parameters α = 1, β = 0.5, and γ = 0.25. For a given value of angular
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momentum, we show that there are in general two relative equilibrium solutions which are
opposite in stability. Throughout its evolution, a binary system may go through different
configurations and stability which can affect mass and angular momentum transfers between
the bodies. We find that equilibrium configurations where the bodies are closer to each other
are unstable and contain more energy than the “far” solutions, which are always stable with
the minimum energy of the system. Under energy dissipation, the system may transition from
one state to the other, especially if it is to gain stability.

Given small perturbations, we can link these equilibria to periodic orbits associated with
the same value of angular momentum. The periodic orbits are computed using a Poincaré
map reduction method on a two degree of freedom Hamiltonian system. Their stability is
investigated from the eigenvalues of the monodromy matrix. In the vicinity of a relative
equilibria, we also develop an approximate method to generate these periodic orbits using
the stable eigenvalues and corresponding eigenvectors. We can find two stable families in the
vicinity of a stable relative equilibrium and one unstable family associated to the unstable
relative equilibrium. The minimum energy point of these periodic orbits match the relative
equilibrium conditions where the absolute minimum state is always at the stable equilibrium
configuration.

Finally, we look at the dynamics in the vicinity of these equilibria. Under certain condi-
tions, a single body may split where the resulting dynamics of the bodies could follow the
possible transitional paths, from unstable to stable states, described in this work. A system
losing total energy from an unstable equilibrium configuration has the possibility of evolv-
ing towards a stable one. The dynamics of particles in this gravitational field, what we call
the Restricted Full Three-Body Problem (RF3BP), is affected by the dynamics of the binary
bodies. More analysis needs to be done in order to understand this dynamical coupling. In the
near future, we plan to investigate the dynamics of the RF3BP under the effect of a periodic
model for the F2BP. The stability properties of the equilibrium conditions in both the RF3BP
and the F2BP may have different effects on the dynamics of the RF3BP.
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California Institute of Technology Director’s Research and Development Fund. Julie Bellerose acknowledges
support via a Fellowship from the Natural Sciences and Engineering Research Council of Canada.

Appendix: Mutual potential expressions

The first and second order partial derivatives of the mutual potential were given in Scheeres
(2003). For convenience, they are rewritten here. For the first derivatives,

Uqx = −3

2
qx

∫ ∞

λ

du

(u + 1)�(u)
, (129)

and

Uqy = −3

2
qy

∫ ∞

λ

du

(u + β2)�(u)
. (130)

These derivatives are written in terms of the Rj expressions that are the elliptic integrals
representing the mass distribution of the ellipsoid. Using the substitution v = u + λ, they
can be solved as written in the following form and can be computed using algorithms from
Flannery et al. (1996),

Rjα = 3

2

∫ ∞

0

du

(u + λ + 1)�(u + λ)
, (131)
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Rjβ = 3

2

∫ ∞

0

du

(u + λ + β2)�(u + λ)
, (132)

and

Rjγ = 3

2

∫ ∞

0

du

(u + λ + γ 2)�(u + λ)
. (133)

Therefore, using the notation above, the first derivatives are expressed as

Uqx = −qxRjα (134)

and
Uqy = −qyRjβ. (135)

For the second derivatives,

Uqxqx = −Rjα + (qx)
2

(1 + λ)2 (Rjα + Rjβ + Rjγ )

⎡
⎢⎣ 1

q2
x

(1+λ)2 + q2
y

(β2+λ)2

⎤
⎥⎦ , (136)

Uqyqy = −Rjβ + q2
y

(β2 + λ)2 (Rjα + Rjβ + Rjγ )

⎡
⎢⎣ 1

q2
x

(1+λ)2 + q2
y

(β2+λ)2

⎤
⎥⎦ , (137)

and

Uqxqy = qxqy

(1 + λ)(β2 + λ)
(Rjα + Rjβ + Rjγ )

⎡
⎢⎣ 1

q2
x

(1+λ)2 + q2
y

(β2+λ)2

⎤
⎥⎦ (138)

At the relative equilibria, we obtain

Uqx = −qxRjα, (139)

Uqy = 0, (140)

Uqxqx = Rjβ + Rjγ (141)

and
Uqyqy = −Rjβ (142)
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