ORIGINAL ARTICLE

New central configurations for the planar 5-body problem

Jaume Llibre · Luis Fernando Mello

Received: 8 July 2007 / Revised: 5 October 2007 / Accepted: 13 November 2007 / Published online: 3 January 2008 © Springer Science+Business Media B.V. 2007

Abstract In this paper we show the existence of three new families of planar central configurations for the 5-body problem with the following properties: three bodies are on the vertices of an equilateral triangle and the other two bodies are on a perpendicular bisector.

Keywords Planar central configurations · 5-Body problem

1 Introduction

The classical *n-body problem* in celestial mechanics consists in studying the motion of *n* pointlike masses, interacting amount themselves through no other forces than their mutual gravitational attraction according to Newton's gravitational law [\(Newton 1687](#page-8-0)). The equations of motion are given by

$$
\ddot{r}_i = -\sum_{\substack{j=1 \ j \neq i}}^n m_j \frac{r_i - r_j}{r_{ij}^3},\tag{1}
$$

for $i = 1, 2, ..., n$. Here the gravitational constant is taken equal to one, $r_i \in \mathbb{R}^d$ for $d = 2, 3$ is the position vector of the punctual mass m_j in an inertial system and $r_{ij} = |r_i - r_j|$ is the Euclidean distance between m_i and m_j .

J. Llibre (\boxtimes)

L. F. Mello

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain e-mail: jllibre@mat.uab.cat

Instituto de Ciências Exatas, Universidade Federal de Itajubá, CEP 37.500-903, Itajuba, MG, Brazil e-mail: lfmelo@unifei.edu.br

The center of mass of the system, given by $\sum_{j=1}^{n} m_j r_j / M$, where $M = m_1 + \cdots + m_n$ is the total mass, is considered at the origin of the inertial system. Usually this inertial system is called the *inertial barycentric* system.

Since the general solution of the *n*-body problem cannot be given, great importance has been attached from the very beginning to the search of particular solutions where the *n* mass points fulfill certain initial conditions. A *homographic* solution of the *n*-body problem is a solution such that the configuration of the *n*-bodies at the instant *t* (with respect to the inertial barycentric system) remains similar to itself as *t* varies. Here *similar* means that we can pass from one configuration to the other doing a dilation and a rotation of \mathbb{R}^d .

The first three homographic solutions were found in 1767 by [Euler](#page-8-1) [\(1767\)](#page-8-1) in the 3-body problem, for which three bodies are *collinear* at any time. In 1772 [Lagrange](#page-8-2) [\(1873](#page-8-2)) found two additional homographic solutions in the 3-body problem, where the three bodies are at any time in the vertices of an *equilateral triangle*.

At a given instant $t = t_0$ the configuration of the *n* bodies is *central* if the gravitational acceleration \ddot{r}_i acting on every mass point m_i is proportional to its position r_i (referred to the inertial barycentric system), that is $\ddot{r}_j = \lambda r_j$ with $\lambda \neq 0$ for all $j = 1, \ldots, n$ $j = 1, \ldots, n$ $j = 1, \ldots, n$. So Eq. 1 can be written as

$$
\lambda r_i = -\sum_{\substack{j=1 \ j \neq i}}^n m_j \frac{r_i - r_j}{r_{ij}^3},\tag{2}
$$

for $i = 1, 2, \ldots, n$. If we have a central configuration, any dilation and any rotation (centered at the center of mass) of it provides another central configuration. Two central configurations are *related* if we can pass from one to another through a dilation and a rotation. So we can study the classes of central configurations defined by the above equivalence relation. Thus the 3-body problem has exactly 5 classes of central configurations for any value of the positive masses.

Central configurations and homographic solutions are linked by the Laplace theorem (see for instance [Boccaletti and Pucacco 1996](#page-7-0); [Wintner 1941](#page-8-3)): the configuration of the *n* bodies in a homographic solution is central at any instant of time.

Central configurations of the *n*-body problem are important because: they allow to compute homographic solutions; if the *n* bodies are going to a simultaneous collision then the bodies tend to a central configuration (see [Saari 1980](#page-8-4)); there is a relation between central configurations and the bifurcations of the hypersurfaces of constant energy and angular momentum (see [Smale 1970](#page-8-5)). See also the Refs. [Llibre 1991;](#page-8-6) [Moeckel 1990](#page-8-7); [Moulton 1910.](#page-8-8)

In this paper we are only interested in planar central configurations, that is $d = 2$. The main general open problem for these central configurations is due to [Wintner 1941](#page-8-3) and [Smale](#page-8-9) [\(1998](#page-8-9)): *Is the number of classes of planar central configurations finite for any choice of the (positive)* masses m_1, \ldots, m_n ?

Recently Hampton and Moeckel in [\(2006](#page-8-10)) proved this conjecture for the 4-body problem. The conjecture remains open for *n* > 4. But if one mass can be negative [Roberts](#page-8-11) [\(1999\)](#page-8-11) proved that there exists a one-parameter not equivalent family of planar central configurations for the 5-body problem.

In 2005 [Hampton](#page-8-12) [\(2005](#page-8-12)) provides a new family of planar central configurations for the 5-body problem with an interesting property: the central configuration has a subset of three bodies forming a central configuration of the 3-body problem, in fact these three bodies are in an equilateral triangle. Other central configurations in the spatial 5-body and 7-body problems have been studied by [Santos](#page-8-13) [\(2004\)](#page-8-13) and [Hampton and Santoprete](#page-8-14) [\(2007\)](#page-8-14), respectively.

Fig. 1 Five bodies in the plane

In this paper we find a new class of central configurations of the 5-bodies which as the ones studied by [Hampton](#page-8-12) [\(2005](#page-8-12)) have three bodies in the vertices of an equilateral triangle, but the other two instead of be located symmetrically with respect to a perpendicular bisector (the ones found by Hampton), are on the perpendicular bisector, see Fig. [1.](#page-2-0)

Consider an equilateral triangle whose sides have length 1 and let *A*, *B*, *C*, *D*, *E* and *F* be the following points on the perpendicular bisector (see Fig. [2\)](#page-3-0): *A* is the barycenter of the triangle, B is the vertex at m_3 , C is the point symmetric of the point B relative to the side that contains m_1 and m_2 , *D* and *F* are the points where the circle with center at *B* and radius 1 meet the perpendicular bisector and E is the middle point of the side that contains m_1 and *m*2. Let *AB* be the segment on the perpendicular bisector whose endpoints are *A* and *B*, and in a similar way are defined the segments *B F*, *C D* and *E A*.

Theorem 1 Assume that we have the masses m_1 , m_2 and m_3 at the vertices of an equi*lateral triangle whose sides have length* 1 *and masses m*⁴ *and m*⁵ *on the perpendicular bisector according to Fig.* 1*. In order that the five masses can be in a central configuration the following statements hold.*

- (*a*) *The two masses* m_1 *and m₂ are equal.*
- (*b*) *Only one of the masses m*⁴ *or m*⁵ *must be in the segment AB. See Fig.* 2*.*

Without loss of generality we can assume that $m_4 \in AB$ *. Then there exist a position G* \in *AB, non-empty segments* $I^1(G) \subset CD$, $I^2(G) \subset EA$, $I^3(G) \subset BF$ and positive masses $m_1 = m_2$, m_3 , m_4 *and* $m_5(i)$, $i = 1, 2, 3$, *such that* m_1 , m_2 *and* m_3 *are at the vertices of the triangle, m₄ <i>is at G and m*₅(1) \in *I*¹(*G*)*, or m*₅(2) \in *I*²(*G*)*, or m*₅(3) \in *I*³(*G*)*, form three central configurations. See Fig.* 2*.*

Numerical results presented at the end of the paper provides numerical evidence of the following improvement of Theorem [1.](#page-2-1)

Fig. 2 Five bodies in a central configuration

Without loss of generality we can assume that $m_4 \in AB$ *. Then for all position* $G \in AB$ *, there exist non–empty segments* $I^1(G) \subset CD$, $I^2(G) \subset EA$, $I^3(G) \subset BF$ and positive *masses* $m_1 = m_2$, m_3 , m_4 *and* $m_5(i)$, $i = 1, 2, 3$, *such that* m_1 , m_2 *and* m_3 *are at the vertices of the triangle, m*₄ *is at G and m*₅(1) ∈ $I^1(G)$ *, or m*₅(2) ∈ $I^2(G)$ *, or m*₅(3) ∈ $I^3(G)$ *, form three different central configurations*.

The proof of Theorem [1,](#page-2-1) given in the next section, and the proof of Hampton's theorem [\(2005](#page-8-12)) use the Laura-Andoyer or Dziobek equations, but they are very different.

2 Proof of Theorem [1](#page-2-1)

For the planar central configurations instead of working with Eq. [2](#page-1-0) we shall do with the Dziobek equations (see Hagihara 2005, p. 241)

$$
f_{ij} = \sum_{\substack{k=1 \ k \neq i, j}}^{n} m_k (R_{ik} - R_{jk}) \Delta_{ijk} = 0,
$$
 (3)

for $1 \le i < j \le n$, where $R_{ij} = 1/r_{ij}^3$ and $\Delta_{ijk} = (r_i - r_j) \wedge (r_i - r_k)$.

For the 5-body problem equations [\(3\)](#page-3-1) is a set of 10 equations. Our class of configurations with five bodies as in Fig. [1](#page-2-0) without collisions must satisfy

$$
r_{12} = r_{23} = r_{13} = 1, r_{14} = r_{24}, r_{15} = r_{25}, r_{34} \neq 0, r_{35} \neq 0, r_{45} \neq 0,
$$

$$
\Delta_{345} = 0, \Delta_{153} = \Delta_{235}, \Delta_{143} = \Delta_{234}, \Delta_{154} = \Delta_{245}.
$$

Without loss of generality we can take a coordinate system such that the masses *m*1, without loss or generality we can take a coordinate system such that the masses m_1 , m_2 and m_3 are at $(-1/2, 0)$, $(1/2, 0)$ and $(0, \sqrt{3}/2)$ respectively. Thus $A = (0, \sqrt{3}/6)$, *B* = (0, $\sqrt{3}/2$), *C* = (0, $-\sqrt{3}/2$), *D* = (0, $-1+\sqrt{3}/2$), *E* = (0, 0) and *F* = (0, 1+ $\sqrt{3}/2$). $S = (0, √3/2), C = (0, -√3/2), D = (0, -1 + √3/2), E = (0, 0)$ and $F = (0, 1 + √3/2)$.
Suppose $r_{14} = r_{12} = 1$. Then m_4 must be at the point $(0, -\sqrt{3}/2)$. The equations $f_{13} = 0$

and $f_{14} = 0$ of [\(3\)](#page-3-1) become

$$
m_4(R_{12} - R_{34})\Delta_{134} + m_5(R_{15} - R_{35})\Delta_{135} = 0,
$$

\n
$$
m_3(R_{12} - R_{34})\Delta_{143} + m_5(R_{15} - R_{45})\Delta_{145} = 0,
$$

respectively. As $(R_{12} - R_{34})\Delta_{134} < 0$ and $(R_{12} - R_{34})\Delta_{143} > 0$ in order to have positive solutions of the above equations one must have $(R_{15} - R_{35})\Delta_{135} > 0$ in the first equation and $(R_{15} - R_{45})\Delta_{145} < 0$ in the second one. But there is no position for m_5 such that these inequalities hold. The same arguments are valid if $r_{15} = r_{12} = 1$.

From the previous paragraph we can assume that $r_{14} \neq r_{12}$ and $r_{15} \neq r_{12}$. Then equations $f_{34} = 0$ and $f_{35} = 0$ of [\(3\)](#page-3-1) become

$$
(R_{12} - R_{14})\Delta_{134}(m_1 - m_2) = 0, (R_{12} - R_{15})\Delta_{135}(m_1 - m_2) = 0,
$$

respectively. Thus $m_1 = m_2$ $m_1 = m_2$ $m_1 = m_2$. So statement (a) of Theorem 1 is proved.

Taking into account that $m_1 = m_2$ in the other 8 equations of [\(3\)](#page-3-1), they reduce to the following 3 equations:

$$
(R_{14} - R_{34})\Delta_{134}m_4 + (R_{15} - R_{35})\Delta_{135}m_5 = 0, \tag{4}
$$

$$
(R_{12} - R_{14})\Delta_{124}m_1 + (R_{12} - R_{34})\Delta_{134}m_3 + (R_{15} - R_{45})\Delta_{154}m_5 = 0,\tag{5}
$$

$$
(R_{12} - R_{15})\Delta_{125}m_1 + (R_{12} - R_{35})\Delta_{135}m_3 + (R_{14} - R_{45})\Delta_{145}m_4 = 0. \tag{6}
$$

If $r_{14} = r_{34}$, that is m_4 is at the barycenter of the equilateral triangle, then from [\(4\)](#page-4-0) one has $r_{15} = r_{35}$, for positive mass m_5 . Therefore $r_{45} = 0$, and we do not allow that two masses are colliding in a central configuration. Hence $r_{14} \neq r_{34}$. Analogous conclusion occurs when $r_{15} = r_{35}$. In short in what follows we consider only the cases where $r_{14} \neq r_{34}$ and $r_{15} \neq r_{35}$.

From [\(4\)](#page-4-0) one has that $(R_{14} - R_{34})\Delta_{134}$ and $(R_{35} - R_{15})\Delta_{135}$ must have the same sign. We distinguish two cases.

Case 1. Consider $(R_{14} - R_{34})\Delta_{134} > 0$ and $(R_{35} - R_{15})\Delta_{135} > 0$. If $\Delta_{134} > 0$ then $r_{14} >$ *r*₃₄ and this implies that $R_{14} < R_{34}$. Thus the product $(R_{14} - R_{34})\Delta_{134}$ is negative. So the only case of interest is when $\Delta_{134} < 0$. Thus $r_{14} > r_{34}$ in order to have $(R_{14}-R_{34})\Delta_{134} > 0$. But this implies that m_4 must be in the segment *AB*. From $(R_{35} - R_{15})\Delta_{135} > 0$ one has two possibilities. If $\Delta_{135} > 0$ then $r_{35} < r_{15}$, and if $\Delta_{135} < 0$ then $r_{35} > r_{15}$.

Case 2. Consider $(R_{14} - R_{34})\Delta_{134} < 0$ and $(R_{35} - R_{15})\Delta_{135} < 0$. If $\Delta_{135} > 0$ then $r_{15} >$ *r*₃₅ and this implies that $R_{15} < R_{35}$. Thus the product $(R_{35} - R_{15})\Delta_{135}$ is positive. So the only case of interest is when Δ_{135} < 0. Thus $r_{15} > r_{35}$ in order to have $(R_{35} - R_{15})\Delta_{135}$ < 0. But this implies that m_5 must be in the segment *AB*. From $(R_{14} - R_{34})\Delta_{134} < 0$ one has two possibilities. If $\Delta_{134} > 0$ then $r_{34} < r_{14}$ and if $\Delta_{135} < 0$ then $r_{34} > r_{14}$.

From these two cases we see that only one of the masses m_4 or m_5 must be in the segment *AB*. Hence statement (b) of Theorem [1](#page-2-1) is proved.

Without loss of generality we can assume that m_4 is located at the point $(0, x) \in AB$ and that m_5 at the point (0, *y*) satisfies either $y < \sqrt{3}/6$ or $y > \sqrt{3}/2$. Thus from [\(4\)](#page-4-0) the masses m_4 and m_5 are related by

$$
m_4 = \frac{(R_{35} - R_{15})\Delta_{135}}{(R_{14} - R_{34})\Delta_{134}} m_5.
$$
 (7)

Substituting (7) into equation (6) results

$$
(R_{12} - R_{15})\Delta_{125}m_1 + (R_{12} - R_{35})\Delta_{135}m_3 + \frac{(R_{14} - R_{45})(R_{35} - R_{15})\Delta_{145}\Delta_{135}}{(R_{14} - R_{34})\Delta_{134}}m_5 = 0.
$$
\n(8)

Case 1. Consider $y < \sqrt{3}/6$. One has three possibilities: either $\Delta_{125} > 0$, or $\Delta_{125} = 0$, or Δ_{125} < 0. If Δ_{125} = 0, that is *y* = 0, then the first coefficient of the left–hand side of Eq. [\(8\)](#page-5-1) vanishes while the second one is positive since $R_{12} - R_{35} < 0$ and $\Delta_{135} < 0$. As $R_{35} - R_{15} < 0$, $R_{14} - R_{45} < 0$, $R_{14} - R_{34} < 0$, $\Delta_{145} < 0$ and $\Delta_{134} < 0$ then the third coefficient of the left–hand side of [\(8\)](#page-5-1) is positive too. Therefore there are no positive masses *m*³ and *m*⁵ satisfying this equation.

Consider Δ_{125} < 0, that is *y* < 0. By the same arguments as above one see that if either $-1 + \sqrt{3}/2 \le y < 0$ or $y \le -\sqrt{3}/2$ then there are no positive masses m_1, m_3 and *m*⁵ satisfying equation [\(8\)](#page-5-1). Thus the only possibility of solution of Eq. [\(8\)](#page-5-1) in this case is m_5 satisfying equation (8). Thus the only possite $-\sqrt{3}/2 < y < -1 + \sqrt{3}/2$, that is $(0, y) \in CD$. $1/3/2 < y < -1 + \sqrt{3}/2$, that is (0, *y*) \in *CD*.
If $\Delta_{125} > 0$ then $0 < y < \sqrt{3}/6$, that is (0, *y*) \in *EA*.

Case 2. Consider *y* > $\sqrt{3}/2$. In this case $R_{12} - R_{15} > 0$, $\Delta_{125} > 0$, $\Delta_{135} > 0$, $R_{35} - R_{15} > 0$ α as e 2. Consider $y > \sqrt{3}/2$. In this case $\kappa_{12} - \kappa_{15} > 0$, $\alpha_{125} > 0$, $\alpha_{135} > 0$, $\kappa_{35} - \kappa_{15} > 0$, $\alpha_{145} > 0$, $R_{14} - R_{34} < 0$ and $\alpha_{134} < 0$. If $y > 1 + \sqrt{3}/2$ then $R_{14} - R_{45} > 0$ and thus the first and third coefficients of the left–hand side of [\(8\)](#page-5-1) are positive. Therefore the second one must be negative, that is $R_{12} - R_{35} < 0$. But this implies that $r_{35} < 1$ and one has a contradiction. If $y = 1 + \sqrt{3}/2$ then $R_{12} = R_{35}$ and $R_{14} - R_{45} \ge 0$. Thus the second coefficient of the left–hand side of [\(8\)](#page-5-1) vanishes while the third one is larger than or equal to zero. Therefore there are no positive masses m_1 and m_5 satisfying this equation. In short $(0, y) \in BF$.

From the above cases 1 and 2 the only possibilities for positive masses m_1 , m_3 and m_5 to be solutions of the system defined by Eq. [5,](#page-4-0) [7](#page-5-0) and [8](#page-5-1) are $(0, x) \in AB$ and either $(0, y) \in CD$, or $(0, y)$ ∈ EA , or $(0, y)$ ∈ BF .

Equations [5](#page-4-0) and [8](#page-5-1) define two planes through the origin in the space (m_1, m_3, m_5) . The normal vectors of these planes are, respectively, $n_1 = (n_{11}, n_{12}, n_{13})$ and $n_2 = (n_{21}, n_{22}, n_{23})$, where

$$
n_{11} = x \left(1 - \frac{8}{(1 + 4x^2)^{3/2}} \right),
$$

\n
$$
n_{12} = \frac{2x - \sqrt{3}}{4} \left(1 - \frac{8}{(\sqrt{3} - 2x)^3} \right),
$$

\n
$$
n_{13} = \frac{x - y}{2} \left(\frac{8}{(1 + 4y^2)^{3/2}} - \frac{1}{((x - y)^2)^{3/2}} \right),
$$

 \mathcal{L} Springer

$$
n_{21} = y \left(1 - \frac{8}{(1 + 4y^2)^{3/2}} \right),
$$

\n
$$
n_{22} = \frac{2y - \sqrt{3}}{4} \left(1 - \frac{8}{((2y - \sqrt{3})^2)^{3/2}} \right),
$$

\n
$$
n_{23} = \frac{(y - x)(2y - \sqrt{3})}{2(2x - \sqrt{3})} \left(\frac{8}{(1 + 4x^2)^{3/2}} - \frac{1}{((x - y)^2)^{3/2}} \right) \frac{\left(\frac{1}{((2y - \sqrt{3})^2)^{3/2}} - \frac{1}{((1 + 4y^2)^{3/2}} \right)}{\left(\frac{1}{((1 + 4x^2)^{3/2}} - \frac{1}{(\sqrt{3} - 2x)^3} \right)}.
$$

 $Let T = (T_1, T_2, T_3) = n_1 ∧ n_2 = (n_{12}n_{23} - n_{13}n_{22}, n_{13}n_{21} - n_{11}n_{23}, n_{11}n_{22} - n_{12}n_{21})$ be the vector parallel to the straight line defined by the intersection of the two planes. Thus there will be positive masses m_1 , m_3 and m_5 m_5 solutions of Eqs. 5 and [8](#page-5-1) if and only if the components of the vector *T* have the same sign.

Let *G* = (0, 2/5) ∈ *AB*, H_1 = (0, -2/5) ∈ *CD*, H_2 = (0, 1/5) ∈ *EA* and H_3 = $(0, 6/5)$ ∈ *BF*. From *G* and *H*₁ define the point $(x_0, y_0) = (2/5, -2/5)$, from *G* and *H*₂ define the point $(x_0, y_1) = (2/5, 1/5)$ and from *G* and H_3 define the point $(x_0, y_2) =$ (2/5, 6/5). By a straightforward calculation we have $T_1(x_0, y_0) < 0$, $T_2(x_0, y_0) < 0$, $T_3(x_0, y_0) < 0$, $T_1(x_0, y_1) > 0$, $T_2(x_0, y_1) > 0$, $T_3(x_0, y_1) > 0$, $T_1(x_0, y_2) > 0$, $T_2(x_0, y_2) > 0$ and $T_3(x_0, y_2) > 0$. Therefore there are neighborhoods of (x_0, y_0) , (x_0, y_1) and (x_0, y_2) such that the signs of the functions T_1 , T_2 and T_3 are as above.

The existence of the segments *I*¹(*G*) ⊂ *CD*, *I*²(*G*) ⊂ *EA* and *I*³(*G*) ⊂ *BF* follows from the intersections of the above neighborhoods with the straight line $x = x_0$.

In short we have proved Theorem [1.](#page-2-1)

The curves $T_1(x, y) = 0$ (dot), $T_2(x, y) = 0$ (solid) and $T_3(x, y) = 0$ (dash) are shown in Fig. [3](#page-6-0) for $\sqrt{3}/6 < x < \sqrt{3}/2$ and $-\sqrt{3}/2 < y < -\sqrt{3}/6$ (region 1). So if we write $y_i(x)$ for the explicit form of the implicit curve $T_i(x, y_i) = 0$ in the region 1, then we have $y_3(x) < y_2(x) < y_1(x) < 0$. Then the three components T_1, T_2 and T_3 of the vector *T* are $y_3(x) < y_2(x) < y_1(x) < 0$. Then the three components I_1 , I_2 and I_3 or the vector I are negative in the subset of the region 1 defined by $\{(x, y) : \sqrt{3}/6 < x < \sqrt{3}/2 \text{ and } y_3(x) <$ $y < y_2(x)$. This subset contains the point (x_0, y_0) .

The curves $T_2(x, y) = 0$ (solid) and $T_3(x, y) = 0$ (dash) are given in Fig. [4](#page-7-1) for $\sqrt{3}/6 <$ $x < \sqrt{3}/2$ and $0 < y < \sqrt{3}/6$ (region 2). We note that the curve $T_1(x, y) = 0$ has no points in region 2. Using the notation of the previous paragraph the components T_1 , T_2 and T_3 of

 $\circled{2}$ Springer

the vector *T* are positive in the subset of region 2 limited by the four curves { $x = \sqrt{3}/6$ }, $\{y = \sqrt{3}/6\}$, $\{(x, y_2(x))\}$ and $\{(x, y_3(x))\}$. Note that in fact the curve $T_2 = 0$ is not a graph with respect to the *x*-axis. Really it must be decomposed as two graphs of the form $\{(x, y_2(x))\}$. The above mentioned subset contains the point (x_0, y_1) .

The curves $I_2(x, y) = 0$ (dash) and $I_3(x, y) = 0$ (solid) are illustrated in Fig. 5 for $\sqrt{3}/6 < x < \sqrt{3}/2$ and $\sqrt{3}/2 < y < 1 + \sqrt{3}/2$ (region 3). We note that the curve The curves $T_2(x, y) = 0$ (dash) and $T_3(x, y) = 0$ (solid) are illustrated in Fig. [5](#page-7-2) for $T_1(x, y) = 0$ has no points in region 3. The components T_1, T_2 and T_3 of the vector *T* are $P_1(x, y) = 0$ has no points in region 3. The components P_1, P_2 and P_3 or the vector T are positive in the subset of the region 3 defined by $\{(x, y) : \sqrt{3}/6 < x < \sqrt{3}/2$ and $y_2(x)$ $y < y_3(x)$. This subset contains the point (x_0, y_2) .

Acknowledgements Llibre is partially supported by a MEC/FEDER grant number MTM2005-06098-C02- 01 and by a CONACIT grant number 2005SGR 00550. Mello developed this work under the project CNPq 473747/2006-5. This work was finished while Mello visited Universitat Autònoma de Barcelona, supported by CNPq grant 210056/2006-1.

References

Boccaletti, D., Pucacco, G.: Theory of Orbits, vol. 1. Integrable systems and non-perturbative methods. Astronomy and Astrophysics Library. Springer-Verlag, Berlin (1996)

Euler, L.: De moto rectilineo trium corporum se mutuo attahentium. Novi Comm. Acad. Sci. Imp. Petrop. **11**, 144–151 (1767)

Hagihara, Y.: Celestial Mechanics, vol 1. MIT Press, Massachusetts (1970)

- Hampton, M.: Stacked central configurations: new examples in the planar five-body problem. Nonlinearity **18**, 2299–2304 (2005)
- Hampton, M., Moeckel, R.: Finiteness of relative equilibria of the four-body problem. Invent. Math. **163**, 289–312 (2006)
- Hampton, M., Santoprete, M.: Seven-body central configurations. Celestial Mech. Dynam. Astronom. **99**, 293–305 (2007)

Lagrange, J.L.: Essai sur le problème de trois corps. Ouvres, vol. 6. Gauthier-Villars, Paris (1873)

Llibre, J.: On the number of central configurations in the *n*-body problem. Celestial Mech. Dynam. Astronom. **50**, 89–96 (1991)

Moeckel, R.: On central configurations. Math. Z. **205**, 499–517 (1990)

Moulton, F.R.: The straight line solutions of *n* bodies. Ann. Math. **12**, 1–17 (1910)

Newton, I.: Philosophi Naturalis Principia Mathematica. Royal Society, London (1687)

- Roberts, G.E.: A continuum of relative equilibria in the five-body problem. Physica D **127**, 141–145 (1999)
- Saari, D.: On the role and properties of central configurations. Celestial Mech. **21**, 9–20 (1980)
- Santos, A.A.: Dziobek's configurations in restricted problems and bifurcation. Celestial Mech. Dynam. Astronom. **90**, 213–238 (2004)
- Smale, S.: Topology and mechanics II: the planar *n*-body problem. Invent. Math. **11**, 45–64 (1970)
- Smale, S.: Mathematical problems for the next century. Math. Intelligencer **20**, 7–15 (1998)
- Wintner, A.: The Analytical Foundations of Celestial Mechanics. Princeton University Press (1941)