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Abstract This paper deals with the Sitnikov family of straight-line motions of the circular
restricted three-body problem, viewed as generator of families of three-dimensional periodic
orbits. We study the linear stability of the family, determine several new critical orbits at
which families of three dimensional periodic orbits of the same or double period bifurcate
and present an extensive numerical exploration of the bifurcating families. In the case of the
same period bifurcations, 44 families are determined. All these families are computed for
equal as well as for nearly equal primaries (µ = 0.5, µ = 0.4995). Some of the bifurcating
families are determined for all values of the mass parameter µ for which they exist. Examples
of families of three dimensional periodic orbits bifurcating from the Sitnikov family at double
period bifurcations are also given. These are the only families of three-dimensional periodic
orbits presented in the paper which do not terminate with coplanar orbits and some of them
contain stable parts. By contrast, all families bifurcating at single-period bifurcations consist
entirely of unstable orbits and terminate with coplanar orbits.

Keywords Sitnikov motions · Restricted three-body problem · Three dimensional
periodic orbits · Stability

1 Introduction

The Sitnikov problem is an interesting special case of the restricted three-body problem when
the two primaries are of equal mass and the third body of negligible mass performs straight-
line oscillations along the z-axis (perpendicular to the plane of the primaries) (Sitnikov 1960).
The case of elliptic motion of the primaries (the elliptic Sitnikov problem) has attracted the
interest of many researchers (see Liu and Sun 1990; Hagel 1992; Alfaro and Chiralt 1993;
Dvorak 1993; Faruque 2003; Hagel and Lhotka 2005, among others).
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86 E. A. Perdios

In the case of circular motion of the primaries (the circular Sitnikov problem) Perdios
and Markellos (1988) studied numerically the stability and bifurcations of Sitnikov motions
and presented examples of the continuation of these bifurcations into the case of non-equal
masses of the primaries. They showed that the Sitnikov problem is of importance in the
sense that it can be used as a generator of families of three-dimensional periodic orbits of the
restricted problem. Belbruno et al. (1994) extended these results and also studied the problem
analytically using elliptic functions.

In this paper we study the classical (circular) Sitnikov problem. Without the loss of gen-
erality we take the origin of time to be at the instant when the particle leaves the plane of
the primaries upwards, and consider only the motions reaching a maximum height on the
z-axis: z(T/4) � 10, where T is the period of the orbit. Up to this value 44 critical orbits
of the Sitnikov family are determined, from which families of three-dimensional periodic
orbits of the same period bifurcate. We compute the families of three-dimensional periodic
orbits bifurcating from the computed critical Sitnikov orbits. We also compute these families
for nearly equal masses of the primaries, i.e. µ = 0.4995. We plot the bifurcating family
characteristics in the appropriate plane of parameters (initial conditions), and thus illustrate
graphically the resulting manifold of the families. For some of the families computed for
µ = 0.4995 we also give their critical orbits at which other families of three-dimensional
periodic orbits, of the same or double period, bifurcate. Some of the families are continued
numerically for all values of the mass parameter for which they exist.

Finally, we explore the existence of period-doubling bifurcations from the Sitnikov
motions occurring when a stability index takes the value 2. Several such orbits for z(T/4) �
10 are found and we present some bifurcating families of three-dimensional periodic orbits
bifurcating at these points. These are the only families of three-dimensional periodic orbits
presented in the paper which do not terminate with coplanar orbits and some of them consist
of stable parts. By contrast, the families bifurcating at single-period bifurcations contain only
unstable orbits and terminate with coplanar orbits.

2 Equations of motion

We consider the usual barycentric, rotating and dimensionless coordinate system Oxyz,
where the Ox axis always contains the two main bodies having masses m1 = 1 − µ and
m2 = µ � 1/2. The equations of motion of a third body of negligible mass moving under
the gravitational attraction of the two primaries are (Szebehely 1967):

ẍ − 2 ẏ = x − 1 − µ

r3
1

(x + µ) − µ

r3
2

(x + µ − 1) = ∂�

∂x
,

ÿ + 2ẋ = y

(
1 − 1 − µ

r3
1

− µ

r3
2

)
= ∂�

∂y
, (1)

z̈ = z

(
−1 − µ

r3
1

− µ

r3
2

)
= ∂�

∂z
,

where � is the potential function, µ = m2/(m1 + m2) and:

r1 =
√

(x + µ)2 + y2 + z2, r2 =
√

(x + µ − 1)2 + y2 + z2, (2)
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are the distances of the moving body from the two primaries. System (1) admits the following
integral:

C = 1

2
(ẋ2 + ẏ2 + ż2) − 1

2
(x2 + y2) − 1 − µ

r1
− µ

r2
, (3)

where C is the Jacobi constant. The Sitnikov motion z(t) of the restricted three-body problem
is described by:

z̈ = − z

(z2 + 1
4 )3/2

, (4)

and can be easily obtained from System (1) for µ = 0.5 and x(t) = y(t) = 0, while the
equation of the Jacobi integral becomes:

C = 1

2

[
ż2 − 2

(z2 + 1
4 )1/2

]
. (5)

3 Stability of the Sitnikov family—critical orbits

We now consider small perturbations x = ξ and y = η of the zero horizontal components of
the rectilinear motion. The linearized equations of the perturbed motion are:

ξ̈ − 2η̇ = [F1(z) + F2(z)]ξ + F3(z),

η̈ + 2ξ̇ = F1(z)η, (6)

z̈ = [F1(z) − 1]z + F4(z)ξ z,

as determined from (1), where we have abbreviated:

F1(z) = 1 −
(

1 − µ

g3/2
1

+ µ

g3/2
2

)
, F2(z) = 3µ(1 − µ)

(
µ

g5/2
1

+ 1 − µ

g5/2
2

)
,

F3(z) = −µ(1 − µ)

(
1

g3/2
1

− 1

g3/2
2

)
, F4(z) = 3µ(1 − µ)

(
1

g5/2
1

− 1

g5/2
2

)
,

(7)

where g1 = µ2 + z2 and g2 = (µ − 1)2 + z2. For µ = 1/2 we obtain F3(z) = F4(z) = 0
and:

F1(z) = 1 − 1

(z2 + 1/4)3/2 = F10(z), F2(z) = 3

4(z2 + 1/4)5/2
= F20(z). (8)

Now, the first two equations of System (6) can be written in the form:

�̇ = A(z(t))�, (9)

where � = (ξ, η, ξ̇ , η̇)T and:

A(z(t)) =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

F10(z) + F20(z) 0 0 2
0 F10(z) −2 0

⎤
⎥⎥⎦ . (10)
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Equation (9) is the variational equations of the rectilinear motion and describe the evolution
of the planar perturbations ξ and η of the Sitnikov motion in the restricted three-body prob-
lem. The characteristic roots for the equations of variation will determine the “transversal”
stability of the Sitnikov motions and can be computed by a numerical technique based on the
classical Floquet theory. The characteristic roots sk, k = 1, 2, 3, 4, are the solutions of the
characteristic polynomial det(B − I s) = 0, where I is the four–dimensional identity matrix
and:

B = X−1(t)X (t + T ), (11)

where X (t) is a fundamental solution of Equation (9) and T is the period of a particular
solution of System (4). Without the loss of generality we can set X (0) = I , so B = X (T ).
In case where the roots of the characteristic equation are distinct there are four independent
solutions xk satisfying the property:

xk(t + T ) = sk xk(t), k = 1, 2, 3, 4. (12)

Thus, a solution is periodic if sk is unity, while in case of |sk | < 1 (|sk | > 1) the motion
is bounded (unbounded). The characteristic equation is quartic and can be written as the
product of two quadratic factors:

(s2 + a1s + 1) (s2 + a2s + 1) = 0, (13)

with

a1 = 1

2
(p1 + √

�), a2 = 1

2
(p1 − √

�), � = p2
1 − 4(p2 − 2), (14)

where we have abbreviated:

p1 = −Tr B, p2 =
4∑

j=i+1

4∑
i=1

(bii b j j − bi j b ji ), (15)

and bi j , i, j = 1, 2, 3, 4 are the elements of the matrix B. The stability conditions are:

� > 0, |a1| � 2, |a2| � 2. (16)

For economy in computing time the matrix B can be determined by integrating numerically
the fundamental solution matrix from t = 0 to t = T/4, and applying the transformation:

X (T ) = [M X−1(T/4)M X (T/4)]2, (17)

where M is the constant symmetry matrix M = diag{1,−1,−1, 1}. The above described
method for the determination of the stability has been proposed by Perdios and Markellos
(1988) and successfully applied by them and by Belbruno et al. (1994) in the case of the
classical Sitnikov problem.

In Table 1 we give the stability intervals of the Sitnikov family for z(T/4) � 10. The
stability diagrams of the Sitnikov family can be found in Perdios and Markellos (1988) and
Belbruno et al. (1994).

Of importance here are the critical orbits of the Sitnikov family which mark the bifurca-
tions from the rectilinear motion of other families of three-dimensional periodic orbits of the
same or double period. We call the critical orbits of the rectilinear motion one-to-one critical
points/orbits when at these points families of 3D periodic orbits of the same period bifurcate
and one-to-two critical points/orbits in case where families of 3D periodic orbits of double
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Table 1 Intervals of ż0 for z(T/4) � 10 at which the Sitnikov motion is stable

[1.89880,1.89895], [1.90655,1.90680], [1.91295,1.91325], [1.91835,1.91870], [1.92300,1.92335],

[1.92705,1.92740], [1.93060,1.93095], [1.93375,1.93410], [1.93660,1.93690], [1.93915,1.93940],

[1.94145,1.94170], [1.94355,1.94380], [1.94545,1.94570], [1.94720,1.94745], [1.94885,1.94905]

period bifurcate. A point of the Sitnikov family is considered to be one-to-one or one-to-two
critical if:

ai (ż0) = ±2, i = 1, 2. (18)

Linearizing the above criticality condition we easily obtain the following corrector scheme:

∂ai

∂ ż0
δż0 = ±2 − ai , i = 1, 2, (19)

where the partial derivatives involved in this equation can be computed by additional
integrations.

4 The manifold of families of 3D periodic orbits

4.1 One-to-one bifurcations

In this study we compute critical orbits of the Sitnikov family for which z(T/4) � 10, where
T is the period of the orbit. Our main results refer to one-to-one critical points occurring
when a1 = −2. Up to this value of z(T/4), 44 one-to-one critical points of the Sitnikov
family exist. The first 34 critical points have been determined by Belbruno et al. (1994). The
remaining critical orbits are presented in Table 2 where the initial velocity ż0, the value of z
at T/4, the stability parameters ai , i = 1, 2, the quarter period T/4 and the Jacobi constant
C are given.

Table 2 One-to-one critical points of the Sitnikov family

ż0 z(t/4) a1 a2 T/4 C

B35 1.94141103 8.64644301 1.70385 −2.00000 28.52406634 −0.11546160

B36 1.94172797 8.69292647 0.37073 −2.00000 28.75193500 −0.11484624

B37 1.94350828 8.96371059 1.76351 −2.00000 30.09146734 −0.11138779

B38 1.94380999 9.01129889 0.45120 −2.00000 30.32900096 −0.11080136

B39 1.94542819 9.27550139 1.81195 −2.00000 31.65915515 −0.10765459

B40 1.94571532 9.32402432 0.52333 −2.00000 31.90553597 −0.10709595

B41 1.94719353 9.58217285 1.85137 −2.00000 33.22709292 −0.10421868

B42 1.94746682 9.63148840 0.58835 −2.00000 33.48160853 −0.10368649

B43 1.94882325 9.88404371 1.88349 −2.00000 34.79525003 −0.10104396

B44 1.94908348 9.93403249 0.64725 −2.00000 35.05727555 −0.10053679
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4.2 Determination of families of 3D periodic orbits and their stability

Three-dimensional periodic orbits of the families bifurcating at the critical orbits of the
Sitnikov family are of two types of symmetries:

(S1) double symmetry with respect to the Ox-axis and the Oxz plane and
(S2) double symmetry with respect to the Ox-axis and the Oyz plane.

Note that when µ �= 0.5 the symmetry w.r.t. the Oyz plane does not exist and the orbits
can be computed using the simple symmetry w.r.t. the Ox–axis. In this paper we compute
the bifurcating families of three-dimensional periodic orbits using the following periodicity
conditions:

x2(x01, x05, x06; T/4) = 0, x4(x01, x05, x06; T/4) = 0,

x6(x01, x05, x06; T/4) = 0 (S1),
(20)

x1(x02, x03, x04; T/2) = 0, x5(x02, x03, x04; T/2) = 0,

x6(x02, x03, x04; T/2) = 0 (S2),
(21)

where (x1, x2, x3, x4, x5, x6) = (x, y, z, ẋ, ẏ, ż), x0 j = x j (t = 0), j = 1, . . . , 6 and T is
the period of the orbit. Conditions (20) are used for the computation of orbits of symmetry
(S1) for both µ = 1/2 and µ �= 1/2, while conditions (21) are used for the computation
of orbits of symmetry (S2) for µ = 1/2. When µ �= 1/2 for the determination of orbits of
symmetry (S2) we use the following periodicity conditions:

x2(x01, x05, x06; T/2) = 0, x3(x01, x05, x06; T/2) = 0,

x4(x01, x05, x06; T/2) = 0 (Ox − Ox).
(22)

From these periodicity conditions appropriate linear predictor–corrector schemes can be
constructed. For example, from Conditions (20) we obtain:

x2 + v21δx01 + v25δx05 + v26δx06 + f2δτ = 0,

x4 + v41δx01 + v45δx05 + v46δx06 + f4δτ = 0, (23)

x6 + v61δx01 + v65δx05 + v66δx06 + f6δτ = 0,

where v j1 = ∂x j/∂x01, v j5 = ∂x j/∂x05, v j6 = ∂x j/∂x06, f j = ∂x j/∂t and τ = T/4.
The partial derivatives involved in this system can be computed by integrating the equations
of motion simultaneously with the variational equations. A corrector can be obtained from
System (23) for fixed τ , i.e. δτ = 0, in which case the corresponding predictor is obtained
by considering an arbitrary step of τ , i.e. τ = τ + �τ .

In order to compute the stability parameters P and Q of a three-dimensional periodic orbit
the matrix of first order variations V (T ) in the whole period is used (Bray and Goudas 1967).
A three-dimensional periodic orbit is stable when |P| < 2 and |Q| < 2. When |P| = 2 or
|Q| = 2 the orbit is considered to be critical (for details on the stability and criticality of
3D orbits see also Markellos 1977). For economy in the computations, according to the type
of symmetry of the orbit the variational matrix can be determined by using the following
formulae (Robin and Markellos 1980) applicable for the symmetry type (S1) orbits:

Case I : V (T ) = LV −1(T/2)LV (T/2), (Oxz plane symmetry),

Case II : V (T ) = MV −1(T/2)MV (T/2), (Ox axis symmetry),

Case III : V (T ) = [MV −1(T/4)LV (T/4)]2, (Ox axis−Oxz plane symmetry),

Case IV : V (T ) = [LV −1(T/4)MV (T/4)]2, (Ox axis−Oxz plane symmetry),

(24)
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The manifolds of families of 3D periodic orbits associated to Sitnikov motions 91

where L and M are the 6×6 diagonal matrices defined by L = diag{1,−1, 1,−1, 1,−1} and
M = diag{1,−1,−1,−1, 1, 1}. The third relation of the above formulae is used in the case
where we start the integration from the axis while the fourth is used when the integration is
started from the plane. In the case of symmetry type (S2) orbits the matrix V (T ) is computed
using:

Case V : V (T ) = N V −1(T/2)N V (T/2), (Oyz plane symmetry), (25)

where N = diag{−1, 1, 1, 1,−1,−1}. When µ �= 1/2 these orbits are computed using
Case II above.

4.2.1 Case I: equal masses

We have determined all the bifurcating families of the Sitnikov family at the one-to-one
critical points in the classical restricted problem for z(T/4) � 10. In particular, 44 fami-
lies of 3D periodic orbits have been computed. At the critical points of the Sitnikov family
B2, B3, B6, B7, B10, B11, B13, B16, B17, B20, B21, B24, B25, B28, B29, B32, B33, B36,

B37, B40, B41 and B44, families of 3D periodic orbits of symmetry (S1) bifurcate, while
at the critical orbits B1, B4, B5, B8, B9, B12, B14, B15, B18, B19, B22, B23, B26, B27,

B30, B31, B34, B35, B38, B39, B42 and B43, families of 3D periodic orbits of symmetry
(S2) bifurcate.

The computed families are denoted by f j
i where the superscript denotes the running num-

ber of the critical orbit of the Sitnikov family, and the subscript denotes the number of cuts of
the orbits of the family with the Oxz plane for symmetry type (S1) orbits, or the Oyz plane
for symmetry type (S2) orbits. In Fig. 1 we show all these families of 3D periodic orbits. As
we can see from this figure all these families terminate at planar periodic orbits in the (x, y)

plane. In Tables 3 and 4 we give one member of each family.
We have also determined the stability and all critical orbits of some of the families of

three-dimensional periodic orbits. At these critical orbits other families of three dimensional
periodic orbits of the same or double period bifurcate (for µ = 0.5). In the appendix, in

(a) (b)

Fig. 1 Families of three-dimensional periodic orbits for µ = 0.5. The orbits of these families are of (a)
symmetry (S1) and (b) symmetry (S2)
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Table 3 Three-dimensional periodic orbits of symmetry (S1) for µ = 0.5 and ż0 = 0.5

T/4 x0 ẏ0 x(T/4) z(T/4) C

f 2
1 2.34914798 −0.28502234 2.16803752 1.61277141 0.37710849 1.05634632

f 3
1 2.85576350 −0.36465663 2.66230112 1.89878032 0.25897920 1.34027010

f 6
2 5.22105585 −0.28524703 2.33287623 −2.72737306 0.63819485 0.31905190

f 7
2 6.25949204 −0.42751505 3.70372186 −3.20461735 0.23330786 1.08933024

f 10
3 8.27755584 −0.28558704 2.38745481 3.70353600 0.86151553 0.06845009

f 11
3 9.49347077 −0.44525483 4.27527758 4.21323178 0.23296388 0.99462233

f 13
4 11.37531164 −0.28566082 2.41492395 −4.57695587 1.06076220 −0.06193912

f 16
4 12.68663776 −0.45400801 4.66971770 −5.09910480 0.23779603 0.94098648

f 17
5 14.48961391 −0.28566068 2.43175050 5.37873072 1.24344029 −0.14349480

f 20
5 15.86205897 −0.45930152 4.96677055 5.90868982 0.24451529 0.90551388

f 21
6 17.61234222 −0.28563697 2.44324840 −6.12719014 1.41385539 −0.20003820

f 24
6 19.02789855 −0.46287902 5.20209661 −6.66380009 0.25204447 0.87994326

f 25
7 20.73999543 −0.28560595 2.45167110 6.83393559 1.57470465 −0.24190906

f 28
7 22.18789082 −0.46547399 5.39496445 7.37704317 0.25993272 0.86045624

f 29
8 23.87079991 −0.28557358 2.45814541 −7.50682522 1.72780477 −0.27436701

f 32
8 25.34401625 −0.46745105 5.55698661 −8.05658734 0.26796441 0.84501293

f 33
9 27.00375452 −0.28554214 2.46330081 8.15147075 1.87444856 −0.30038970

f 36
9 28.49743396 −0.46901279 5.69569274 8.70812686 0.27602776 0.83241273

f 37
10 30.13824826 −0.28551249 2.46751823 −8.77204763 2.01559561 −0.32179841

f 40
10 31.64887232 −0.47028113 5.81623180 −9.33584022 0.28406196 0.82189784

f 41
11 33.27388558 −0.28548489 2.47104256 9.37176512 2.15198221 −0.33977442

f 44
11 34.79881434 −0.47133405 5.92227118 9.94291279 0.29203319 0.81296380

Tables 7 and 8, we give these critical orbits for those families of three-dimensional periodic
orbits for which they were determined.

4.2.2 Case II: non-equal masses

The bifurcations of the Sitnikov family exist also for non-equal primaries, i.e. µ �= 0.5.
Consider now the linearized Equations (6) for µ = 1/2 + ε. Linearizing this system with
respect to ε we obtain:

F1(z) = 1 − 

−3/2
0 , F2(z) = 3

4

−5/2
0 ,

F3(z) = 3
4


−5/2
0 ε, F4(z) = −15

4 

−7/2
0 ε,

(26)

where 
0 = z2 + 1/4 and System (6) becomes:

ξ̈ − 2η̇ =
(

1 − 1



3/2
0

+ 3
4


5/2
0

)
ξ + 3ε

4

5/2
0

,

η̈ + 2ξ̇ =
(

1 − 1



3/2
0

)
η,

z̈ = − 1



3/2
0

z.

(27)
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Table 4 Three-dimensional periodic orbits of symmetry (S2) for µ = 0.5 and z0 = 0.5

T/2 y0 ẋ0 C

f 1
1 1.88664719 0.36114524 0.24232617 −2.59061581

f 4
3 7.47092498 2.18150460 2.25099297 −0.56412044

f 5
3 9.21442015 2.57122935 2.48937459 −1.16422873

f 8
5 13.48440605 3.28118958 3.34733838 −0.15738661

f 9
5 15.77400564 3.70025350 3.63253518 −1.02746095

f 12
7 19.65019583 4.23442384 4.29168332 0.02233207

f 14
7 22.18982374 4.64563833 4.58774131 −0.96019457

f 15
9 25.86570646 5.09562486 5.14590284 0.12615504

f 18
9 28.55445146 5.49370578 5.44274903 −0.91836051

f 19
11 32.10415154 5.89194638 5.93690910 0.19482962

f 22
11 34.89383072 6.27676292 6.23098219 −0.88924650

f 23
13 38.35522692 6.63915917 6.67997815 0.24412475

f 26
13 41.21860544 7.01168158 6.96992937 −0.86756190

f 27
15 44.61406726 7.34739683 7.38489635 0.28150052

f 30
15 47.53406215 7.70877064 7.67025765 −0.85065244

f 31
17 50.87805537 8.02364094 8.05841721 0.31097301

f 34
17 53.84316015 8.37494546 8.33910377 −0.83702073

f 35
19 57.14564924 8.67295240 8.70544956 0.33490929

f 38
19 60.14769966 9.01514406 8.98155009 −0.82575009

f 39
21 63.41587707 9.29914454 9.32970230 0.35480139

f 42
21 66.44884537 9.63305465 9.60138317 −0.81624438

f 43
23 69.68809368 9.90517939 9.93406365 0.37163993

Equations (27) are the equations of motion for the basic family for µ slightly different from
1/2. We observe that for µ = 1/2 + ε the equation for z does not change, so the period of
a member of the Sitnikov family remains the same. Using (27) we can compute the initial
conditions for the determination of three-dimensional periodic orbits for µ �= 1/2, following
the corresponding procedure described in Perdios and Markellos (1988).

In Fig. 2 we show the family characteristics of the families of three-dimensional orbits of
the restricted three-body problem for the value of the mass parameter µ = 0.4995. In this
figure we see that family f 2

1 consists now of two separate branches named 2a and 2b. Branch
2a terminates with a coplanar orbit, as in the case µ = 0.5, while branch 2b is joined with
the branch 3b of family f 3

1 . The branch 3a of f 3
1 is joined now with branch 6b of family f 6

2
and so on. As we can see from Fig. 2 all these families terminate at planar periodic orbits
in the (x, y) plane. The coplanar termination orbits of the first 8 families of 3D periodic
orbits f 1

1 , f 2
1 , f 3

1 , f 4
3 , f 5

3 , f 6
2 , f 7

2 , f 8
5 are shown in Fig. 3. With respect to Fig. 2 note that

this is the exact network of the bifurcating families showing clearly the interconnections of
the branches. A similar picture of these interconnections has been given by Belbruno et al.
(1994) (Fig. 19, p. 127) in schematic form and in a different plane of initial conditions. Com-
parison of that diagram to our present Fig. 2 shows that the given schematic representation
is confirmed.
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(a)

(b) (c)

Fig. 2 Families of three-dimensional periodic orbits for µ = 0.4995. The orbits of these families are of
(a) symmetry (S1) and (b), (c) symmetry with respect to the Ox-axis

We consider now the families of 3D periodic orbits of symmetry (S1) f 2
1 , f 3

1 , f 6
2 and f 7

2
and follow their evolution when the mass parameter µ is varied. The continuation of these
families with respect to the mass parameter is shown in Fig. 4. From this figure we can see
that family f 2

1 (Fig. 4a), which is the three-dimensional Lyapunov family emanating from
the collinear equilibrium point L1, exists for all values of the mass parameter in the range of
(0, 0.5] while family f 3

1 (Fig. 4b) exists until the value of the mass parameter µ ∼= 0.4840.
This happens because the vertical critical orbit of the family of plane symmetric periodic
orbits at which family f 3

1 bifurcates into three-dimensions does not exist for lower values of
the mass parameter (for details on vertical stability of planar periodic orbits see Hénon 1973;
Markellos 1978). Family f 6

2 (Fig. 4c) at µ ∼= 0.001 goes to collision. Finally, family f 7
2

(Fig. 4d) exists until the value µ ∼= 0.4400 for the same reason for which family f 3
1 does not

exist for all values of the mass parameter. The above observations can be corroborated from
Fig. 5 where we have plotted the series of vertical critical symmetric plane periodic orbits
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Fig. 3 Terminations in the plane (x, y) of the first 8 families of three-dimensional periodic orbits
f 1
1 , f 2

1 , f 3
1 , f 4

3 , f 5
3 , f 6

2 , f 7
2 , f 8

5 of the restricted three-body problem

at which these families of three-dimensional periodic orbits end on the plane (for details on
vertical stability parameters see Markellos 1978).

The same work has been done for the families of 3D periodic orbits of symmetry (S2)
f 1
1 , f 4

3 and f 5
3 . The continuation of these families with respect to the mass parameter is

shown in Fig. 6. We can see that family f 1
1 exists for all values of µ in the range of (0, 0.5]

(Fig. 6a) while families f 4
3 and f 5

3 meet each other at µ ∼= 0.2935 (see Fig. 6b) forming thus
a closed curve which is reduced to a point at the value of the mass parameter µ ∼= 0.2836
and does not exist for lower values. In Fig. 7 we have plotted the series of vertical critical
symmetric plane periodic orbits at which these families of three-dimensional periodic orbits
end on the plane.

In Figs. 8 and 9 we show the orbits of the families f 3
1 and f 1

1 for sample values of the
mass parameter. As we can see from these two figures family f 3

1 ends on the plane while the
orbits of family f 1

1 approach the smaller primary for lower values of the mass parameter and
the family terminates at a coplanar orbit.
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(a) (b)

(c) (d)

Fig. 4 Continuation of the families (a) f 2
1 , (b) f 3

1 , (c) f 6
2 and (d) f 7

2 of three-dimensional periodic orbits of
symmetry (S1) with respect to the mass parameter µ

Fig. 5 Series of vertical critical
periodic orbits belonging to the
families of plane symmetric
periodic orbits at which families
f 2
1 , f 3

1 , f 6
2 and f 7

2 end on the
plane. The vertical stability
parameters of all these orbits are:
av = −1, bv = 0 and cv �= 0
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(a) (b)

Fig. 6 Continuation of the families (a) f 1
1 and (b) f 4

3 (continuous lines), f 5
3 (dotted lines) of three-

dimensional periodic orbits of symmetry (S2) with respect to the mass parameter µ

Fig. 7 Series of vertical critical
periodic orbits belonging to the
families of plane symmetric
periodic orbits at which families
f 1
1 , f 4

3 , f 5
3 , f 8

5 , f 9
5 , f 12

7 , f 14
7 , f 15

9
and f 18

9 end on the plane. The
vertical stability parameters of all
these orbits are:
av = −1, bv = 0 and cv �= 0

5 One-to-two critical orbits and the bifurcating families

In this section we study the one-to-two critical orbits of the Sitnikov problem for which
a1 = 2. These critical orbits are of importance because at these points families of three-
dimensional periodic orbits of double period bifurcate. In Table 5 we give these critical
orbits for which z(T/4) � 10.

In Fig. 10 we show the first six families emanating from the rectilinear motion of the Sitni-
kov problem. These families are symmetric with respect the Ox-axis and also with respect to
the Oy-axis. As we see the families emanate from the rectilinear motion in pairs, namely the
family emanating from the first critical point C1 of the Sitnikov motion (for a1 = 2) returns
to the second critical point C2, the family emanating from the third critical point C3 returns
to the fourth critical point C4, and so on. In Table 6 we give one member of each family.

123



98 E. A. Perdios

(a)

(b)

Fig. 8 Three-dimensional orbits of family f 3
1 for (a) µ = 0.5 and (b) µ = 0.4842

(a) (b)

Fig. 9 Three-dimensional orbits of family f 1
1 for (a) µ = 0.5 and (b) µ = 0.25

6 Summary and conclusions

We have studied the classical Sitnikov problem when the primaries perform circular motion.
The stability parameters of the Sitnikov motions have always values less than or equal to
2. For z(T/4) � 10, 44 one-to-one critical points of the rectilinear motion of the Sitnikov
problem have been determined. We have computed the families of three-dimensional periodic
orbits bifurcating from the one-to-one critical points of the Sitnikov motions (µ = 0.5). All
the families have also been computed for nearly equal masses (µ = 0.4995). The manifolds
of the families have been illustrated graphically, by plotting all the computed families in the
space of the appropriate initial conditions. In both cases these families terminate at vertical
self-resonant coplanar periodic orbits. This indicates the importance of the Sitnikov family
as a generator of families of three-dimensional periodic orbits, which would alternatively
have to be generated from the coplanar vertical self-resonant orbits, a more complicated
procedure. Some of the families have been computed for all values of the mass parameter for
which they exist.

Finally, we examined the existence of period-doubling bifurcations from the Sitnikov
motions. These bifurcations exist when a stability index takes the value 2. We found many
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Table 5 Critical orbits of the Sitnikov family from which families of three-dimensional periodic orbits of
double period bifurcate (case of a1 = 2)

ż0 z(t/4) a2 T/4 C

C1 1.91095530 5.72119610 −17.66662 15.49778795 0.34824986

C2 1.91118207 5.73557979 −15.40339 15.55505319 0.34738311

C3 1.91638024 6.08661442 −20.56122 16.97480584 0.32748678

C4 1.91720951 6.14668042 −11.38497 17.22196198 0.32430768

C5 1.92120049 6.45338872 −21.32563 18.50283492 0.30898866

C6 1.92216644 6.53233727 −9.56691 18.83757987 0.30527617

C7 1.92541581 6.81288591 −21.59012 20.04352678 0.29277395

C8 1.92641286 6.90392621 −8.32539 20.44030815 0.28893349

C9 1.92912602 7.16460395 −21.62362 21.59094170 0.27847281

C10 1.93011051 7.26418713 −7.39016 22.03612339 0.27467342

C11 1.93241673 7.50880011 −21.53425 23.14265929 0.26576559

C12 1.93336887 7.61471969 −6.64850 23.62747585 0.26208481

C13 1.93535678 7.84590038 −21.37602 24.69740100 0.25439415

C14 1.93626782 7.95666011 −6.04054 25.21566761 0.25086691

C15 1.93800113 8.17635690 −21.17893 26.25439414 0.24415163

C16 1.93886791 8.29088667 −5.53020 26.80149186 0.24079125

C17 1.94039391 8.50060385 −20.96067 27.81313066 0.23487146

C18 1.94121614 8.61810905 −5.09409 28.38546998 0.23167988

C19 1.94257089 8.81904395 −20.73208 29.37325789 0.22641835

C20 1.94334981 8.93891863 −4.71602 29.96797002 0.22339152

C21 1.94456127 9.13204493 −20.49993 30.93451812 0.21868146

C22 1.94529889 9.25381695 −4.38446 31.54925837 0.21581224

C23 1.94638918 9.43994106 −20.26854 32.49671827 0.21156917

C24 1.94708783 9.56323644 −4.09083 33.12953696 0.20884896

C25 1.94807468 9.74303619 −20.04062 34.05971204 0.20500505

C26 1.94873683 9.86755417 −3.82865 34.70896237 0.20242477

such orbits and presented some examples of the bifurcating families in this case. A remark-
able result is that the bifurcating families of three-dimensional periodic orbits at these critical
points (one-to-two) of the Sitnikov motions do not end on families of planar periodic orbits
as in the case of the one-to-one bifurcating families. Again this shows the importance of the
Sitnikov family as a generator of families of three-dimensional periodic orbits, since in this
case these families could not have been generated by the above mentioned alternative proce-
dure (from vertical self-resonant orbits) applicable to the one-to-one bifurcating families.

Another interesting property of the computed manifolds is that while all the families ema-
nating from the one-to-one critical points consist of unstable orbits, some families emanating
from the one-to-two critical points have stable parts. In particular, the families emanating
from the critical points C3, C4, C5 and C6 have stable parts.
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Fig. 10 Families of
three-dimensional periodic orbits
of double period emanating from
critical orbits of the Sitnikov
family at which a1 = 2

Table 6 Three-dimensional orbits of double period of families bifurcating from the Sitnikov motion when
a1 = 2

T/2 x0 ẏ0 ż0 c

g(1,2)
21 62.04381802 0.02002436 −0.07187450 1.91144695 0.34803148

g(3,4)
23 68.87831788 0.02007905 −0.06584173 1.91782555 0.32447430

g(5,6)
25 75.34320000 0.02008056 −0.06374727 1.92284342 0.30547479

Appendix A

Table 7 Critical orbits of families of 3D periodic orbits of symmetry (S1) for µ = 0.5

T/4 x0 ẏ0 ż0 x(T/4) z(T/4) C P

f 2
1 2.34949854 −0.29211084 2.26167662 0.00000000 1.66672765 0.00000000 1.04285278 −2.0

2.34673489 −0.22705976 1.54000061 1.25328546 1.21261982 1.01882805 −0.57421913 2.0

2.34568089 −0.19646596 1.27563431 1.39854463 1.02445342 1.16827475 −0.59288636 −2.0

f 3
1 2.85424973 −0.36785478 2.74046312 0.00000000 1.91937674 0.00000000 1.34487765 −2.0

2.91114876 −0.21331404 0.89585079 1.71974874 1.03094996 1.48627685 −0.58773148 2.0

2.92529952 −0.14998576 0.56776436 1.72083624 0.71131973 1.63398754 −0.56719192 −2.0

f 6
2 5.22305555 −0.29158821 2.41837859 0.00000000 −2.80807464 0.00000000 0.29794478 −2.0

5.20674978 −0.23172200 1.72345946 1.30623157 −2.10501238 1.77237853 −0.23562877 2.0

5.19046546 −0.13775846 0.92933379 1.68452561 −1.18121663 2.42594112 −0.32313514 −2.0

f 7
2 6.25860382 −0.42852292 3.76290681 0.00000000 −3.21359889 0.00000000 1.09164181 −2.0

6.33313013 −0.33302799 1.33441020 2.14884347 −2.40769503 2.06745408 −0.45109820 2.0

6.43375250 −0.10203675 0.22659385 1.86429237 −0.70322421 3.04439427 −0.32865185 −2.0
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Table 7 continued

T/4 x0 ẏ0 ż0 x(T/4) z(T/4) C P

f 10
3 8.27972892 −0.29160929 2.47006260 0.00000000 3.80775300 0.00000000 0.04575461 −2.0

8.26441635 −0.24388267 1.88887795 1.23850800 3.03360660 2.24016634 −0.10323765 2.0

8.23910476 −0.10761828 0.72942305 1.78844532 1.23532345 3.50409511 −0.23764792 −2.0

f 11
3 9.49288130 −0.44585268 4.32759239 0.00000000 4.21987979 0.00000000 0.99611071 −2.0

9.55966818 −0.37177467 1.57199412 2.40465566 3.42727519 2.42227132 −0.41526928 2.0

9.69923175 −0.09035238 0.16227883 1.90229525 0.78892126 4.07881373 −0.24906396 −2.0

f 13
4 11.37750600 −0.29151294 2.49604979 0.00000000 −4.70262986 0.00000000 −0.08542070 −2.0

11.36370648 −0.25086242 1.98658887 1.18293494 −3.87672223 2.61450271 −0.03135494 2.0

11.33370150 −0.08963375 0.60865254 1.83929948 −1.26048532 4.44928289 −0.19368466 −2.0

f 16
4 12.68619063 −0.45443947 4.71815359 0.00000000 −5.10476603 0.00000000 0.94210066 −2.0

12.74858465 −0.38942834 1.69594922 2.57965078 −4.27855727 2.75497670 −0.39451958 2.0

12.90806251 −0.08464348 0.13373147 1.92238000 −0.87843530 4.97670000 −0.20587496 −2.0

f 17
5 14.49180042 −0.29140485 2.51195747 0.00000000 5.52430115 0.00000000 −0.16746257 −2.0

14.47913809 −0.25507683 2.04814617 1.14273871 4.64823490 2.94644477 0.01420435 2.0

14.44856651 −0.10124750 0.69533068 1.84100333 1.67452878 5.19632580 −0.15425145 −2.0

f 20
5 15.86169334 −0.45964436 5.01264303 0.00000000 5.91382415 0.00000000 0.90641820 −2.0

15.92127149 −0.39973840 1.77301985 2.70932187 5.04169188 3.06798659 −0.38055418 2.0

16.07281172 −0.15875968 0.25165834 2.00180467 1.90169879 5.55939881 −0.20157055 −2.0

f 21
6 17.61451469 −0.29130550 2.52282144 0.00000000 −6.29144515 0.00000000 −0.22434158 −2.0

17.60268826 −0.25786693 2.09032366 1.11284235 −5.36579628 3.25195579 0.04596120 2.0

17.57499468 −0.13366790 0.93933584 1.79588964 −2.54505093 5.69688230 −0.10908645 −2.0

17.56822291 −0.06871808 0.46743342 1.88933640 −1.27987416 6.09937996 −0.14682276 −2.0

f 24
6 19.02758533 −0.46316724 5.24612169 0.00000000 −6.66861899 0.00000000 0.88071426 −2.0

19.08520003 −0.40656650 1.82552970 2.81031910 −5.74649790 3.36478118 −0.37035340 2.0

19.23198636 −0.19127253 0.30221263 2.05833052 −2.57570836 6.11870944 −0.19711921 −2.0

19.26509442 −0.07972608 0.10787730 1.94482267 −1.06132370 6.54941714 −0.15836833 −2.0

f 25
7 20.74215338 −0.29121801 2.53077609 0.00000000 7.01590284 0.00000000 −0.26646031 −2.0

20.73095934 −0.25984941 2.12111846 1.08975337 6.04148328 3.53836363 0.06954002 2.0

20.70526501 −0.15169713 1.08351186 1.76124380 3.24501215 6.17158342 −0.07627695 −2.0

20.69529196 −0.06197398 0.42177283 1.90354552 1.28275400 6.84419265 −0.13243707 −2.0

f 28
7 22.18761401 −0.46572530 5.43758180 0.00000000 7.38166105 0.00000000 0.86113531 −2.0

22.24373732 −0.41149413 1.86451729 2.89198781 6.40904964 3.64684197 −0.36254749 2.0

22.24373784 −0.41149360 1.86450381 2.89198498 6.40904030 3.64685825 −0.36254686 2.0

22.38700146 −0.21174063 0.33334129 2.10255728 3.14885271 6.64981395 −0.19353739 −2.0

22.42958245 −0.07903938 0.10157063 1.95221542 1.15832101 7.26192712 −0.14365148 −2.0

f 29
8 23.87294437 −0.29114157 2.53688825 0.00000000 −7.70570242 0.00000000 −0.29911001 −2.0

23.86224422 −0.26133352 2.14468239 1.07133429 −6.68350890 3.80987374 0.08784613 2.0

23.83802629 −0.16351940 1.18227538 1.73368185 −3.86299057 6.62478393 −0.05118264 −2.0

23.82570023 −0.05661277 0.38543928 1.91420821 −1.28338603 7.55037707 −0.12119726 −2.0
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Table 7 continued

T/4 x0 ẏ0 ż0 x(T/4) z(T/4) C P

f 32
8 25.34376619 −0.46767580 5.59848838 0.00000000 −8.06107288 0.00000000 0.84562488 −2.0

25.39874088 −0.41520957 1.89393576 2.95959835 −7.03780081 3.91763891 −0.35630702 2.0

25.53924587 −0.22611256 0.35467327 2.13833871 −3.66530485 7.15761808 −0.19058661 −2.0

25.58902601 −0.07917352 0.09761071 1.95836440 −1.26174012 7.93822809 −0.13221203 −2.0

f 33
9 27.00588684 −0.29107462 2.54175366 0.00000000 8.36658079 0.00000000 −0.32528615 −2.0

26.99558385 −0.26249093 2.16338573 1.05622067 7.29774757 4.06911391 0.10254092 2.0

26.97250435 −0.17196898 1.25526223 1.71114604 4.42979486 7.05975416 −0.03126271 −2.0

26.95837267 −0.05222994 0.35571460 1.92252048 1.28256750 8.22478522 −0.11211954 −2.0

f 36
9 28.49720437 −0.46921751 5.73628432 0.00000000 8.71252434 0.00000000 0.83297353 −2.0

28.55127043 −0.41811586 1.91669647 3.01667267 7.63886344 4.17893251 −0.35117268 2.0

28.68953867 −0.23687266 0.37025077 2.16802567 4.14382277 7.64571268 −0.18810776 −2.0

28.74494032 −0.08001829 0.09535210 1.96374156 1.37364020 8.58406480 −0.12308481 −2.0

Table 8 Critical orbits of families of 3D periodic orbits of symmetry (S2) for µ = 0.5

T/2 y0 z0 ẋ0 C P

f 1
1 1.85554740 0.63965340 0.00000000 0.43167507 −2.68621763 −2.0

f 4
3 7.47408245 2.24577926 0.00000000 2.31672209 −0.54559891 −2.0

7.44610586 1.63189565 1.44263739 1.68737325 −0.71079362 2.0

7.42774884 1.12875859 1.81206364 1.16900233 −0.81967191 −2.0

f 5
3 9.20395875 2.62348844 0.00000000 2.54031921 −1.17833447 −2.0

9.36282809 1.75447358 1.86980153 1.69531601 −0.96967747 2.0

9.48969275 0.67407375 2.42836534 0.65025764 −0.80996073 −2.0

f 8
5 13.48627370 3.32168314 0.00000000 3.38840416 −0.14769298 −2.0

13.45410954 2.57860909 2.02341239 2.63375865 −0.31574324 2.0

13.41098234 1.21429974 2.98513418 1.24253003 −0.54391058 −2.0

f 9
5 15.76741414 3.73529438 0.00000000 3.66704956 −1.03587120 −2.0

15.90755861 2.94784106 2.24690316 2.89205511 −0.86052937 2.0

16.15528700 0.74495594 3.58453048 0.72998285 −0.56334066 −2.0

f 12
7 19.65137049 4.26511966 0.00000000 4.32267396 0.02853375 −2.0

19.62234464 3.46516381 2.43379497 3.51440036 −0.12540608 2.0

19.56632857 1.25019598 3.98977690 1.26982429 −0.42549907 −2.0

f 14
7 22.18522464 4.67316560 0.00000000 4.61498320 −0.96595341 −2.0

22.31386071 3.86668070 2.59089216 3.81719489 −0.80748068 2.0

22.61564611 0.83370640 4.54026083 0.82232424 −0.44958933 −2.0

f 15
9 25.86652555 5.12084546 0.00000000 5.17130165 0.13059062 −2.0

25.84015366 4.27002651 2.78418730 4.31404366 −0.01262657 2.0

25.77709517 1.26800613 4.88682566 1.28258558 −0.35703043 −2.0

25.77504784 1.06067433 4.93453594 1.07291303 −0.36821333 −2.0
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Table 8 continued

T/2 y0 z0 ẋ0 C P

f 18
9 28.55099229 5.51681774 0.00000000 5.46568159 −0.92265079 −2.0

28.67269340 4.66858616 2.91358291 4.62425908 −0.77386201 2.0

28.98186836 1.48848433 5.26704998 1.47343769 −0.40845962 −2.0

29.00513204 0.92348064 5.39283762 0.91410102 −0.38126041 −2.0

f 19
11 32.10476440 5.91361162 0.00000000 5.95869334 0.19822355 −2.0

32.08033738 5.01280015 3.10178237 5.05261934 0.06273143 2.0

32.02235915 2.14255077 5.45011627 2.16134523 −0.25939488 −2.0

32.01297368 1.27716093 5.70954905 1.28854956 −0.31138098 −2.0

f 22
11 34.89109515 6.29690509 0.00000000 6.25100102 −0.89261969 −2.0

35.00812167 5.40019366 3.21802243 5.35994840 −0.75019442 2.0

35.30608197 2.25628904 5.84291997 2.23846096 −0.39843404 −2.0

35.36041414 1.01454976 6.17709386 1.00644075 −0.33487006 −2.0

f 23
13 38.35570836 6.65830143 0.00000000 6.69920537 0.24684112 −2.0

38.33272868 5.70819910 3.39719012 5.74463861 0.11709922 2.0

38.27950513 2.90844839 5.93712114 2.92877675 −0.18299249 −2.0

38.26249486 1.28164291 6.47712705 1.29086977 −0.27830493 −2.0

f 26
13 41.21636431 7.02966205 0.00000000 6.98781981 −0.87031461 −2.0

41.33001874 6.08224968 3.50756752 6.04528619 −0.73240937 2.0

41.61981792 2.87117713 6.38741335 2.85272662 −0.39047367 −2.0

41.69619527 1.10905989 6.91067564 1.10181755 −0.30103644 −2.0

f 27
15 44.61445903 7.36464073 0.00000000 7.40220391 0.28374542 −2.0

44.59259283 6.36621974 3.67577714 6.39989415 0.15845390 2.0

44.54278366 3.56176611 6.40061344 3.58227200 −0.12591282 −2.0

44.52031821 1.28324915 7.20161853 1.29093227 −0.25299452 −2.0

f 30
15 47.53217747 7.72509323 0.00000000 7.68651160 −0.85296080 −2.0

47.64325610 6.72669507 3.78432467 6.69242445 −0.71846953 2.0

47.92681920 3.41270462 6.90635651 3.39435414 −0.38398900 −2.0

48.01964460 1.20901873 7.60421947 1.20239015 −0.27518756 −2.0

f 31
17 50.87838272 8.03939596 0.00000000 8.07422169 0.31287336 −2.0

50.85740101 6.99382770 3.94075242 7.02519967 0.19114751 2.0

50.81017115 4.15165371 6.84435009 4.17183520 −0.08137495 −2.0

50.78360235 1.28318648 7.89121272 1.28971939 −0.23286434 −2.0

f 34
17 53.84154308 8.38994833 0.00000000 8.35405256 −0.83899710 −2.0

53.95056729 7.34111711 4.04996154 7.30909828 −0.70720460 2.0

54.22919743 3.90856265 7.40392388 3.89059494 −0.37859190 −2.0

54.33471188 1.31670389 8.26461133 1.31051887 −0.25480576 −2.0
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