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Abstract Equations of motion, referred to as full body models, are developed to
describe the dynamics of rigid bodies acting under their mutual gravitational potential.
Continuous equations of motion and discrete equations of motion are derived using
Hamilton’s principle. These equations are expressed in an inertial frame and in relative
coordinates. The discrete equations of motion, referred to as a Lie group variational
integrator, provide a geometrically exact and numerically efficient computational
method for simulating full body dynamics in orbital mechanics; they are symplectic
and momentum preserving, and they exhibit good energy behavior for exponentially
long time periods. They are also efficient in only requiring a single evaluation of
the gravity forces and moments per time step. The Lie group variational integrator
also preserves the group structure without the use of local charts, reprojection, or
constraints. Computational results are given for the dynamics of two rigid dumbbell
bodies acting under their mutual gravity; these computational results demonstrate the
superiority of the Lie group variational integrator compared with integrators that are
not symplectic or do not preserve the Lie group structure.
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1 Introduction

The full body problem in orbital mechanics treats the dynamics of non-spherical
rigid bodies in space interacting under their mutual potential. Since the mutual grav-
itational potential of distributed rigid bodies depends on both the position and the
attitude of the bodies, the translational and the rotational dynamics are coupled in
the full body problem. For example, the orbital motion and the attitude dynamics of
a very large spacecraft in the Earth’s gravity field are coupled, and the dynamics of
a binary asteroid pair, with non-spherical mass distributions of the bodies, involves
coupled orbital and attitude dynamics. Recently, interest in the full body problem has
increased, as it is estimated that up to 16% of near-earth asteroids are binaries (Margot
et al. 2002).

These full body dynamics arise from Lagrangian and Hamiltonian mechanics; they
are characterized by symplectic, momentum and energy preserving properties. These
geometric features determine the qualitative behavior of the full body dynamics, for
example stability conditions (Scheeres 2002), and they can serve as a basis for further
theoretical study of the full body problem. The configuration space of the full body
dynamics has a Lie group structure referred to as the special Euclidean group, SE(3).
The representation used for the attitude of the bodies should be globally defined since
the complicated dynamics would require frequent changes of coordinates when using
representations that are only locally defined.

However, general numerical integration methods, including the widely used explicit
(non-symplectic) Runge-Kutta schemes, neither preserve the Lie group structure nor
these geometric properties. (Hairer et al 2006). They fail to preserve the conserved
quantities such as total energy and angular momentum, which determine the qual-
itative behavior of the full body dynamics. Attitude errors tend to accumulate, and
this attitude degradation causes significant errors in the computation of gravitational
forces and moments. The accuracy of such general purpose integrators also rapidly
degrades as the simulation time increases (Fahnestock et al 20006).

Moser and Veselov (1991), Wendlandt and Marsden (1997) developed numerical
integrators for a free rigid body by imposing an orthogonal constraint on the attitude
variables, and by using unit quaternions, respectively. The idea of using the Lie group
structure and the exponential map to numerically compute rigid body dynamics arises
in the work of Simo et al. (1992), and in the work by Krysl (2005). Marsden et al.
(1999) and Marsden et al. (2000) introduce discrete Euler—Poincaré and Lie—Poisson
equations, where the discrete dynamics on a Lie group are reduced to the dynamics
on the corresponding Lie algebra in the absence of potential. Lie-Poisson integrators
have been developed by splitting the Hamiltonian into separate integrable terms for
an elliptical body (Touma and Wisdom, 1994; Breiter et al. 2005a) and for the secular
spin dynamics of a rigid body (Breiter et al. 2005b).

Variational integrators and Lie group methods provide a systematic method of
constructing structure-preserving numerical integrators. The idea of the variational
approach is to discretize Hamilton’s principle (Marsden and West 2001). The numer-
ical integrator obtained from discrete Hamilton’s principle exhibits excellent energy
properties (Hairer 1994), conserves first integrals associated with symmetries by a
discrete version of Noether’s theorem, and preserves the symplectic structure. Lie
group methods consist of numerical integrators that preserve the geometry of the
configuration space by automatically remaining on the Lie group (Iserles et al. 2000).
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In this paper, the Lie group approach is explicitly adopted in the context of a varia-
tional integrator for the full rigid bodies problem. This is an extension of the geometric
integrator for rigid body attitude dynamics on the rotation group SO(3) by Lee et al.
(2005) to attitude and translational dynamics on the special Euclidean group SE(3),
and here reduced equations of motion are also developed in relative coordinates. This
unified integrator, hereafter referred to as the Lie Group Variational Integrator (or
LGVI for short), is symplectic and momentum preserving, and it exhibits good total
energy behavior for exponentially long time periods. It also preserves the Euclidian
Lie group structure without the use of local charts, reprojection, or constraints. The
exact geometric properties of the discrete flow not only provides improved qualitative
behavior, but also results in accurate long-time simulation. This provides a uniform
method that can be applied to rigid bodies acting under any type of potential that
depends on the position and the attitude, but we focus on the application to astro-
dynamics problems with the gravitational potential in this paper. This development
has been presented in Lee et al. (2007); the present paper emphasizes the develop-
ment of this approach for full body problems in orbital mechanics and the special
computational features of this approach for full body problems in orbital mechanics.
In addition, we make a computational comparison between the Lie group variational
integrator to other geometric integrators such as symplectic Runge-Kutta method and
Lie group method (Hairer et al. 2006).

Numerical simulation of the full body problem involves a large computational
burden in computing mutual gravitational forces and moments, which are usually rep-
resented by a finite series approximation for the double volume integration (Werner
and Scheeres 2005). The forces and moments must be reevaluated for any position
change or any orientation change, not only at each time step but at each sub-step
involved in the differencing scheme behind any general purpose numerical integra-
tor. Therefore the choice of numerical integrator can significantly amplify the burden
of computing the gravity forces and moments. The LGVI minimizes the computa-
tional burden in the sense that it requires only one force and torque evaluation per
integration step for second order accuracy. It has been shown that the LGVI yields a
numerically efficient computational algorithm for the full body problem (Fahnestock
et al. 2000).

This paper is organized as follows. The continuous equations of motion and Lie
group variational integrators are derived in Sects. 2 and 3, respectively. Numerical
simulations for two rigid dumbbell bodies are presented in Sect. 4.

2 Continuous time full body models

Maciejewski (1995) presented the continuous equations of motion for the full body
problem in Hamiltonian form without providing a formal derivation. Here, we show
that the equations can be derived from Hamilton’s variational principle using the
Lagrangian formalism. The proper form for the variations of Lie group elements in
the configuration space leads to a systematic derivation of the equations of motion.
In this section, we summarize those procedures; the Lie group variational integra-
tors presented in Sect. 3 are obtained by following a similar procedure using the
discrete Hamilton’s principle. Additional details in this development can be found in
(Lee et al. 2007).
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2.1 Inertial coordinates

The configuration space of a rigid body is SE(3) = R3 ® SO(3), where SO(3) denotes
the group of 3 x 3 orthogonal matrices with unit determinant, and §) represents a
semi-direct product. We derive continuous equations of motion for # rigid bodies. We
define an inertial frame and a body-fixed frame for each body, and assume that the
origin of the ith body-fixed frame is located at the center of mass of the ith body.

For the ith body, the position of the center of mass in the inertial frame, and the
attitude, which is a rotation matrix from the body-fixed frame to the inertial frame,
are represented by (x;, R;) € SE(3). The translational velocity in the inertial frame
and the angular velocity in the body-fixed frame are represented by v;, @; € R3. The
subscript i denotes the ith rigid body. The kinematic equations are given by

X,' =V (1)
R; = RiS(Q), ()

where S(-) : R3 — s0(3) is the isomorphism between the Lie algebra so(3), which
represents 3 x 3 skew-symmetric matrices, and R? defined by: S(x)y = x x y for any
x,y € R3. The mass and the moment of inertia matrix of the ith body is denoted by
m; € R and J; € R**3, respectively. We construct a nonstandard moment of inertia
matrix Jy, € R3*3 by

Ja, = /B pipi dm;, 3)

where p; € R? is the position of a mass element of the ith body in its body-fixed frame.
It can be shown that the standard moment of inertia matrix J; = f B; S TS(p)dm; €
R3*3 is related to the nonstandard moment of inertia matrix by the following proper-
ties.

Ji = t[Jg| I3 — g “4)
SUi) = S(QW) g, + T4, S(2), Q)

for any ; € R>. Conversely, one can obtain the nonstandard moment of inertia from
the standard momentum of inertia from the following relation,

1
Ja, = Etr[li] Iz —J;. (6)

The linear momentum in the inertial frame and the angular momentum in the body-
fixed frame are denoted by y; = m;v; and I1; = J;Q; € R>, respectively, for the ith
body.

The procedure for deriving the continuous equations of motion is shown in Fig. 1.
For the given configuration space, we find an expression for the Lagrangian and the
action integral. Hamilton’s principle, which involves taking the variation of the action
integral, yields the Euler-Lagrange equation. The Legendre transformation gives
Hamilton’s equation, which is equivalent to the Euler-Lagrange equation.

Lagrangian: Given (x;, R;) € SE(3), the inertial position of a mass element of the
ith body is given by x; + R;p;, where p; € R? denotes the position of the mass element
in the body-fixed frame. Then, the kinetic energy of the ith body 5; can be written as

T, = %flgi I%i + Ripill?> dm;.
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Configuration Space Configuration Space
(q4) €TQ (ar<qes1) €Q X Q
Lagrangian Discrete Lagrangian

L(g-q) La(qre qr+1)
Action Integral Action Sum

6= f;[f L(gq)dt Ba =3 La(qr qrt1)

Variation Legendre transform. Variation Legendre transform.
6@:%@: p=TFL(gq) ,sqsd:i_"e@'d:o kaFL(q‘d)\k
Euler-Lagrange Eqn. Hamilton’s Eqn. Dis. E-L Eqn. Dis. Hamil)ton;s Eqn.
d 9L _ 9L . . _ pr = —Dgy Lay <
q9; ~ 9 =0 G=Hy p=—H, Dy La,_, +Dg; La, =0 o :Dq:HLkdk

Fig. 1 Procedures to derive continuous and discrete equations of motion (Lee et al. 2007)

Using the fact that fBi pidm; = 0 and (2), the kinetic energy 7; can be rewritten in
terms of the nonstandard moment of inertia matrix as

. v
i 9 = 5 /B 1l + 1S(Q0) 01 dim,
= Smilll? + u{S@ilgs@n?] )
2 2 ¢

The gravitational potential energy U : SE(3)" — R is given by

1 ! deidmj
U(-xla""xanl?'"aRn) - _zi;ﬂ/i/;j ||xl—|—Rlpl—x]—R]p]||, (8)

i#]

where G is the universal gravitational constant.
Then, the Lagrangian for » rigid bodies, L : TSE(3)" — R, is given by

n

. . 1 . 1
Lx1 1 R Qe X Ry ) = D Sl + S ] S0 (20 |
i=1

—U(x1,...,xn, Ry ... Ry). 9)
Variations of variables: Since the configuration space is SE(3)”, the variations

should be carefully chosen so as to respect the geometry of the configuration space.
The variations of x;, X; are trivial, namely

X; =x;+edx; + 0(62), (10)
X§ = &; + €8k + O(€2), (11)
where 8x;,8%; € R> are infinitesimal variations that vanish at the initial time #y and at

the final time #;. The infinitesimal variation of a rotation matrix R; can be expressed
in terms of a Lie algebra element n; € s0(3) and the exponential map as
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R;expen; = Rin;, (12)
e=0

where 7; vanish at the initial time #) and at the final time ;. The infinitesimal variation
of Q; can be computed from (2) and (12) to be

d : : .
S0 = - ORfTRf =R R; + R] SR,
€=l
= —0iS(82) + S Q)i + 1. 13)

Hamilton’s principle: The action integral is defined to be

i
Qﬁ:/ L(x1,x1,R1,21,...,Xn, X5, Ry, ;) dt. (14)
1

0

Using the variational expression (10)—(13), the variation of the action integral can be
written as

n lf
5(’5:2/ mixl s — 20 5x; 4 tr[ 7iSUi4) + i [S(Q,xf,sz)+2Rngg}] dr,
104

where 4 9K, € R3*3 js determined by the relationship, [nge],.]p,q = %. Here [Alp4

denotes the (p, g)th element of a matrix A. Using integration by parts and the fact
that 6x; and »; vanish at 7 and ¢, §& is given by

[ U
T .
0B = E /to —(le- [m,'x,' + Tx[]
i=1

+1tr i
> |

From Hamilton’s principle, §& should be zero for all possible variations 8x; € R
and n; € so0(3). Therefore, the expression in the first brace should be zero, and the
expression in the second brace should be symmetric, since 7; is skew-symmetric. Then,
we obtain the continuous equations of motion as

’ ag H dr. (15)

. U
mix; =
Bxl
. auT aU
S + Qi x Jiy) = K R—-RI — R

Note that the right hand side expression in the second equation is skew-symmetric.
The moment due to the gravitational potential on the ith body, M; € R3, can be
expressed explicitly as the following computation shows.

au T RTaU

SMip) = — Ri
oR; Y OR;’
T uj,
_ T,T . T . T ,T T .
= uil uiz ul‘z 1473 — ri] riz ri3 Uj, 5
Ti; Ui

T T T T T T
= (”ilril - Mil) + (”iz”iz — ”izuiz) + (ui3ri3 — ri3u,~3) S
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wherer;,,u;, € RV are the pthrow vectors of R; and g—,'{i, respectively. Since S(xxy) =
yxT — xyT for any column vectors x,y € R3, we obtain

M; =i, xuj + iy X Uiy + iy X . (16)
Equations of motion: In summary, the continuous equations of motion for the full
body problem, in Lagrangian form, can be written for bodies i € (1,2,--- ,n) as

19U

Vi=———, 17)
m; 0x;

JiQi + Q; x JiQ; = M,;, (18)

Xi = v, (19)

R = RiS(Q)). (20)

where the gravitational moment M; is obtained by (16). The above equations can be
readily rewritten in Hamiltonian form, using the definition of the linear momentum
and the angular momentum, y; = m;v;, and I1; = J;Q;.

2.2 Relative coordinates

The motion of the full rigid bodies depends only on the relative positions and the rela-
tive attitudes of the bodies. This is a consequence of the property that the gravitational
potential can be expressed in terms of only these relative variables. Physically, this is
related to the fact that the total linear momentum and the total angular momentum
about the mass center of the bodies are conserved. Mathematically, the Lagrangian is
invariant under the lifted left action of an element of SE(3). So, it is natural to express
the equations of motion in one of the body-fixed frames. In this section, the equations
of motion for the full two body problem are derived in relative coordinates. This result
can be readily generalized to the n body problem.

Reduction of variables: In (Maciejewski 1995), the reduction is carried out in
stages, by first reducing position variables in R3, and then reducing attitude variables
in SO(3). This is equivalent to directly reducing the position and the attitude variables
in SE(3) in a single step, which is a consequence of the general theory of Lagrangian
reduction by stages (Cendra et al. 2001).

We express each variable with respect to the second body-fixed frame. The reduced
position and the reduced attitude variables are the relative position and the relative
attitude of the first body with respect to the second body. In other words, the variables
are reduced by applying the inverse of (xz,Rz) € SE(3), given by (—RZT X2, RZT ) €
SE(3), to each variable, which can be written using homogeneous coordinates:

RY —RIx1 ([R1 x1 szz)_(RzTR1R2T(x1—x2) RIR, RI(xy —x2)
0 1 01’0 1)) 0 1 Lo 1 ’

_ ([RIR1 Ry (x1 —x2)] [13x3 0
(D) e

This motivates the definition of the reduced variables as

X = RI(x; — x2), (22)
R =RIRy, (23)
@ Springer
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where X e R is the relative position of the first body with respect to the second body
expressed in the second body-fixed frame, and R € SO(3) is the relative attitude of
the first body with respect to the second body. The corresponding linear and angular
velocities are also defined as

V = RZT(Xl —X2), (24)
Q = RQy, (25)

where V € R3 represents the relative velocity of the first body with respect to the
second body in the second body-fixed frame, and 2 € R3 is the angular velocity of the
first body expressed in the second body-fixed frame. Here, the capital letters denote
variables expressed in the second body-fixed frame. For convenience, we denote the
inertial position and the inertial velocity of the second body, expressed in the second
body-fixed frame by X», V> € R3:

X> = Rlx,, (26)
Va =R} . @27)
The moment of inertia matrices of the first body are expressed with respect to the
second body-fixed frame. We define Jg = R/ R, J,, = RI4 RT € R¥3. Note that Jg

and J, are not constant. It can be shown that J4, also satisfies a property similar to
(5), namely

SURS) = S + 4, S(Q) (28)

for any @ € R3. Define the linear momenta T, Y € R3, and the angular momenta
1,1, € R3 as

'=mV, (29)
Y2 = myy, (30)
I =JrQ2 =RJ1, (31)
Iy = JoQ). (32)

The equations of motion in relative coordinates are derived in the same way used
to derive the equations in the inertial frame. Here, the Lagrangian is expressed in
terms of the reduced variables, and the expressions for the reduced variations are
derived.

Reduced Lagrangian: The reduced Lagrangian / is obtained by expressing the
original Lagrangian (9) for two bodies in terms of the reduced variables. The kinetic
energy is given by

T1+To = smy IV + Vol P+ 3mo Vol > + 3] S()74, S T+ St S(22)74,S(22) ],

The gravitational potential can be written as a function of the relative variables only.
By applying the inverse of (Rz,x2) € SE(3) as given in (21), we obtain

U(x1,x2, R1, Ro) = URY (x) — x2),0, RIRy, [33),

. / / deldmz
B, /B> IX + Rp1 — p2l’

£ U(X,R).
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Here, we abuse notation slightly by using the same letter U to denote the gravita-
tional potential as a function of the relative variables. Then, the reduced Lagrangian
lis given by

1 1
R, X, Q,V,90,V2) = Smy|lV + Vall® + 5mzuvzn2

1 1
+?{a9mmﬁ9ﬂ}+iup«hyﬁﬂggq
—U(X,R). (33)

Variations of reduced variables: The variations of the reduced variables must be
restricted to those that arise from variations of the original variables. For example,
the variation of the relative attitude R is given by

_d
SR =4

RSTRS = RIRy + RISR,.
0

=
Substituting (12) into the above equation,

SR = —mR; Ry + R} Rini,
= —mR+ 1R,

where a reduced variation 7 € so(3) is defined as 7 = Ry R” . The variations of other
reduced variables can be obtained in a similar way:

SR =nR —mR, (34)

§X = x —mX, (35)

SQ) =1 —S(Q)n + nS(Q) + S(n2 — mS(Q) + S(0)n —nS(Q22),  (36)
8V =x+S(Q)x —nV, (37)

S©6Q) =2 + S(Q2)m2 — mS(Q), (38)

Vo= j2+ S(Q)x2 — mVa, (39)

where x, x2 € R and 5,7, € s0(3) are variations that vanish at the end points. These
Lie group variations are the key elements required to obtain the equations of motion
in relative coordinates.

Reduced equations of motion: The reduced equations of motion can be computed
from the reduced Lagrangian using the reduced Hamilton’s principle. By taking the
variation of the reduced Lagrangian (33) using the constrained variations given by
(34) through (39), we obtain the variation of the action integral similar to (15). The
reduced Hamilton’s principle yields the following continuous equations of relative
motion for the full two body problem, in Lagrangian form

) 19U
V+Q = 4
+QxV — % (40)
R + Qo x JgQ = —M, (41)
) aU
JoQ0 + Qo x JhQr = X x a—X-I-M, (42)
X+ xX=V, (43)
R = S(Q)R — S(©)R, (44)
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_ iy
where m = G

obtained by

€ R, and the moment due to the gravity potential M € R> is

M=ry Xup +r X, +r3 X, (45)
where rp,uy, € R3 are the pth column vectors of R and g—%, respectively. The following
equations can be used for reconstruction of the motion of the second body in the
inertial frame:

1 oU
Vy = — Ry — 46
e & (46)
X2 = vy, 47)
Ry = RaS(). (48)

These equations are equivalent to those given by (Maciejewski 1995), although
he omitted the reconstruction equations. Equations (40) though (48) give a complete
set of equations for the reduced dynamics and reconstruction. Furthermore, they are
derived systematically in the context of geometric mechanics using proper variational
formulas given in (34) through (39). The above equations can be readily rewritten in
Hamiltonian form using (29)-(32).

3 Lie group variational integrators

General purpose numerical integration methods, including the popular explicit (non-
symplectic) Runge-Kutta methods, fail to preserve the geometric characteristics of
the full body problem. Integration formulas are obtained by approximating the con-
tinuous equations of motion by directly discretizing them with respect to time. With
each integration step, the updates involve additive operations, so that the underlying
Lie group structure is not necessarily preserved as time progresses. This is caused by
the fact that the Euclidean Lie group is not closed under addition. For example, if
we use a Runge-Kutta method for numerical integration of (44), then the rotation
matrices inevitably drift from the orthogonal rotation group SO(3); the quantity R’ R
drifts from the identity matrix. Then, the attitudes of the rigid bodies are not deter-
mined accurately, resulting in significant errors in computation of the gravitational
forces and moments that depend on the attitude, and consequently errors in the entire
simulation. It is often proposed to parameterize (44) by Euler angles or unit quater-
nions. However, Euler angles are not global expressions of the attitude since they
have associated singularities. Unit quaternions do not exhibit singularities, but they
are constrained to lie on the unit three-sphere S°; general purpose numerical inte-
gration methods do not preserve the unit length constraint. Therefore, quaternions
lead to the same numerical drift problem. Re-normalizing the quaternion vector at
each step destroys the conservation properties. Furthermore, unit quaternions double
cover SO(3), so that there are inevitable ambiguities in expressing the attitude.

One might instead attempt to apply a symplectic Runge—Kutta algorithm to a
rotation matrix based formulation of the problem. But even if it were possible to
reproject the numerical solution onto SO(3) while preserving the energy, momen-
tum, and symplectic properties, this would still introduce a drift in the energy. This
is because the symplectic integrator does not exactly preserve the energy; instead,
the numerical solution evolves on the isoenergy surface of a modified Hamiltonian
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(Hairer et al. 2006), which is close to the isoenergy surface of the original Hamilto-
nian. This is why symplectic integrators exhibit bounded energy fluctuations, as the
two isoenergy surfaces are always close, but do not coincide. Since explicit expressions
for the modified Hamiltonian do not exist, the reprojection invariably changes the
modified Hamiltonian associated with the discrete flow, which in turn introduces a
drift in the energy if reprojection is performed repeatedly. Indeed, it was shown in (Ge
and Marsden 1988) that a fixed time-step numerical algorithm cannot simultaneously
preserve the energy, momentum, and symplecticity, unless it samples the exact trajec-
tory of the system. It is however possible to construct variable time-step methods that
are symplectic-energy-momentum preserving integrators (Kane et al. 1999).

In contrast, the Lie Group Variational Integrator has desirable properties such as
symplecticity, momentum preservation, and good energy stability for exponentially
long time periods, while simultaneously preserving the Euclidian Lie group structure
without the use of local charts, reprojection, or constraints. The LG VI is obtained
by discretizing Hamilton’s principle as shown in Fig. 1; the velocity phase space of
the continuous Lagrangian is replaced by discrete variables, and a discrete Lagrang-
ian is chosen such that it approximates a segment of the action integral. Taking the
variation of the resulting action sum, we obtain discrete equations of motion referred
to as a variational integrator. Since the discrete variables are updated by Lie group
operations, the group structure is preserved automatically.

In this section, we derive both a Lagrangian and Hamiltonian form of variational
integrators for the full body problem in inertial and relative coordinates. The second
level subscript k denotes the value of variables at t = kh + ¢y for an integration step
size h € R and an integer k. The integer N satisfies tf = kN + £y, so N is the number
of time-steps of length / to go from the initial time #j to the final time .

3.1 Inertial coordinates

Discrete Lagrangian: In continuous time, the structure of the kinematic equations
(20), (44) and (48) ensure that R;, R and R; evolve on SO(3) automatically. Here, we
introduce a new variable F;, € SO(3) defined such that R; ., = R; Fj, ,i.e.

i1

Fy, =R[R (49)

i1

Thus, F;, represents the relative attitude between two integration steps, and by requir-
ing that F;, € SO(3), we guarantee that R;, evolves on SO(3) automatically. This is
a consequence of the fact that the Lie group is closed under the group operation of
matrix multiplication.

Using the kinematic equation R; = R;S()), the skew-symmetric matrix S(€2,) can
be approximated as

. R, . —R; 1
S(%) = RiRi, ~ Rl —1—% = o (Fy, — I5x3). (50)

The velocity x;, can be approximated simply by (x;,,, — x;,)/h. Using these approxi-
mations of the angular and linear velocity, the kinetic energy of the ith body given in
(7) can be approximated as
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1 1
T (xl’ Q; ) ~ L ( (xlk+1 xlk) ( I3><3))

~ 5 M ”xlkJrl xik H2 tr[(Flk I3><3)Jdi (Fik - I3><3)T:| s

2/12 2h2
1
= i ||xlk+1 Xiy, HZ + ﬁtr[(l3x3 —Fi)la].

A discrete Lagrangian L, : SE(3)" x SE(3)" + R s constructed such that it approxi-
mates a segment of the action integral (14),

n 1 1
La= 2 5pmilxi, —xi, 1>+ Al (Ts = Fiy)a ]
i=1

h h
_EU(xlk""’Rnk)_EU(x1k+1""’Rnk+l)‘ (51)

This discrete Lagrangian is self-adjoint (Hairer et al. 2006), and self-adjoint numer-
ical integration methods have even order, so we are guaranteed that the resulting
integration method is at least second-order accurate.

Variations of discrete variables: The variations of the discrete variables are chosen
to respect the geometry of the configuration space SE(3). The variation of x;, is given
by

xfk = Xj, + €dx;, + O(e%),
where éx;, € R3 and vanishes at k = 0 and k = N. The variation of R;, is given by
SR, = Ry n;,, (52)

where n;, € so(3) is a variation represented by a skew-symmetric matrix and van-
ishes at k = 0 and k = N. The variation of F;, can be computed from the definition
Fy, = RLR;, to give
8F;, = SR Ry,
T T
= _nikRikRik+1 + RikRik+1 Migey1»

= —ﬂikFik + Fik Migeyq+ (53)

Discrete Hamilton’s principle: To obtain the discrete equations of motion in
Lagrangian form, we compute the variation of the discrete Lagrangian from (52)
and (53) to give

+ R} SR,

U1

n
1 1
OLa= 2, 5 miiy = %) Bigy = 8xi) + 3t (i Fig = Figi1) Jay]
i=1

h(2u Wy, " h roU, s oU,
_2(8X‘k 8y + 3 ksl 8xl'k+1) + gtr["thzk IR, + i R aRk+1 ]

ik Xigr1 ikl
(54)
where U, = U(xy,,...,Ry,) denotes the value of the potential at t = kh + 1.
Define the action sum as
N-1
Ga= > La1, X1 Rip Fis o X X,y Rugs Fuy)- (55)
k=0

@ Springer


bk:haidiscretionary {-}{}{}rer

Lie group variational integrators for the full body problem in orbital mechanics 133

The discrete action sum &, approximates the action integral (14), because the discrete
Lagrangian approximates a segment of the action integral. Substituting (54) into (55),
the variation of the action sum is given by

N-1 n

_ T (1, (. oy _ h Uk T 1, (o oy _ kU
86a = Z Z 6xik+1 [Em’(xlkﬂ _xlk) 2 Wiy ] + 8xik {_Eml(xlkﬂ - xlk) T 20,
k=0 i=1

aU 8U
+tr[’7ik+1 {_%JdiFik R£+1 de+1 }] + tr[’]ik {%Fik‘]di Rti aR; }] :

Using the fact that x;, and 5; vanish at kK = 0 and kK = N, we can reindex the
summation, which is the discrete analogue of integration by parts, to yield

N-1 n

8By = z Z —8xj, {%ml (i — 23 +xip_y) +hax,k }
k=1 i=1

aU
'Hrl:nik {% (Fidei - JdiFik—l) + hRi{ BR;; ]] :

Hamilton’s principle states that §&, should be zero for all possible variations
dx;, € R3 and n;, € s0(3) that vanish at the endpoints. Therefore, the expression in
the first brace should be zero, and since 7, is skew-symmetric, the expression in the
second brace should be symmetric.

Discrete equations of motion: We obtain the discrete equations of motion for the
full body problem, in Lagrangian form, for bodies i € (1,2,--- ,n) as

1 aU,
n (xik+1 — 2, +xik—1) =—h_— ox;, (56)

1
; (Ficordas = JaFl, = JaFiy + Flda) = hS(Mi, ), (57)
Ri,, = Ri,Fy, (58)

where M;, € R? is defined in (16) as

M, =rip X uiy + i, X Uiy + iy X U, (59)

aU . . ...
where Fi,, Ui, € R1*3 are pth row vectors of R;, and ﬁ, respectively. Given initial

conditions (xj,, Rj,, Xi,, R, ), we can obtain x;, from (56). Then, Fj, is computed from
(58), and Fj; can be obtained by solving the implicit equation (57). Finally, R;, is found
from (58). This yields an update map (x;,, Rj,,x;;, R;,) — (xi;,Ri;,Xi,, R;,), and this
process can be repeated.

As discussed above, Egs. (56) through (58) defines a discrete Lagrangian map that
updates x;, and R;,. The discrete Legendre transformation relates the configuration
variables x;,, R;, and the corresponding momenta y;,, IT;,. This induces a discrete
Hamiltonian map that is equivalent to the discrete Lagrangian map. The detailed
development of the discrete Legendre transformation can be found in (Lee et al.
2007); here we summarize the result.
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The discrete equations of motion for the full body problem, in Hamiltonian form,

can be written for bodiesi € (1,2,--- ,n) as
h h* 83U,
Xigyy = Xip + %yik - Tml axl: > (60)
haU, hoU,,
., -kt 61
Vit Vi 2 0x;, 2 axikH ( )
h
ham+imﬁ=mm—mgﬂ (62)
h h
M, = Fl{Hik + P l{Mik + EMikH - (63)
Riy,, = Ri Fi. (64)

Given (xiy, Viy» Riy, I1;y), we can find x; from (60). Solving the implicit equation (62)
yields Fj,, and R;, is computed from (64). Then, (61) and (63) gives y;,, and IT;,. This
defines the discrete Hamiltonian map, (x;,, ¥, Riy» iy) — (i), vi;» Rij, i), and this
process can be repeated.

3.2 Relative coordinates

In this section, we derive the variational integrator for the full two body problem
in relative coordinates by expressing the discrete Lagrangian in relative coordinates,
and then computing the constrained variations of the discrete reduced variables. This
result can be readily generalized to n bodies. A more intrinsic development of discrete
Routh reduction can be found in Jalnapurkar et al. (2006).

Reduction of discrete variables: The discrete reduced variables are defined in the
same way as the continuous reduced variables, which are given in (22) through (32).

We introduce F, € SO(3) such that R, , = R£{+1R1k+l = FZTkaRk, ie.
F,=R,FyR]. (65)

Discrete reduced Lagrangian: The discrete reduced Lagrangian is obtained by
expressing the original discrete Lagrangian given in (51) in terms of the discrete
reduced variables.

From the definition of the discrete reduced variables given in (22) and (26), we
have

Xy — X1, = Royp (X + X0, ) — Ro (X + X)),
= Ry, {FZk X + X2 ) — (X, + X2k)} > (66)
X2y — X2 = Ry {F2kX2k+1 - X2k} . (67)

From (50), S(€21,) and S(£22,) are expressed as
1 -
S(q,) = 7 (Fi, — I3x3) = ﬁRk (F, — x3) R,, (68)

1
S =4 (Fa, — I3x3) . (69)
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Substituting (66) through (69) into (51), we obtain the discrete reduced Lagrangian.
ldk = ld(Xk»Xk X2k7X2k+1aRk’FkaF2k)

+10

1 1
= ﬁml ”F2k (X1 + X2, ) — (X + X2k)”2 + ﬂmz ||F2kX2k+1 — X, ”2
1 1
+Etr[(13x3 — F)Jar, ] + Etr[(l3x3 — F2)J 4,
h h
_EU(kaRk) - EU(Xk+1’Rk+1)’ (70)

where Jgg, € R is defined to be Jqr, = R,J4 R!, which gives the nonstandard
moment of inertia matrix of the first body with respect to the second body-fixed frame
att=kh+ty.

Variations of discrete reduced variables: The variations of the discrete reduced
variables can be derived from those of the original variables. The variations of R, X,
and F>, are the same as those given in (34), (35), and (53), respectively. The variation
of F, is computed in a similar fashion to (53). In summary, the variations of discrete
reduced variables are given by

SR, =R, — R, (71)
85X, = x, — X, (72)
8F, = _nZka+F2k'7k+1F2Tka + I, (_nk +'72k)’ (73)
8X2, = x2, — 12, X2, (74)
§Fy, = —m Fo + Foymay, - (75)

These Lie group variations are the main elements required to derive the variational
integrator equations.

Discrete reduced equations of motion: Define the action sum in terms of the dis-
crete reduced Lagrangian

N-1
Gq= > (X, X, . X2, X0, R F Py, (76)
k=0

Using the expressions for the reduced variations, (71)—(75), we obtain the variation of
the action sum. From Hamilton’s principle, it should be zero for all possible variations
Xi» X2i € R3 and n,> 12, € s0(3) which vanish at the endpoints.
As a result, the discrete equations of relative motion for the full two body problem,
in Lagrangian form, are obtained as
W aU,

T
szXk+1 - 2Xk + FZk_le—] = _Z aX ’ (77)
k

Fyodarg,y —Jare FL, = FL (FdeRk — Jar, FT ) Py, — 2S(My.1), (78)

k+1

Fo o Ja __]szszH = FZTk (szjdz —]szsz) B,

oU
+h2X, | X ——— + h S (M), (79)
0X,
Rk+l = FZTkaRk’ (80)
R2k+1 =Ry, F>,. (81)
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It is natural to express the equations of motion for the second body in the inertial
frame.

h2R aU,

—R, —. 82
my kan ( )

Xpyy = 200 T X2y =
Given (X,,R,,R2,.X,,R,,R2,), we can determine F,, and F>, from (80) and (81).
Solving the implicit equations (78) and (79) gives F, and F>,. Then X,, R, and Ry,
are found from (77), (80) and (81), respectively. This yields the discrete Lagrangian
map (X, R, Ry, X, R,Ry) — (X,R,,R2,,X,,R,,Rp,) and this process can be
repeated. We can separately reconstruct x, using (82).

Alternatively, once we have obtained F, and F>, from (80) and (81), we can view
Egs. (78),(79), (77) and (80) as defining an implicit update map (X, Ro, Fo, F2,, X1) —
(X1,Rq,F1,F>,, X2). As a post-processing step, R;, and xp, can be reconstructed using
(81) and (82), respectively.

The discrete Legendre transformation yields the discrete equations of relative mo-
tion for the full two body problem, in Hamiltonian form,

r W AU
_ T k k
haU haU
= (r, ) A
ket UK 20X, 20X,
h h
T
., = F2k (nk - EM/{) - ngH’ (85)
h aU  h
H2k+1 = F27;{ (sz + EXk X @ + EMk)
h U  h
5 X X X, +t 5 M (86)
R, =FFR,, (87)
h
hS (Hk - EMk) = F.Jar, — Jar,F/. (88)
h aU  h
hS (nzk + 5 X, % ix. + 5Mk) = Py Ja, — Ja, F3,. (89)

It is natural to express the equations of motion for the second body in the inertial
frame for reconstruction:

v, W z U

= h~= 4+ —R —X 90

X2, = X2, + o + 2 R ox, (90)
h  oU, h oU

7R ~ "k - k+1 91

V2pr = V2, + 7 0X, + 5 Vet X, > (91)

Ry, = Ro, F,. (92)

Given (R, X, I1,, T, IT2,), we can determine F, and F, by solving the implicit equa-
tions (88) and (89). Then, X, and R, are found from (83) and (87), respectively. After
that, we can compute I';, T1,, and I, from (84), (85) and (86). This yields a discrete
Hamiltonian map (R, X, I1,,I",ITy)) — (R,,X,I1,,I",II,), and this process can
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be repeated. The discrete evolution of xy,, y», and Ry, can be obtained as a post-
processing step by using the reconstruction equations (90), (91) and (92), respectively.

3.3 Numerical considerations

Properties of the variational integrators: Since the LG VI is obtained by discretizing
Hamilton’s principle, it is symplectic and preserves the structure of the configuration
space, SE(3), as well as the relevant geometric features of the full two rigid body
problem, and the conserved first integrals of total linear and angular momenta and
total energy. The total energy oscillates around its initial value with small bounds
on a comparatively short timescale, but there is no tendency for the mean of the
oscillation in the total energy to drift (increase or decrease) from the initial value for
exponentially long time.

The LGVI preserves the group structure. By using the computational approach
described in Sect. 3.4, the matrices Fj, representing the change in relative attitude are
guaranteed to be rotation matrices. The group operation of the Lie group SO(3) is
matrix multiplication. Hence rotation matrices R;, are updated by the group opera-
tion, so that they evolve on SO(3) automatically without constraints or reprojection.
Therefore, the orthogonal structure of the rotation matrices is preserved, and the atti-
tude of each rigid body is determined accurately and globally without the need to use
local charts (parameterizations) such as Euler angles or quaternions. These exact geo-
metric properties of the discrete flow not only generate improved qualitative behavior,
but also allow for accurate long-time simulation.

This geometrically exact numerical integration method yields a highly efficient and
accurate computational algorithm for the full rigid body problem. For arbitrary shaped
rigid bodies such as binary asteroids, there is a large burden in computing the mutual
gravitational forces and moments, so the number of force and moment evaluations
should be minimized. We have seen that the LGVI requires only one such evalu-
ation per integration step, the minimum number of evaluations consistent with the
presented LGVTI having second order accuracy (because it is a self-adjoint method).
Within the LG VI, implicit equations must be solved at each time step to determine
the matrix-multiplication updates for rotation matrices. However the LGVI is only
weakly implicit in the sense that the iteration for each implicit equation is independent
of the much more costly gravitational force and moment computation. The computa-
tional load to solve each implicit equation is negligible; only two or three iterations
are typically required. We make this more explicit in Sect. 3.4 by expressing F;, as the
exponential function of an element of the Lie algebra so(3). Altogether, the entire
method could be considered almost explicit.

The LGV is a fixed step size integrator, but all of the properties above are inde-
pendent of the step size. Consequently, we can achieve the same level of accuracy
while choosing a larger step size as compared to other numerical integrators of the
same order.

All of these features are revealed by numerical simulations in Sect. 4 and in the
work by Fahnestock et al. (2006). In Sect. 4, the LGVI is compared with other sec-
ond order geometric integrators: a symplectic Runge-Kutta method and a Lie group
method. In Fahnestock et al. (2006), the LGVI is directly compared with the 7(8)th
order Runge-Kutta-Fehlberg method (RK78) for two octahedral rigid bodies. It is
shown that the LGVI requires 8 times less computational load than RK78 for sim-
ilar error measures, and the accuracy of the LGVI is maintained for exponentially
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long time. The trajectories computed using RK78 are unreliable for the long time
simulation of the full two rigid body dynamics.

Higher-order methods: While the numerical methods we present in this paper
are second order, it is possible to apply symmetric composition methods, introduced
by Yoshida (1990), to construct higher-order versions of the Lie group variational
integrators introduced here. Given a basic numerical method represented by the flow
map &, the composition method is obtained by applying the basic method using
different step sizes,

W, =®; po0...0D, 4,

where Aq,A2,--- ,As € R. In particular, the Yoshida symmetric composition method
for composing a symmetric method of order 2 into a symmetric method of order 4 is
obtained when s = 3, and

1 N 2173
2-213 T T oI

Alternatively, by adopting the formalism of higher-order Lie group variational inte-
grators introduced by Leok (2004) in conjunction with the Rodrigues formula, one can
directly construct higher-order generalizations of the Lie group methods presented
here.

Reduction of orthogonality loss due to roundoff error: In Lie group variational
integrators, the numerical solution is made to automatically remain on the rotation
group by requiring that the numerical solution is updated by matrix multiplication
with the exponential of a skew-symmetric matrix.

Since the exponential of a skew-symmetric matrix is orthogonal to machine preci-
sion, the numerical solution will only deviate from orthogonality due to the accumu-
lation of roundoff error in the matrix multiplication, and this orthogonality loss grows
linearly with the number of timesteps taken. The phenomena can be observed in the
numerical simulations described in Fig. 3(c) of Sect. 4, wherein the orthogonality error
for the Lie group method and the Lie group variational integrator increases as the
step size decreases, due to the roundoff error accumulation as the number of matrix
multiplications increase.

One possible method of addressing this issue is to use the Baker-Campbell-
Hausdorff (BCH) formula to track the updates as skew-symmetric matrices (the
Lie algebra). This allows us to find a matrix C(¢), such that,

)\,1:)\,3:

exp(tA) exp(tB) = exp C().

This matrix C(z) satisfies the following differential equation,

: 1 B
C=A+B+-[A-B.Cl+ > —*adi(A+B),
2 k>2 k!

with initial value C(0) = 0, where B denotes the Bernoulli numbers and adc¢
A=[C,Al=CA - AC.

The problem with this approach is that the matrix C(¢) is not readily computable
for arbitrary A and B, and in practice, the series is truncated, and the differential
equation is solved numerically.

An error is introduced in truncating the series, and numerical errors are introduced
in numerically integrating the differential equations. Consequently, while the BCH
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formula could be used solely at the reconstruction stage to ensure that the numerical
attitude always remains in the rotation group to machine precision, the truncation
error would destroy the symplecticity and momentum preserving properties of the
numerical scheme.

However, by combining the BCH formula with the Rodrigues formula in construct-
ing the discrete variational principle, it might be possible to construct a Lie group
variational integrator that tracks the reconstructed trajectory on the rotation group
at the level of a curve in the Lie algebra, while retaining its structure-preservation
properties.

3.4 Computational approach

The structure of the discrete equations of motion given in (57), (62), (78), (79), (88),
and (89) suggests a specific computational approach. For a given g € R, we have
to solve the following Lyapunov-like equation to find F € SO(3) at each integration
step.

Fl;—I.FT = S(g). (93)

This equation is linear in F, but it is implicit due to the nonlinear constraint
FTF = I3,3. We now introduce two iterative approaches to solve (93) numerically.

Exponential map: An element of a Lie group can be expressed as the exponential
of an element of its Lie algebra, so F € SO(3) can be expressed as an exponential of
S(f) € s0(3) for some vector f € R3. The exponential can be written in closed form,
using Rodrigues’ formula,

F=expS(f) = I3 + SIS () + 1‘”°f"”52“f Ls()2. (94)

Substituting (94) into (93), we obtain

S() = “HHESUN + =S < ).

Thus, (93) is converted into the equivalent vector equation g = G(f), where G : R® —
R3 is given by

_ sinllf]l 1—cos|fIl
G(f) = Tl Jf+ 12 [ Jf. (95)
We use the Newton method to solve g = G(f), which gives the iteration
fir1 =fi+ VG g = G(f)). (96)

We iterate until ||g — G(f;)|| < € for a small tolerance € > 0. The Jacobian VG(f) in
(96) can be expressed as

cos [IFI IFIl — sin I, ..z
J
I C

sin [[£]| 11l — 2(1 — cos IfI)
" I

{(=SUH +SHI}.

sin |||
I£1

f <INfT

J

VG(f) =

1 —cos|fll
17112
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Cayley transformation: Similarly, given f. € R3, the Cayley transformation is a local
diffeomorphism that maps S(f;) € so(3) to F € SO(3), where

F = cay S(fo) = (I3x3 + S(f)) (I3x3 — S(f) ™. ©7)
Substituting (97) into (93), we obtain a vector equation G.(f.) = 0 equivalent to (93)
Ge(fo) =g+g><fc+(ngc)fc_2ch =0, (98)

and its Jacobian VG.(f,) is written as

VG(fo) = S@) + g fo)lrxs + fog’ —2J.

Then, (98) is solved by using Newton’s iteration (96), and the rotation matrix is
obtained by the Cayley transformation.

For both methods, numerical experiments show that 2 or 3 iterations are sufficient
to achieve a tolerance of ¢ = 10~1°. Numerical iteration with the Cayley transfor-
mation is a little faster due to the simpler expressions. It should be noted that since
F = expS(f) or F = cayS(fc), it is automatically a rotation matrix, even when the
equation g = G(f) is not satisfied to machine precision.

These computational approaches are distinguished from solving the implicit equa-
tion (93) with 9 variables and 6 constraints. Due to their numerical efficiency, the
Lie group variational integrator can be considered an almost explicit computational
method as demonstrated in the next section.

4 Numerical simulations

We simulate the dynamics of two simple dumbbell bodies acting under their mutual
gravity. Each dumbbell model consists of two equal rigid spheres and a rigid massless
connecting rod. This dumbbell rigid body model has a simple closed form for the
mutual gravitational potential given by

2
G 4
UX.R) = — z mymy /|
P.q=1 HX+ P2, +R’01q

s

where G is the universal gravitational constant, m; € R is the total mass of the ith
dumbbell, and p;, € RR3 is a vector from the origin of the body-fixed frame to the pth
sphere of the ith dumbbell in the ith body-fixed frame. The vectors p;, = [/;/2,0, 017,
pi, = —pi,» where [; is the length between the two spheres. Mass, length and time
dimensions are normalized.

The mass and length of the second dumbbell are twice that of the first dumbbell.
The other simulation parameters are chosen such that the total linear momentum in
the inertial frame is zero and the relative motion between two bodies are near-elliptic
orbits. The trajectories of dumbbell bodies are shown in Fig. 2.

We compare the computational properties of the Lie group variational integra-
tor (LGVI) with other second order numerical integration methods; an explicit
Runge-Kutta method (RK), a symplectic Runge-Kutta method (SRK), and a Lie
group method (LGM). One of the distinct features of the LGVI is that it preserves
both the symplectic property and the Lie group structure of the full rigid body dynam-
ics. A comparison can be made between the LGVI and other integration methods that
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Fig. 2 Trajectories of two dumbbell bodies in the inertial frame (The initial orbit is shown
with solid lines and snapshots of dumbbell body maneuver. A simple animation is available at
http://www.umich.edu/ tylee.)

preserve either none or one of these properties: an integrator that does not preserve
any of these properties (RK), a symplectic integrator that does not preserve the Lie
group structure (SRK), and a Lie group integrator that does not preserve symplectic-
ity (LGM). These methods are implemented by an explicit mid-point rule, an implicit
mid-point rule, and the Crouch-Grossman method presented in (Hairer et al. 2006)
for the continuous equations of motion (40)-(48), respectively. For the LG VI, the dis-
crete equations of motion given by (83) through (92) are used. All of these integrators
are second order accurate. A comparison with a higher-order integrator can be found
in (Fahnestock et al. 2006).

Fig. 3(a) shows the computed total energy response over 30 seconds with an inte-
gration step size & = 0.002 sec. For the LGVI, the total energy is nearly constant,
and there is no tendency to drift, while the other integrators fail to preserve the total
energy. This can be observed in Fig. 3(b), where the mean total energy deviations are
shown for varying integration step sizes. It is seen that the total energy errors of the
SRK method is close to the RK method, but the total energy error of the LGVI is
smaller by several orders. Fig. 3(c) shows the mean orthogonality errors. The LGVI
and the LGM conserve the orthogonal structure at an error level of 10719, while the
RK and the SRK do not.

These computational comparisons suggest that for numerical integration of Ham-
iltonian systems evolving on a Lie group, such as full body problems, it is critical to
preserve both the symplectic property and the Lie group structure. For the RK and
the SRK, the orthogonality error in the rotation matrix corrupts the attitude of the
rigid bodies. The accumulation of this attitude degradation causes significant errors
in the computation of the gravitational forces and moments dependent upon the
position and the attitude, which affect the accuracy of the entire numerical simula-
tion. The LGM conserves the orthogonal structure of rotation matrices numerically,
but it does not respect the characteristics of the Hamiltonian dynamics properly as a
non-symplectic integrator; this causes a drift of the computed total energy. The LGVI
is a geometrically exact integration method in the sense that it preserves all of the
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Fig. 3 Computational properties of explicit Runge-Kutta (RK), symplectic Runge-Kutta (SRK), Lie
group method (LGM), and Lie group variational integrator (LGVI)

features of the full rigid body dynamics concurrently. This verifies the superiority of
the LGVI in terms of computational accuracy. The performance advantages of the
LGVI becomes even more dramatic as the simulation time is increased.

Computational efficiency is compared in Fig. 3(d), where CPU times of all meth-
ods are shown for varying step sizes. The SRK has the largest CPU time requiring
solution of an implicit equation in 36 variables at each integration step. The RK and
the LGM require similar CPU times since both are explicit. It is interesting to see
that the implicit LG VI actually requires less CPU time than the explicit methods RK
and LGM. This follows from the fact that the second order explicit methods RK and
LGM require two evaluations of (40)—(48), including the expensive force and moment
computations at each step. The LGVI requires only one evaluation at each step in
addition to the solution the implicit equation. The computational approach described
in Sect. Fig. 3 is efficient for solving the implicit equation (93) and hence it takes less
time than the evaluation of (40)—(48). The difference is further increased as the rigid
body model becomes more complicated since it involves a larger computation bur-
den in computing the gravitational forces and moments. Based on these properties,
we claim that the LGV is almost explicit. This comparison demonstrates the higher
computational efficiency of the LGVI.

In summary, comparing both Fig. Fig. 3(b) and (d), we see that the LGVI requires
16 times less CPU time than the LGM, 35 times less CPU time than the RK, and 98
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times less CPU time than the SRK for similar total energy error in this computational
example for the full body problem.

5 Conclusions

Eight different forms of the equations of motion for the full body problem are derived.
The continuous equations of motion and variational integrators are derived both in
inertial coordinates and in relative coordinates, and each set of equations of motion
is expressed in both Lagrangian and Hamiltonian form.

It is shown that both of the continuous equations and the discrete equations of
motion for the full body problem can be derived systematically, using proper vari-
ations of Lie group elements, according to Hamilton’s principle. The proposed Lie
group variational integrators are geometrically exact; they preserve the momenta
and symplectic form of the continuous dynamics, exhibit good energy properties, and
they also conserve the geometry of the configuration space. They provide a numer-
ically efficient computational approach especially for the full body problems in the
sense that they require only one evaluation of mutual gravity forces and moments
per step. The exact geometric properties of the discrete flow not only yields improved
qualitative behavior, but also allow for accurate long-time simulation. The numerical
example verifies the substantial superiority of the Lie group variational integrator
compared with other geometric integrators in terms of computational accuracy and
efficiency.
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