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Abstract This paper studies the relative motion of satellite formation flying in arbi-
trary elliptical orbits with no perturbation. The trajectories of the leader and follower
satellites are projected onto the celestial sphere. These two projections and celestial
equator intersect each other to form a spherical triangle, in which the vertex angles
and arc-distances are used to describe the relative motion equations. This method is
entitled the reference orbital element approach. Here the dimensionless distance is
defined as the ratio of the maximal distance between the leader and follower satellites
to the semi-major axis of the leader satellite. In close formations, this dimensionless
distance, as well as some vertex angles and arc-distances of this spherical triangle, and
the orbital element differences are small quantities. A series of order-of-magnitude
analyses about these quantities are conducted. Consequently, the relative motion
equations are approximated by expansions truncated to the second order, i.e. square
of the dimensionless distance. In order to study the problem of periodicity of relative
motion, the semi-major axis of the follower is expanded as Taylor series around that
of the leader, by regarding relative position and velocity as small quantities. Using this
expansion, it is proved that the periodicity condition derived from Lawden’s equations
is equivalent to the condition that the Taylor series of order one is zero. The first-order
relative motion equations, simplified from the second-order ones, possess the same
forms as the periodic solutions of Lawden’s equations. It is presented that the latter
are further first-order approximations to the former; and moreover, compared with
the latter more suitable to research spacecraft rendezvous and docking, the former
are more suitable to research relative orbit configurations. The first-order relative
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motion equations are expanded as trigonometric series with eccentric anomaly as the
angle variable. Except the terms of order one, the trigonometric series’ amplitudes
are geometric series, and corresponding phases are constant both in the radial and
in-track directions. When the trajectory of the in-plane relative motion is similar to
an ellipse, a method to seek this ellipse is presented. The advantage of this method is
shown by an example.

Keywords Formation flying · Taylor expansion · Periodicity condition ·
Trigonometric series · Elliptical orbit

Nomenclature
(A, B) semi-major and semi-minor axes of the ellipse approximate

to the in-plane relative motion
a semi-major axis of the leader satellite
dj the j-th integration constants in Lawden’s equations
E eccentric anomaly of the leader satellite
e eccentricity of the leader satellite
(errx, erry) maximum errors between truncated elliptical motion

and accurate relative motion in the x- and y-axes
(erx, ery) indexes to evaluate (errx, erry)
F coefficient with respect to amplitudes of trigonometric series
f true anomaly of the leader satellite
(Gj, Hj) the j-th coefficients of the trigonometric series of x2/a2

i orbit inclination of the leader satellite
i, j, k unit vector in the X-, Y- and Z-axes of Earth-centered-inertial

frame
ic, jc, kc unit vector in the x-, y- and z-axes of the leader’s LVLH frame
(Jj, Kj) the j-th coefficients of the trigonometric series of y2/a2

lr reference mean ascension
M mean anomaly of the leader satellite
O(10−k) a value whose order of magnitude is not larger than 10−k

(Pj, Qj) the j-th coefficients of the trigonometric series of xy/a2

(Rj, Sj) the j-th coefficients of the trigonometric series of (x2 + y2)/a2

r position vector from the Earth center to the leader satellite
r magnitude of r
v velocity vector of the leader satellite with respect to the Earth
v magnitude of v
(Xj, Uj) the j-th coefficients of the trigonometric series of x/a
(x, y, z) radial, in-track and cross-track position distances from the origin

of the LVLH frame(
x̂, ŷ
)

approximate elliptical motion equations in the x−y plane
(x0, y0) center coordinates of the approximate ellipse
(Yj, Vj) the j-th coefficients of the trigonometric series of y/a
α angle parameter
�β difference angle parameter
ε index function to weigh the similarity between approximate

elliptical motion and the first-order relative motion
(εj, υj) the j-th coefficients of the trigonometric series of ε
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η spherical angle with respect to the leader satellite
θ argument of latitude of the leader satellite
ϑ included angle between the semi-major axis of the approximate

ellipse and the x-axis
λ common ratio, a function of e
µ gravitational parameter of the Earth, 3.986005 × 1014 m3/s2

χ(E) phase function of the approximate elliptical motion
in the x–y plane

� right ascension of ascending node of the leader satellite
ω argument of perigee of the leader satellite
Operators

d(·) differential of (·)
�(·) difference of (·) between the leader and follower satellites
∇(·) gradient of (·)
δ(·) variation of (·)
·
(·) derivative of (·) with respect to time in inertial frame
∼·
(·) derivative of (·) with respect to time in LVLH frame
(·)′ derivative of (·) with respect to f
Subscript
f value of the follower satellite
Superscript
r reference value of the follower with respect to the leader

1 Introduction

Spacecraft formation flying has been paid much attention lately because of its advanta-
ges such as lower cost and risk dispersion, as well as stronger flexibility and redundancy,
compared with a single, complex spacecraft. Satellite formation flying has been consid-
ered an important development trend of future satellite technology. One of the most
important and fundamental problems in formation flying is to work out the trajectory
of relative motion of the follower with respect to the leader in natural conditions.
Nonlinearity of the differential gravitational acceleration (DGA), eccentricity of the
reference orbit, and non-central gravitational perturbation such as Earth’s oblateness
are the three most complicated problems. In this paper, the non-central gravitational
perturbations are not considered.

Obtaining the accurate differential equations describing relative motion is not
difficult, but getting the analytic solutions with no approximation seems impossible,
even when the reference orbit is circular. In close formation, the distance between
the follower and the leader is a small quantity, compared to their orbit radii; hence
the relative motion equations can be solved analytically by approximating the DGA.
The DGA expanded to n-order series leads to the n-order solutions. Previous re-
search on relative motion can be sorted into two classes. One, named the dynamical
method, involves solving the differential equations after approximating the DGA
mainly. The accurate kinematical equations, which describe relative motion by orbital
elements, are also not difficult to obtain. Another, named the kinematical method,
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is mainly approximating the kinematical equations based on the precondition of
knowing very well the order of magnitudes of all the small quantities used in these
equations.

The dynamical method on relative motion may be first seen in Hill’s paper (Hill
1878), where the author studied the motion of the Moon with respect to the Sun–Earth
system. The solutions are first-order and the reference orbit is assumed circular. The
Clohessy–Wiltshire equations (Clohessy and Wiltshire 1960) also linearized the DGA
with a circular reference orbit. Gómez and Marcote (2006) applied the Lindstedt–
Poincaré Procedure to Hill’s equations, i.e. Clohessy–Wiltshire equations, to obtain
high-order analytical solutions. Lawden (1963) presented a solution of the linearized
homogenous equations, called Lawden’s equations, of relative motion for an ellipti-
cal reference orbit. One deficiency of Lawden’s equations, which was improved by
Carter (1990), is that the solutions become singular when the true anomaly is a multiple
of 180 degree. London (1963) obtained the second-order solutions for a circular ref-
erence orbit by using perturbation method to solve differential equations. Anthony
and Sasaki’s work (Anthony and Sasaki 1965) is similar to London’s, while the main
difference is that the former studied the problem of a reference orbit with slight
eccentricity. The solutions are in the form of a series expansion in eccentricity. Melton
(2000) derived first-order relative motion equations which were explicit in time and
discarded the terms higher than squared eccentricity. Inalhan et al. (2002) obtained
the periodicity conditions for bounded relative motion solutions to the linearized
elliptical problem. Vaddi et al. (2003) obtained time-explicit bounded solutions by
combining the second-order solutions for a circular reference orbit and the linearized
solutions for an elliptical reference orbit. Kasdin et al. (2005) presented a Hamiltonian
approach to modeling relative motion to a circular reference orbit, incorporating the
influence of nonlinearity and perturbations such as Earth’s oblateness.

The kinematical method is the series expansion in fact. In close formation, some
parameters in the relative motion equations are small quantities. Karlgaard and
Lutze (2001) described the equations of relative motion in spherical coordinates
and obtained the second-order solutions for a circular reference orbit. Schaub and
Alfriend (2002) used orbital element differences to describe relative orbit geome-
try and obtained an invertible matrix mapping the relative motion coordinates to
the corresponding orbital element difference. Schaub (2002) developed the direct
relationships between the orbital element differences and the resulting relative orbit
geometry for reference orbits with arbitrary eccentricity. Gim and Alfriend (2003)
obtained a state transition matrix relating relative position and velocity with the
orbital element differences. The matrix’s singularity existing at zero inclination was
removed by Gim and Alfriend (2005). Broucke (2003) and Lane and Axelrad (2006)
used a simple geometrical method to obtain the first-order solutions of relative motion
equations for elliptical orbits. The solutions are expressed as functions of a constant
set of orbital element differences and formulated with time as the independent vari-
able. Baoyin et al. (2002) presented a method, which is suitable to elliptical reference
orbits, to describe relative motion, based on relative orbital elements. Li et al. (2005)
and Meng et al. (2005) also used relative orbital elements to analyze relative orbital
configurations with and without the perturbation of the Earth’s oblateness for slightly
elliptical reference orbits. Wang et al. (2005) presented a method, using the so-called
reference orbital elements (ROE) to describe relative motion. The introduced param-
eters are more geometrical and concise than classical orbital elements (COE) in the
spherical triangle.
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This paper will also use the reference orbital elements to study the relative
motion of satellite formation flying in arbitrary elliptical orbits. In Sect. 2, the notion
of reference orbital elements will be introduced. Then the relative motion equations
will be presented, which are expressed by a set of reference orbital elements. In close
formations, a series of order-of-magnitude analyses about these orbital element differ-
ences will be conducted. In Sect. 3, the second-order relative motion equations will
be derived by Taylor expansion. The first-order equations are easy to reach by sim-
plifying from the second-order ones. These equations are formulated using time-
independent constants and an alternative time-dependent variable between true
anomaly and eccentric anomaly. In Sect. 4, by expanding the semi-major axis of the
follower as a Taylor series around that of the leader, it will be proved that the periodic-
ity condition derived from Lawden’s equations is equivalent to the condition that this
Taylor series of order one is zero. The periodic solutions of Lawden’s equations will
be proved to be further approximations to the first-order relative motion equations.
Consequently the latter are more suitable to research relative orbit configurations. In
Sect. 5, the first-order relative motion equations are expanded as trigonometric series
with eccentric anomaly as the angle variable. By this expansion, a method to seek an
ellipse to approximate the trajectory of in-plane relative motion is presented.

2 Order-of-magnitude analysis of the small quantities in relative motion

2.1 Reference orbital element approach

This section introduces the ROE approach (Wang et al. 2005) briefly. The essence of
the approach is describing the trajectories of the leader and the follower and corre-
sponding relative motion on the celestial sphere. As shown in Fig. 1, OXYZ denotes
the Earth-centered-inertial (ECI) reference frame. Lxyz denotes the leader’s LVLH
frame, a non-inertial frame. L denotes the instantaneous position of the leader. All
the frames are right-handed. The inclined ellipses denote the projections of the space-
crafts’ trajectories on the celestial sphere, with the solid line denoting the leader,
broken line denoting the follower and dotted lines denoting the shaded regions
of corresponding projections. F denotes the instantaneous position of the follower.
P denotes the spacecraft’s perigee.

It is well known that in Keplerian elliptical motion, the argument of latitude θ and
the distance between the spacecraft and the Earth r are given by following expressions:

θ = ω + f (1)

r = a
(
1 − e2)

1 + e cos f
= a (1 − e cos E) (2)

Furthermore, the relationships between the mean anomaly, eccentric anomaly and
true anomaly are

M = E − e sin E (3)

cos f = cos E − e
1 − e cos E

, sin f =
√

1 − e2 sin E
1 − e cos E

(4)
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Fig. 1 Projections of the leader and follower trajectories on the celestial sphere

cos E = cos f + e
1 + e cos f

, sin E =
√

1 − e2 sin f
1 + e cos f

(5)

The projections of the leader trajectory, the follower trajectory and the Earth
equator onto the celestial sphere intersect each other and form the spherical triangle
NNf M, of which the three vertex angles are i, π−if and ir and the three arc-distances
are ��, ηf and η. The point M is the intersection of the projections of the leader
and follower trajectories. The arrows point to positive directions. Symbols η and ηf
denote the arc-distance from N to M and from Nf to M, respectively. The vertex angle
ir, named reference inclination, is the inclination angle between the orbital planes of
the leader and follower. Define the reference ascension of ascending node �r, the
reference orbit angle θ r, the reference mean ascension lr and the reference argument
of perigee ωr as follows:

�r = θ − η, θ r = θf − ηf

lr = θ r −�r = �θ −�η, ωr = ωf − ηf
(6)

Note that the definition of �r here is contrary to that done by Wang et al. (2005).
By the knowledge of spherical trigonometry (Todhunter and Leathem 1929), the six
spherical parameters relate with each other as

cos ir = cos i cos if + sin i sin if cos�� (7)

sin η = sin if sin��

sin ir
(8)

sin ηf = sin i sin��

sin ir
(9)



Approximate analysis for relative motion of satellite formation flying in elliptical orbits 37

cos η = cos�� cos ηf − sin�� sin ηf cos if (10)

cos ηf = cos�� cos η + sin�� sin η cos i (11)

The governing equations of relative motion expressed by these parameters defined
above were presented by Wang et al. (2005), who originally presented them in a paper
in Chinese. Here we give a brief presentation of how to obtain the governing equa-
tions. The rotation matrix, transforming any vector in the LVLH frame of the follower
into that of the leader, can be characterized by an Euler 3-1-3 rotation. When consider
counterclockwise as positive, the three Eulerian angles are −θ r, −ir and �r in turn,
and the three matrices (Taff 1985) are

T3
(−θ r) =

⎡

⎣
cθ r −sθ r 0
sθ r cθ r 0
0 0 1

⎤

⎦ , T1
(−ir

) =
⎡

⎣
1 0 0
0 cir −sir

0 sir cir

⎤

⎦ , T3
(
�r) =

⎡

⎣
c�r s�r 0
−s�r c�r 0
0 0 1

⎤

⎦

(12)

respectively, where we have used the compact notation sx = sin(x), cx = cos(x).
So the composite rotation matrix is

T3
(
�r)T1

(−ir
)

T3
(−θ r) =

⎡

⎣
c�rcθ r + s�rsθ rcir −c�rsθ r + s�rcθ rcir −s�rsir

−s�rcθ r + c�rsθ rcir s�rsθ r + c�rcθ rcir −c�rsir

sθ rsir cθ rsir cir

⎤

⎦

(13)

The leader’s and follower’s position vectors in their own LVLH frames are [r, 0, 0]T

and [rf , 0, 0]T , respectively; hence the relative position vector in the leader’s LVLH
frame can be written as

⎡

⎣
x
y
z

⎤

⎦ = T3
(
�r)T1

(−ir
)

T3
(−θ r)

⎡

⎣
rf
0
0

⎤

⎦−
⎡

⎣
r
0
0

⎤

⎦

= rf

⎡

⎣
c�rcθ r + s�rsθ rcir

−s�rcθ r + c�rsθ rcir

sθ rsir

⎤

⎦− r

⎡

⎣
1
0
0

⎤

⎦ (14)

For convenience, Eq. 14 can be rebuilt in the following forms:

x = rf

[
sin2 ir

2
cos
(
θ r +�r)+ cos2 ir

2
cos lr − 1

]
+�r (15)

y = rf

[
− sin2 ir

2
sin
(
θ r +�r)+ cos2 ir

2
sin lr

]
(16)

z = rf sin ir sin θ r (17)

where the denotation lr=θ r −�r is used.

2.2 Order-of-magnitude analysis

In close formation, the leader and follower satellites are close to each other. Here the
dimensionless distance is defined as the ratio of the maximal distance between the
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leader and follower satellites to the semi-major axis of the leader satellite. This dimen-
sionless distance, some vertex angles and arc-distances of the spherical triangle, and
the orbital element differences are small quantities. For the purpose of approximating
the relative motion equations, this section presents comprehensive and reasonable
order-of-magnitude analysis of these small quantities. When it comes to the problem
of spacecraft flying in close formation, many previous papers directly assumed that
the orbital element differences were small. This paper will give the explanations.

Now that the follower is close to the leader, it can be assumed that the dimen-
sionless distance is of the order of magnitude of 10−k, generally k � 3. Therefore,
the corresponding dimensionless distances in the x-, y-, and z-axes are all not more
than 10−k, denoted by O(10−k). So there are two cases. One is that the dimensionless
distances in the x-, y-, and z-axes are of the same order of magnitude. Another is that
they are not of the same order of magnitude. In either case, they can be denoted as
O(10−k).

Use dx, dy and dz to denote the dimensionless distances in the x-, y-, and z-axes,
respectively. Analyzing Eq. 17, the conditions dz = O(10−k) and unbounded range of
θ r lead to ir = O(10−k). Then analyzing Eq. 16, the conditions dy = O(10−k) and ir =
O(10−k) lead to lr = O(10−k). Finally, analyzing Eq. 15, the conditions dx = O(10−k),
ir = O(10−k) and lr = O(10−k) lead to �r/a = O(10−k). Summarizing the analyses
above, the necessary and sufficient conditions for dx = O(10−k), dy = O(10−k) and
dz = O(10−k) are

ir = O
(

10−k
)

, lr = O
(

10−k
)

, �r/a = O
(

10−k
)

(18)

Note that the conditions dz = O(10−k) and unbounded range of θ r directly imply
sin ir = O(10−k), which means ir is approximate to 0 or ±π . On the condition of
ir ≈ ±π , deriving |y| ≈ rf | sin(θ r +�r)| = rf |x sin(θ + θf − η− ηf )|, it is impossible to
make dy = O(10−k) because of the unbounded range of θ + θf . So ir ≈ 0 is the only
reasonable solution.

On the basic conditions Eq. 18, the orders of magnitude of the orbital element
differences and some other small quantities in the spherical triangle can be analyzed.
Employing some basic transformations of trigonometric functions, Eq. 7 yields

2 sin2 ir

2
= 1 − cos ir = 1 − 1

2
(1 + cos��) cos

(
if − i

)− 1
2
(1 − cos��) cos

(
if + i

)

= cos2 ��

2
+ sin2 ��

2
− cos2 ��

2
cos�i − sin2 ��

2
cos (2i +�i)

= 2 sin2 �i
2

cos2 ��

2
+ 2 sin2

(
i + �i

2

)
sin2 ��

2
(19)

When ir = O(10−k), namely sin2(ir/2) = O(10−2k), and furthermore, the problem
considered is general so the leader’s inclination is arbitrary, Eq. 19 yields

�i = O
(

10−k
)

, �� = O
(

10−k
)

(20)

Because �η is constant and �θ varies with time, the necessary condition for lr =
�θ − �η = O(10−k) is that the period of the follower should equal to that of the
leader.

af = a (21)
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Substituting Eqs. 8 and 9 into Eqs. 11 and 10, respectively, and solving them by
regarding cos η and cos ηf as given, we can obtain

cos η = cos i sin if cos��− sin i cos if
sin ir

(22)

cos ηf = cos i sin if − sin i cos if cos��

sin ir
(23)

It is well known that

sin
(
ηf − η

) = sin ηf cos η − cos ηf sin η (24)

Substitution of Eqs. 8, 9, 22 and 23 into Eq. 24 yields

sin
(
ηf − η

) = − sin��
(
cos i + cos if

) (
1 − cos i cos if − sin i sin if cos��

)

sin2 ir
(25)

By adopting Eq. 7, the equation above can be simplified into

sin�η = − sin��
(
cos i + cos if

)
(1 − cos ir)

sin2 ir
= − sin�� cos �i

2 cos
(
i + �i

2

)

cos2 ir
2

(26)

When the order of magnitudes of ir, �i, �� and �θ − �η are all O(10−k), Eq. 26
leads to

�η = −�� cos i + O
(

10−2k
)

= O
(

10−k
)

, �θ = O
(

10−k
)

(27)

When af = a and �r/a = O(10−k), derived from Eq. 2, the following expression
can be obtained

�r/a = e cos E − ef cos Ef = (e cos�E − ef
)

cos Ef + e sin�E sin Ef

=
√(

e cos�E − ef
)2 + (e sin�E)2 cos

(
Ef − ψ

)

=
√

4e (e +�e) sin2 �E
2

+ (�e)2 cos
(
Ef − ψ

) = O
(

10−k
)

(28)

where tanψ = e sin�E/(e cos�E − ef ) is a function with respect to e, ef and �E.
Analyzing the equation above, when the interval of e is [0, 1), and because Ef varies
arbitrarily, it yields that the amplitude of cos(Ef − ψ) should be small, namely

�e = O
(

10−k
)

, �E = O
(

10−k
)

(29)

On the conditions of Eqs. 29, derived from Eq. 3, it can be shown that

�M = �E − ef sin Ef + e sin E = �E + (e cos�E − ef
)

sin Ef − e sin�E cos Ef

= �E +
√(

e cos�E − ef
)2 + (e sin�E)2 sin

(
Ef − ψ

)

= �E +
√

4e (e +�e) sin2 �E
2

+ (�e)2 sin
(
Ef − ψ

)
(30)

Note that when semi-major axes are equal, the difference of M is constant. Since
�e = O(10−k) and �E = O(10−k), it is evident that

�M = O
(

10−k
)

(31)
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Analyzing the order of magnitude of �f is not as easy as �E or �M. Derived from
Eqs. 4, the variation of f with respect to E and e is

δf =
(
1 − e2) δE + sin Eδe√
1 − e2 (1 − e cos E)

= 1
1 − e2

[√
1 − e2 (1 + e cos f ) δE + sin f δe

]
(32)

In mathematics, the variation of a function is the linear component of its difference.
Choosing E and e as the basic variables, then δE = �E and δe = �e, and applying
the inequality |ac + bd| �

√
a2 + b2

√
c2 + d2, the expression above can be derived as

|δf | �
1

1 − e2

√(
1 − e2

)
(1 + e cos f )2 + sin2 f

√
(�E)2 + (�e)2

=
√
(�E)2 + (�e)2

1 − e2

√√
√
√1 + 1 − e2

1 − e2 + e4 − (1 − e2 + e4
)
[

cos f − e
(
1 − e2

)

1 − e2 + e4

]2

�
1

1 − e2

√

1 + 1 − e2

1 − e2 + e4

√
(�E)2 + (�e)2 (33)

It is not difficult to prove that both
√

1
/(

1 − e2
)+ 1

/(
1 − e2 + e4

)
and 1

/√
1 − e2

are monotone increasing positive functions with respect to e on the interval [0, 1);

hence their product function
√

1 + (1 − e2
)/(

1 − e2 + e4
)/(

1 − e2)possesses the same
properties. Though this product function tends to infinity when e tends to 1, it increases
very slowly when e is not too close to 1, such as e � 0.8 resulting in the value of the
product function not larger than 3.4. Because �e = O(10−k) and �E = O(10−k),
based on the analyses above, we can obtain δf = O(10−k). Generally speaking, the
difference of f is unlikely too different from its variation, so it is reasonable that

�f = O
(

10−k
)

, �ω = �θ −�f = O
(

10−k
)

(34)

Equations 18, 20, 21, 27, 29, 31 and 34 are the order-of-magnitude relations of the
small quantities in close formation. Figure 2 sums up these processes in a flow chart.

Fig. 2 The flow chart of order-of-magnitude analysis of small quantities



Approximate analysis for relative motion of satellite formation flying in elliptical orbits 41

3 Second-order approximation to relative motion equations

In the above section, the order-of-magnitude relations between the small quantities of
relative motion equations and the dimensionless distance are obtained. This section
will approximate the accurate relative motion Eqs. 15, 16 and 17 to the second order,
i.e. truncating to the terms of order of magnitudes of a×O(10−2k). In the approximate
equations, the leader’s true anomaly and eccentric anomaly are chosen alternatively
as the only variable varying with time, and all other quantities are constant when
perturbation is not considered.

Derived from Eqs. 15–17 under the order-of-magnitude relations, the second order
relative motion equations can be expressed as follows (see the derivation in Appen-
dix A):

x
a

=
(

1 − e2
)

sin2 ir

2
cos (2f + ϕ)− 1

1 + e cos f
+ cos2 ir

2

{
−�e cos f + e�M√

1 − e2
sin f

− �e�M sin f (1 + e cos f )
(
1 − e2

) 3
2

−�e�β sin f
(

1 + 1
1 + e cos f

)

− �β�M√
1 − e2

(1 + e cos f )−
(
1 − e2) (�β)2

2 (1 + e cos f )
− (�M)2 (1 + e cos f )2

2
(
1 − e2

)2

− (�e)2 sin2 f

2
(
1 − e2

)
(

1 + 1
1 + e cos f

)}
+ O

(
10−3k

)
(35)

y
a

= −
(

1 − e2
)

sin2 ir

2
sin (2f + ϕ)

1 + e cos f
+ cos2 ir

2

{(
1 + 1

1 + e cos f

)
�e sin f

+ �M√
1 − e2

(1 + e cos f )+
(
1 − e2)�β
1 + e cos f

+ �e�M
(
1 − e2

) 3
2

(cos f + e)

−�e�β cos f + e�M�β sin f√
1 − e2

+ (�e)2 sin f (cos f + 2e)

2
(
1 − e2

)
(1 + e cos f )

}
+ O

(
10−3k

)
(36)

z
a

= sin ir
{(

1 − e2) sin (α + f )

1 + e cos f
+�e

[
− sin α + cos (α + f ) sin f

1 + e cos f

]

+ �M√
1 − e2

[
cos (α + f )+ e cosα

]}+ O
(

10−3k
)

(37)

where

ϕ = 2ω +�ω − η − ηf , �β = �ω −�η, α = ω +�ω − ηf (38)

The variable f can be replaced by E through Eqs. 4, if necessary. When ir, �e, �M
and �β (namely �ω −�η) are all of first order, neglecting all the quadratic terms of
these small quantities in Eqs. 35–37, yields the first-order approximate equations of
relative motion

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x = −a�e cos f + a�M√
1 − e2

e sin f

y = a�M√
1 − e2

+ a�M√
1 − e2

e cos f + a�e sin f + a�e sin f
1 + e cos f

+ a
(
1 − e2)�β

1 + e cos f

z = a
(
1 − e2) sin ir

(
sin α cos f
1 + e cos f

+ cosα sin f
1 + e cos f

)
(39)
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Note that when ir is of first order, then sin2(ir/2) is of second order and cos2(ir/2) is
approximately 1.

The relationships between Eqs. 39 and the periodic solutions of famous Lawden’s
equations will be presented in next section. When the dimensionless distances in the
x-, y-, and z-axes are not of the same orders of magnitude, for example, if the distance
in the z-axis is larger than that in the x-and y-axes, the first-order equations (39) are
not sufficient to describe relative motion because it becomes zero in the x- and y-axes.
The case above results when �e = 0,�M = 0 and �β = 0, and ir not equal to zero.
Applying them to the second-order equations (35–37) yields

x
a

=
(

1 − e2
)

sin2 ir

2
cos (2f + ϕ)− 1

1 + e cos f
+ O

(
10−3k

)
(40)

y
a

= −
(

1 − e2
)

sin2 ir

2
sin (2f + ϕ)

1 + e cos f
+ O

(
10−3k

)
(41)

z
a

= sin ir
(
1 − e2) sin (α + f )

1 + e cos f
(42)

It is obvious that when ir = O(10−k), dz = O(10−k), but dx, dy = O(10−2k) as well.
So the derivation for the second-order equations of relative motion is necessary for
this special case.

4 Relationship between the first-order relative motion equations
and the periodic solutions of Lawden’s equations

It is known that in order to keep the relative motion periodic with no secular changes,
the semi-major axis of the follower should be equal to that of the leader. It is differ-
ent from the periodicity condition derived from Lawden’s equations and expressed by
LVLH coordinates. In the above section, the first-order relative motion equations (39)
are derived, of which the variable is true anomaly and constants are orbit elements,
while the constants of the famous Lawden’s equations are expressed by initial relative
position and velocity. It seems that the two kinds of equations are different, in form at
least. Schaub (2002) obtained that at the perigee of the leader orbit, the difference of
semi-major axis being zero is actually equal to the periodicity condition of Lawden’s
equations. In fact what the author meant is not the ‘difference’ but the ‘variation’,
because the conclusion was based upon the invertible matrix mapping the LVLH
coordinates to the orbital element differences, while the mapping was linearized.
As emphasized before, variation is the linear component of difference. This section
will reveal the relationship between the periodicity condition and the equivalence of
the semi-major axes by Taylor expansion of a multivariable function, which is easily
understandable, though a little complicated. The relationship between the first-order
relative motion equations and the periodic solutions of Lawden’s equations will also
be presented.

The leader’s position vector and velocity vector with respect to the Earth center
are expressed in the LVLH frame as

r = ric, v = ṙ = ṙic + rθ̇ jc (43)
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where ic = r/r, kc = (r × ṙ)
/|r × ṙ| and jc = kc × ic are the unit vectors of the x-, y-

and z-axes of the leader’s LVLH frame, and for Keplerian motion of an ellipse

ḟ = θ̇ =
√
µa
(
1 − e2

)

r2 (44)

Then deriving from Eq. 2, it yields

ṙ = a
(
1 − e2) e sin f

(1 + e cos f )2
ḟ =

√
µ

a
(
1 − e2

)e sin f (45)

Substitution of Eqs. 44 and 45 into Eqs. 43 yields

r = ric, v = ṙ =
√

µ

a
(
1 − e2

)
[
e sin f ic + (1 + e cos f ) jc

]
(46)

Use (x, y, z)T and (ẋ, ẏ, ż)T to denote the position vector and velocity vector of the fol-
lower with respect to the leader in the LVLH frame, respectively (where the velocity
is observed in an inertial reference frame).

�r = xic + yjc + zkc, �ṙ = �v = ẋic + ẏjc + żkc (47)

Using
( ˜̇x, ˜̇y, ˜̇z

)T
to denote the relative velocity vector observed in the LVLH frame,

the relationship between them is
⎛

⎝
ẋ
ẏ
ż

⎞

⎠ =
⎛

⎝
˜̇x
˜̇y
˜̇z

⎞

⎠+
⎛

⎝
0 −ḟ 0
ḟ 0 0
0 0 0

⎞

⎠

⎛

⎝
x
y
z

⎞

⎠ (48)

When f is used as the free variable instead of time t, denoting (·)′ = d (·) /df to get

the relationship
·
(·) = (·)′ ḟ , Eq. 48 yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ =
√
µa
(
1 − e2

)

r2

(
x̃′ − y

)

ẏ =
√
µa
(
1 − e2

)

r2

(
ỹ′ + x

)

ż =
√
µa
(
1 − e2

)

r2 z̃′

(49)

Then substituting Eqs. 49 into Eqs. 47, yields

�r = xic + yjc + zkc, �ṙ = �v =
√
µa
(
1 − e2

)

r2

[(
x̃′ − y

)
ic +

(
ỹ′ + x

)
jc + z̃′kc

]

(50)

It is known that for Keplerian motion of an ellipse, the semi-major axis of the
leader satellite can be expressed as

a = µr
2µ− rv2 (51)
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The follower’s semi-major axis can be expanded around the leader’s position and
velocity, i.e. the leader’s semi-major axis, by Taylor series of a multivariable function,
while �r and �v are treated as small quantities.

�a =
[
∂a
∂r

,
∂a
∂v

] [
�r
�v

]
+ 1

2
[�r,�v]

⎡

⎢
⎢
⎣

∂2a
∂r2

∂2a
∂r∂v

∂2a
∂r∂v

∂2a
∂v2

⎤

⎥
⎥
⎦

[
�r
�v

]
+ · · · (52)

Differentiating Eq. 51 with respect to r and v, respectively, yields

∂a
∂r

= 2a2

r2 ,
∂a
∂v

= 2a2v
µ

(53)

∂2a
∂r2 = 4a3v2

µr3 ,
∂2a
∂r∂v

= 8a3v
µr2 ,

∂2a
∂v2 = 2a2 (8a − 3r)

µr
(54)

The increments of r and v with respect to small increments of the leader’s position
and velocity, namely �r and �v, can be expressed by Taylor expansion as

�r = ∇r ·�r + 1
2
�r · ∇ (∇r) ·�r + · · · ,

�v = ∇v ·�v + 1
2
�v · ∇ (∇v) ·�v + · · ·

(55)

Note that ∇ denotes the gradient operator. It is well known that the gradient of a
scalar function is a vector, and that of a vector function is a tensor. It is also well
known that

∇r = r/r, ∇ (∇r) = ∇
( r

r

)
= ∇r

r
− rr

r3 (56)

The function v possesses the same property as r when we replace r by v in Eqs. 56.
Substituting Eqs. 46, 50 and 56 into Eqs. 55, we obtain

�r = ∇r ·�r + 1
2
�r · ∇ (∇r) ·�r + · · · = r ·�r

r
+ 1

2r
�r ·

(
∇r − rr

r2

)
·�r + · · ·

=
[
ic + 1

2

(
xic + yjc + zkc

) · 1
r

(
jcjc + kckc

)] · (xic + yjc + zkc
)+ · · ·

= x + y2 + z2

2r
+ · · · (57)

In order to work out �v, first we can derive that

�v ·
(
∇v − vv

v2

)
·�v = �v · ∇v ·�v −

(
�v · v

v

)2

= µa
(
1 − e2)

r4

[(
x̃′ − y

)2 +
(

ỹ′ + x
)2 +

(
z̃′
)2
]

− µ2

r4v2

[
e sin f

(
x̃′ − y

)
+ (1 + e cos f )

(
ỹ′ + x

)]2
(58)
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then derive that

�v = v ·�v
v

+ 1
2v
�v ·

(
∇v − vv

v2

)
·�v + · · ·

= µ

r2v

[
e sin f

(
x̃′ − y

)
+ (1 + e cos f )

(
ỹ′ + x

)]

+ µa
(
1 − e2)

2r4v

[(
x̃′ − y

)2 +
(

ỹ′ + x
)2 +

(
z̃′
)2
]

− µ2

2r4v3

[
e sin f

(
x̃′ − y

)
+ (1 + e cos f )

(
ỹ′ + x

)]2 + · · · (59)

Substitution of Eqs. 53, 54, 57 and 59 into Eq. 52 yields

�a = a(1) + a(2) + · · · (60)

where a(1) and a(2) are the first-order and second-order terms of �a, respectively.

a(1) = 2a2

r2

[
(2 + e cos f ) x − (e sin f ) y + (e sin f ) x̃′ + (1 + e cos f ) ỹ′

]
(61)

a(2) =
(
a(1)
)2

a
+ a3

r4

{(
1 − e2

) [(
x + ỹ′

)2 +
(

x̃′ − y
)2 +

(
z̃′
)2
]

− r
a

[
2x2 − y2 − z2

]}
(62)

Setting a(1) = 0 leads to

(2 + e cos f )x − (e sin f ) y + (e sin f ) x̃′ + (1 + e cos f )ỹ′ = 0 (63)

In fact, the equation above is the periodicity condition of Lawden’s equations with
arbitrary initial conditions. When f = 0, it leads to ỹ′(0)

/
x(0) = − (2 + e) / (1 + e),

which is just the periodicity condition obtained by Inalhan et al. (2002). When e = 0,
Eq. 63 leads to ỹ′(0) = −2x(0), which is the periodicity condition of the C-W equa-
tions (Clohessy and Wiltshire 1960). When a(1) = 0, it does not mean �a = 0, so the
periodicity condition in Lawden’s equations is just equivalent to the follower semi-
major axis’s Taylor series of order one being zero. That is to say, this condition can be
formulated as δa = 0, which is a first-order approximation to the precise periodicity
condition �a = 0.

The periodic solutions of Lawden’s equations (Inalhan et al. 2002) are written
here as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x = −d3 cos f + d1e sin f + d2

[

2e2H (f ) sin f − e cos f

(1 + e cos f )2

]

y = d1 (1 + e cos f )+ d3 sin f
(

1 + 1
1 + e cos f

)
+ d4

1 + e cos f
+2d2eH (f ) (1+e cos f )

z = d5 sin f
1 + e cos f

+ d6 cos f
1 + e cos f (64)
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where the integration constants are expressed by initial (f = 0) position and velocity
as

d1 = x̃′ (0)
/

e, d2 = (1 + e)2
[
(2 + e) x (0)+ (1 + e) ỹ′ (0)

]/
e2 = 0

d3 = − (1 + e)
[
2x (0)+ ỹ′ (0)

]/
e, d4 = (1 + e)

[− (1 + e) x̃′ (0)+ ey (0)
]/

e
d5 = (1 + e) z̃′ (0) , d6 = (1 + e) z (0)

(65)

Based on Eq. 27, the constant �β defined in Eqs. 38 can be expressed by classical
orbit elements as

�β = �ω −�η ≈ �ω +�� cos i (66)

Deriving from Eqs. 9 and 23, the relationships for α defined in Eqs. 38 are derived as

sin ir sin α = sin ir sin
(
ω +�ω − ηf

) ≈ sinω sin ir cos ηf − cosω sin ir sin ηf

= sinω
(
cos i sin if − sin i cos if cos��

)− cosω sin i sin��

≈ �i sinω −�� cosω sin i (67)

sin ir cosα ≈ cosω sin ir cos ηf + sinω sin ir sin ηf ≈ �i cosω +�� sinω sin i (68)

Note that the approximations sin x ≈ x, cos x ≈ 1 for x is small are applied.
As analyzed at the beginning of this section, d2 = 0 is equivalent to δa = a(1) = 0,

namely ỹ′(0)
/

x(0) = − (2 + e) / (1 + e). Setting relative position and velocity as basic
variables, the variations of unit vectors in the LVLH frame are developed as

δic = δ
( r

r

)
= δr

r
− r

r2 δr = xic + yjc + zkc

r
− ric

r2 x = (1 + e cos f )
(
yjc + zkc

)

a
(
1 − e2

)

(69)

δkc = δ

(
r × ṙ
|r × ṙ|

)
= δ (r × ṙ)− [kc · δ (r × ṙ)

]
kc

|r × ṙ|
= − (1 + e cos f ) zic + [(e sin f ) z − (1 + e cos f ) z̃′] jc

a
(
1 − e2

) (70)

δjc = δ (kc × ic) = (δkc)× ic + kc × (δic)

= − (1 + e cos f ) yic − [(e sin f ) z − (1 + e cos f ) z̃′] kc

a
(
1 − e2

) (71)

where since the leader’s position and velocity are set as basic variables, δr and δṙ are
equivalent to �r and �ṙ given by Eqs. 50, respectively.

For Keplerian motion of an ellipse,
{

e cos E = 1 − r/a
e sin E = r · ṙ

/√
µa

(72)

It can be derived from Eqs. 72 that

δ
(

e2
)

= δ
[
(1 − r/a)2

]
+ δ

[(
r · ṙ

/√
µa
)2] (73)

cos Eδe − e sin EδE = −δ (r/a) (74)
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When δa = 0, they become

δe = 1
a

(
x̃′ sin f − x cos f

)
(75)

δE = x sin f + x̃′ (cos f + e)

ae
√

1 − e2
(76)

By deriving the variation of M from Eq. 3, then replacing its variable E by f through
Eqs. 5, we can obtain

δM =
√

1 − e2
[
x sin f + x̃′ cos f

]

ae
(77)

Substituting Eqs. 75 and 76 into Eq. 32 yields

δf = x sin f + x̃′ [2e + (1 + e2) cos f
]

ae
(
1 − e2

) (78)

The rotation matrix, transforming any vector in the LVLH frame of the leader
to the ECI frame, can be characterized by an Euler 3-1-3 rotation. When consider
counterclockwise as positive, the three Eulerian angles are −θ , −i and −� in turn. As
in Sect. 2, we can write the composite rotation matrix, i.e. the direction cosine matrix,
as

⎡

⎣
i · ic i · jc i · kc
j · ic j · jc j · kc
k · ic k · jc k · kc

⎤

⎦ =
⎡

⎣
c�cθ − s�sθci −c�sθ − s�cθci s�si
s�cθ + c�sθci −s�sθ + c�cθci −c�si
sθsi cθsi ci

⎤

⎦ (79)

where i, j and k are the unit vectors of the X-, Y- and Z-axes of the ECI frame. It can
be determined from Eq. 79 that

δ (k · kc) = δ (cos i) , δ (k · ic) = δ (sin θ sin i) , δ (i · kc) = δ (sin� sin i) (80)

Because i, j and k are the unit vectors of the Earth-centered-inertial frame, δi = δj =
δk = 0. Applying Eqs. 69 and 70 to Eqs. 80 and solving them, results in

δi = z (1 + e cos f ) sin θ + [z̃′ (1 + e cos f )− ze sin f
]

cos θ

a
(
1 − e2

) (81)

δ� = −z (1 + e cos f ) cos θ + [z̃′ (1 + e cos f )− ze sin f
]

sin θ

a
(
1 − e2

)
sin i

(82)

δθ = y (1 + e cos f ) tan i + z (cos θ + e cosω)− z̃′ (1 + e cos f ) sin θ

a
(
1 − e2

)
tan i

(83)

When f = 0, Eqs. 75, 77, 78, 81, 82 and 83 are reduced to

δM =
√

1 − e2x̃′ (0)
ae

, δ�= −z (0) cosω + z̃′ (0) sinω

a (1 − e) sin i
, δi = z (0) sinω + z̃′ (0) cosω

a (1 − e)

δe = −x (0)
a

, δω = δθ − δf = z (0) cosω − z̃′ (0) sinω

a (1 − e) tan i
+ ey (0)− (1 + e) x̃′ (0)

ae (1 − e)
(84)
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From Eqs. 84 and the periodicity condition ỹ′(0)
/

x(0) = − (2 + e) / (1 + e), it is not
difficult to substantiate that Eqs. 65 are equivalent to

d1 = aδM
/√

1 − e2, d2 = 0, d3 = aδe, d4 = a
(
1 − e2) (δω + δ� cos i)

d5 = a
(
1 − e2) (δi cosω + δ� sinω sin i) ,

d6 = a
(
1 − e2) (δi sinω − δ� cosω sin i)

(85)

Then the periodic solutions of Lawden’s Eqs. 64 can be written as

periodicity condition: δa = 0⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = −aδe cos f + aδM√
1 − e2

e sin f

y = aδM√
1 − e2

(1 + e cos f )+ aδe sin f
(

1 + 1
1 + e cos f

)

+ a
(
1 − e2) (δω + δ� cos i)

1 + e cos f

z = a
(
1 − e2)

1 + e cos f

[
(δi cosω + δ� sinω sin i) sin f + (δi sinω − δ� cosω sin i) cos f

]

(86)

For comparison, after substituting Eqs. 66, 67 and 68 into them, Eqs. 39 can be written
as

periodicity condition: �a = 0⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = −a�e cos f + a�M√
1 − e2

e sin f

y = a�M√
1 − e2

(1 + e cos f )+ a�e sin f
(

1 + 1
1 + e cos f

)

+ a
(
1 − e2) (�ω +�� cos i)

1 + e cos f

z = a
(
1 − e2)

1 + e cos f

[
(�i cosω +�� sinω sin i) sin f + (�i sinω −�� cosω sin i) cos f

]

(87)

The first-order relative motion equations (87) possess the same forms as Eqs. 86,
which are a set of equivalent transformations of the periodic solutions of Lawden’s
equations. They differ in two ways, the periodicity condition and the constants. As dis-
cussed at the beginning of this section, the periodicity condition of Lawden’s equations
is just a first-order approximation to the accurate periodicity condition of Eqs. 87. As
mentioned above, the variation of a function is the linear component of its increment,
i.e. difference, with respect to its variables. So including the periodicity conditions,
the periodic solutions of Lawden’s equations can be considered as further first-order
approximations to Eqs. 87, even though they are derived two different ways. The
former are the linearized solutions of a set of nonlinear differential equations, of
which the integration constants are expressed by initial relative position and velocity.
The latter is developed by Taylor expansion after regarding orbit elements and their
small differences as basic quantities. It should be pointed out that though Eqs. 86 can be
considered as further first-order approximations to Eqs. 87, it does not mean that the
latter are more accurate than the former, compared with the precise relative motion
equations (14). A simple example can substantiate this assertion. Let g(x) = x + x2,
where x = ε − 2ε2 and ε is small. Both g1 = g′(0)�x = ε − 2ε2 and g2 = g′(0)δx = ε

are first-order approximations to g, and g2 is also a first-order approximation to g1.
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A simple derivation yields that |g − g1| > |g − g2| when −1 � ε < 0, which means g2
is sometimes closer to g than g1.

As first-order approximations to relative motion, the periodic solutions of Lawden’s
equations (86) and the first-order relative motion equations (87) are both of the same
order of precision, but they are in a measure different. Equations (86) are more
suitable for researching the problem over a small-scale time, such as spacecraft ren-
dezvous and docking. Though the corresponding periodicity condition δa = 0 is not
precise, the follower can remain close to the leader for a short time. The first-order
equations (87) are more suitable for researching the problem over a large-scale time
such as that required for the configuration of a relative orbit, because the periodicity
condition �a = 0 is so precise that the practical relative orbit is closed under no per-
turbation. But, Eqs. 86 are not suitable for researching relative orbit configurations,
because though the periodicity. condition is satisfied, the practical distance between
the follower and leader will increase over large enough time. Similarly, Eqs. 87 are
not suitable for researching spacecraft rendezvous and docking, because the period-
icity condition is too precise to allow researching scenarios where the follower only
remains close to the leader momentarily, and/or where the semi-major axes may not
be equal to each other.

5 Trigonometric series expansion and ellipse approximation
to in-plane relative motion

In Sect. 3, the second-order equations of relative motion, described by orbital ele-
ments and true anomaly, are obtained. In this section, they will be expanded by
trigonometric series, where eccentric anomaly is used as the only variable. By this
transformation, some interesting characteristics of relative motion will appear. The
method to approximate the trajectory by an ellipse is presented, and simulations are
given to substantiate the feasibility of this method.

5.1 Trigonometric series expansion for in-plane relative motion

Substitution of Eqs. 4 into Eqs. 39 results in the relative motion equations using
eccentric anomaly as the only variable.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x
a

= �e
e

− 1 − e2

e
�e

1 − e cos E
+ e�M sin E

1 − e cos E
y
a

= �β − e�β cos E + �e√
1 − e2

sin E +
√

1 − e2�M
1 − e cos E

+
√

1 − e2�e sin E
1 − e cos E

z
a

= sin ir
(
−e sin α + sin α cos E + √

1 − e2 cosα sin E
)

(88)

Since the equations above are 2π periodic functions, they can be expanded by trigo-
nometric series, leaving the main problem of seeking the Fourier series’ coefficients
bn(n = 0, 1, 2, . . .) of the following equation:

1
1 − e cos E

= b0 +
+∞∑

n=1

bn cos nE (89)
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where

b0 = 1
2π

∫ 2π

0

1
1 − e cos E

dE, bn = 1
π

∫ 2π

0

cos nE
1 − e cos E

dE, n � 1 (90)

Since the function expanded in Eq. 89 is even, there are no sine terms. In order to
get the recurrence relation to calculate Eqs. 90, define a new definite integral

b̄n = 1
π

∫ 2π

0

sin E sin nE
1 − e cos E

dE, n � 1 (91)

Integrating Eqs. 90 by parts and substituting Eq. 91 into it yields the following
recurrence relation

⎧
⎪⎪⎨

⎪⎪⎩

bn+1 = 1
e

bn − b̄n

b̄n+1 =
(

1 − 1
e2

)
bn + 1

e
b̄n

, n � 1 (92)

Combining Eqs. 92 leads to

bn+2 − 2
e

bn+1 + bn = 0, n � 1 (93)

The recurrence formula above is easy to solve on the base of precalculating b0 =
1/

√
1 − e2 and b1 = 2λ/

√
1 − e2 (see the derivation in Appendix B1), noting that in

Eqs. 90, b0 is defined half the value of bn when n tends to zero, so it should be doubled
when employed in Eq. 93. The solutions of Eq. 93 are

b0 = 1√
1 − e2

, bn = 2√
1 − e2

λn, b̄n = 2
e
λn, n � 1 (94)

where

λ = e

1 + √
1 − e2

(95)

Substituting Eqs. 89 and 94 into Eqs. 88 and applying the product to sum formula of
trigonometric functions (see the derivation in Appendix B2) results in the following
equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x
a

= X0 + X1 cos E + U1 sin E +
+∞∑
n=2

(Xn cos nE + Un sin nE)

= X0 + F
+∞∑
n=1

λn sin (nE − φ)

y
a

= Y0 + Y1 cos E + V1 sin E +
+∞∑
n=2

(Yn cos nE + Vn sin nE)

= Y0 + Y1 cos E + V1 sin E + F
+∞∑
n=2

λn cos (nE − φ)

(96)

where
⎧
⎪⎪⎨

⎪⎪⎩

X0 = e�e√
1 − e2

, X1 = −2

√
1 − e2

e
λ�e, U1 = 2λ�M

Y0 = �β +�M, Y1 = 2λ�M − e�β, V1 = 2

√
1 − e2

e
λ�e + 1√

1 − e2
�e

(97)
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⎧
⎨

⎩
Xn = −2

√
1 − e2

e
λn�e, Un = Yn

Yn = 2λn�M, Vn = −Xn

, n � 2

F = 2
e

√

(e�M)2 +
(√

1 − e2�e
)2

, φ = arctan 2
(√

1 − e2�e, e�M
)

(98)

The function arctan2(y, x), known as the four quadrant inverse tangent function, is
defined as

arctan 2 (y, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

arctan
y
x

, if x � 0 and y � 0

π + arctan
y
x

, if x < 0

2π + arctan
y
x

, if x � 0 and y < 0

(99)

The z-component of relative motion in Eqs. 88 is not taken into account because of
its simplicity when E is the only variable. Summarizing Eqs. 96 leads to the following
characteristic of relative motion:

(1) Except the terms of order one, the trigonometric series’ amplitudes are geomet-
ric series and corresponding phases are constant both in the x- and y-axes. The
common ratio is λ and the phase angle in the y-axis is π/2 more than in the x-axis.

(2) When e = 0, the equations of relative motion expressed by trigonometric series
become not singular but simple. The trajectory of relative motion in the x–y
plane is an ellipse, of which the semi-major axis parallel to the x-axis is two times
as long as the semi-minor axis parallel to the y-axis.

The true trajectory of the first-order relative motion in the x–y plane is not an
ellipse, unless the trigonometric series of order higher than one are truncated. The

error caused by truncation is decided by the common ratio λ = e
/(

1 + √
1 − e2

)
,

which is approximately 0.5e when e is close to zero. For example, when e = 0.01,
λ = 0.005, therefore, for the case of e not more than 0.01, truncating the terms of
order higher than one in Eqs. 96 is acceptable.

5.2 Trigonometric series truncating the terms of order higher than one

Truncating the terms of order higher than one in Eqs. 96 yields

⎧
⎪⎪⎨

⎪⎪⎩

x(1)

a
= X0 + X1 cos E + U1 sin E = X0 +

√
X2

1 + U2
1 sin (E − φ)

y(1)

a
= Y0 + Y1 cos E + V1 sin E = Y0 +

√
Y2

1 + V2
1 cos

(
E − φ′)

(100)

where φ is defined as Eq. 98, and φ′ = arctan 2 (V1, Y1).
The parametric equations above express an ellipse, termed truncated ellipse, of

which E is the variable. Because the trigonometric series’ amplitudes in the x-axis and
y-axis are both the same geometrical series after the first order, the maximum relative
error (true error divided by a) caused by truncation, denoted by errx and erry, can be
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evaluated as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

errx = max

(∣∣
∣
∣
∣
x − x(1)

a

∣
∣
∣
∣
∣

)

= max

(∣∣
∣
∣F

+∞∑
n=2

λn sin (nE − φ)+ O
(
10−2k

)
∣
∣
∣
∣

)

� F
+∞∑
n=2

λn + ∣∣O (10−2k
)∣∣ = Fλ2

1 − λ
+ ∣∣O (10−2k

)∣∣

erry = max

(∣∣
∣
∣
∣
y − y(1)

a

∣
∣
∣
∣
∣

)

= max

(∣∣∣
∣F

+∞∑
n=2

λn cos (nE − φ)+ O
(
10−2k

)
∣
∣∣
∣

)

� F
+∞∑
n=2

λn + ∣∣O (10−2k
)∣∣ = Fλ2

1 − λ
+ ∣∣O (10−2k

)∣∣

(101)

Equations 101 give the upper bound of the relative error when Eqs. 100 are used to
approximate relative motion. Define two indexes as follows:

{
erx = Fλ2/(1 − λ)− errx
ery = Fλ2/(1 − λ)− erry

(102)

The two indexes should be both not less than −|O(10−2k)| according to Eqs. 101.

Numerical computation can examine whether Eqs. 101 are reasonable by examining
whether the new defined two indexes are both not less than −|O(10−2k)|, where errx
and erry are obtained by numerical computation.

Example 1: The leader orbital elements and corresponding differences are given as:
(a, i,�, M0,ω) = (3 × 107 m, 1.1 rad, 0, 0, 0), e varies from 0.01 to 0.8; (�a,�e,�i,��,
�M0,�ω) = (0, 0.001, 0.001 rad, 0.001rad, 0.001rad, 0.001rad). The graphs of erx and
ery with respect to e are shown as Fig. 3, where the solid line, dash line, upper dash-dot
and lower dash-dot line denote erx, ery, 5 × 10−6 and −5 × 10−6, respectively.

As shown in Fig. 3, the graphs of erx and ery are always on the top of the graph of
−5×10−6, so Eqs. 101 are reasonable. The closer to the zero line the graphs of erx and
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Fig. 3 The graphs of erx and ery with respect to e
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ery lie, the more accurate the formula Fλ2/(1 − λ) is, when used to evaluate relative
error caused by truncating the terms of order higher than one in Eqs. 96. Fig. 3 shows
that the evaluation is suitable for the case of e � 0.3.

It is known from analytic geometry that Eqs. 100 generally represents the trajectory
of an ellipse, except when X1V1 = Y1U1, in which case it represents a line segment.
Define

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ1 = 1
2

[
X2

1 + U2
1 + Y2

1 + V2
1 +

√(
X2

1 + U2
1 + Y2

1 + V2
1

)2 − 4 (X1V1 − Y1U1)
2
]

λ2 = 1
2

[
X2

1 + U2
1 + Y2

1 + V2
1 −

√(
X2

1 + U2
1 + Y2

1 + V2
1

)2 − 4 (X1V1 − Y1U1)
2
]

(103)

In the LVLH frame’s x–y plane, using
(

x(1)0 , y(1)0

)
, A(1), B(1) and ϑ(1) to denote the

ellipse’s center coordinates, semi-major axis, semi-minor axis and the included angle
between the semi-major axis and x-axis, respectively, it can be shown that (see the
derivation in Appendix B3)

⎧
⎨

⎩

(
x(1)0 , y(1)0

)
= (X0, Y0) , A(1) = √

λ1, B(1) = √
λ2

ϑ(1) = 1
2

arctan 2
[
2 (X1Y1 + U1V1) , X2

1 + U2
1 − Y2

1 − V2
1

] (104)

The ellipse expressed in the preceding equations is just a first-order approximation
to the trigonometric series in the x–y plane. At this point it is not certain whether this is
the most approximate ellipse, which will be addressed below.

5.3 Ellipse approximation to the first-order in-plane relative motion

By assuming that there is an approximate ellipse with its parameters expressed by
(x0, y0), A, B and ϑ , and defining a new function χ(E) to describe the phase variation
in the x–y plane, the new ellipse’s parametric equations, denoted by x̂/ŷ in the x/y-axis,
can be written as

{
x̂ = x0 + A cosϑ cos (χ (E))− B sin ϑ sin (χ (E))
ŷ = y0 + A sin ϑ cos (χ (E))+ B cosϑ sin (χ (E))

(105)

It should be emphasized that the assumption made above is reasonable only if the
real trajectory of relative motion in the x–y plane is not similar to a figure-eight shape
or other non-convex figure, but rather an ellipse.

Defining a new quantity ε, we now analyze the following expressions

ε =
[
(x/a − x0) cosϑ + (y/a − y0) sin ϑ

]2

A2 +
[− (x/a − x0) sin ϑ + (y/a − y0) cosϑ

]2

B2

= C1 (x/a − x0)
2 + 2C2 (x/a − x0) (y/a − y0)+ C3 (y/a − y0)

2 (106)
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where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 =
(

cos2 ϑ

A2 + sin2 ϑ

B2

)

= 1
2

(
1

A2 + 1
B2

)
+ 1

2

(
1

A2 − 1
B2

)
cos 2ϑ

C2 = 1
2

(
1

A2 − 1
B2

)
sin 2ϑ

C3 =
(

sin2 ϑ

A2 + cos2 ϑ

B2

)

= 1
2

(
1

A2 + 1
B2

)
− 1

2

(
1

A2 − 1
B2

)
cos 2ϑ

(107)

In Eq. 106, the quantity ε is an index that indicates the “closeness” of the x–y
trajectory to an ellipse. If the trajectory of the relative motion expressed by Eqs. 96 is
exactly an ellipse, there exist five parameters A, B, x0, y0 and ϑ to make ε = 1. If not,
it is worth discussing how to select these five parameters to make the trajectory close
to an ellipse, i.e. to make ε as close to 1 as possible.

In order to obtain the trigonometric series of ε, the quadratic terms x2/a2, y2/a2

and xy/a2 should be expanded first, while the most significant problem encountered
is seeking the Fourier series’ coefficients cn(n = 0, 1, 2, . . .) of the following equation:

1

(1 − e cos E)2
= c0 +

+∞∑

n=1

cn cos nE (108)

where

c0 = 1
2π

∫ 2π

0

1

(1 − e cos E)2
dE, cn = 1

π

∫ 2π

0

cos nE

(1 − e cos E)2
dE, n � 1 (109)

In order to get the recurrence relation to calculate Eqs. 109, define a new definite
integral as follows

c̄n = 1
π

∫ 2π

0

sin E sin nE

(1 − e cos E)2
dE, n � 1 (110)

Integrating Eqs. 109 by parts and substituting Eqs. 90, 91, and 110 into it, yields the
following recurrence relation

⎧
⎪⎪⎨

⎪⎪⎩

cn+1 = 1
e

cn − c̄n − 1
e

bn

c̄n+1 =
(

1 − 1
e2

)
cn + 1

e
c̄n + 2

e2 bn − 1
e

b̄n

, n � 1 (111)

Substituting for bn, b̄n from Eq. 94 and combining the two equations yields
[

cn+2 − 2 (n + 2)
1 − e2 λn+2

]
− 2

e

[
cn+1 − 2 (n + 1)

1 − e2 λn+1
]

+ cn − 2n
1 − e2 λ

n = 0

(112)

Similar to the solution of bn above, by precalculating c0=(1-e2)−1.5 and c1=2e(1−e2)−1.5

(see the derivation in Appendix B1), the solution of cn is

c0 =
(

1 − e2
)− 3

2 , cn = 2
1 − e2

(
n + 1√

1 − e2

)
λn, n � 1 (113)
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Squaring the x- and y-components of Eqs. 88 and substituting Eqs. 108 and 113
into them, after employing the product to sum formula of trigonometric function
(see the derivation in Appendix B4), yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x/a)2 = G0 +
+∞∑
n=1

(Gn cos nE + Hn sin nE)

(y/a)2 = J0 +
+∞∑
n=1

(Jn cos nE + Kn sin nE)

xy/a2 = P0 +
+∞∑
n=1

(Pn cos nE + Qn sin nE)

(x/a)2 + (y/a)2 = R0 +
+∞∑
n=1

(Rn cos nE + Sn sin nE)

(114)

It is worth pointing out that the amplitude of (x/a)2 + (y/a)2 is a geometric series with
the common ratio λ after the second order. Though the amplitudes of x2/a2, y2/a2 and
xy/a2 are not geometric series, when n becomes big enough, they are approximate to
geometric series and tend to zero asymptotically when n → ∞. Based on Eqs. B19,
B23, B26 and B30, these amplitudes are given by the following expressions.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
G2

n + H2
n = 2λn

∣∣∣∣n − 1√
1 − e2

∣∣∣∣

[
(�M)2 + 1 − e2

e2 (�e)2
]

, n � 1

√
J2

n + K2
n = 2λn

(
n + 1√

1 − e2

)[
(�M)2 + 1 − e2

e2 (�e)2
]

, n � 3

√
P2

n + Q2
n = 2nλn

[
(�M)2 + 1 − e2

e2 (�e)2
]

, n � 2

√
R2

n + S2
n = 4λn

√
1 − e2

[
(�M)2 + 1 − e2

e2 (�e)2
]

, n � 3

(115)

The Fourier series of x/a, y/a, x2/a2, y2/a2 and xy/a2 are obtained as shown in Eqs. 96
and 114, so the Fourier series of ε in Eq. 106 can also be derived.

ε = ε0 +
+∞∑

n=1

(εn cos nE + υn sin nE) (116)

where the coefficients of ε are calculated by combining the coefficients of component
terms x/a, y/a, x2/a2, y2/a2 and xy/a2.

⎧
⎪⎪⎨

⎪⎪⎩

ε0 = C1
(
G0 − 2x0X0 + x2

0

)+ 2 (C2P0 − x0Y0 − y0X0 + x0y0)

+C3
(
J0 − 2y0Y0 + y2

0

)

εn = C1 (Gn − 2x0Xn)+ 2C2 (Pn − x0Yn − y0Xn)+ C3 (Jn − 2y0Yn)

υn = C1 (Hn − 2x0Un)+ 2C2 (Qn − x0Vn − y0Un)+ C3 (Kn − 2y0Vn)
, n � 1

(117)
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Note that, when n �3, there are general expressions as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εn = 2λn
{[

n (C3 − C1)+ C3 + C1√
1 − e2

] [
(�M)2 − 1 − e2

e2 (�e)2
]

− 4nC2

√
1 − e2

e
�e�M+2

√
1 − e2

e
�e (C1x0 + C2y0)− 2�M (C2x0 + C3y0)

}

υn = 2λn

{[
n (C3 − C1)+ C3 + C1√

1 − e2

]
2
√

1 − e2

e
�e�M

+ 2nC2

[
(�M)2 − 1 − e2

e2 (�e)2
]

− 2�M (C1x0 + C2y0)

− 2

√
1 − e2

e
�e (C2x0 + C3y0)

}

(118)

Even when e = 0.9, the function nλn is a decreasing function for n larger than one,
and tends to zero asymptotically as n tends to infinity, so only the first few terms of
the series are significant.

As shown in Eq. 116, the quantity ε is expressed by a Fourier series. There are five
parameters we can choose freely to make ε close to 1. Since the amplitudes of the first
few terms of Fourier series are primary, one method is to regard (x0, y0, C1, C2, C3) as
given and solve the equations

⎧
⎨

⎩

ε0 = 1
εj = 0, j = 1, 2
υj = 0, j = 1, 2

(119)

The solutions cause Eq. 116 collapse to

ε = 1 +
+∞∑

n=3

(εn cos nE + υn sin nE) (120)

After obtaining the solutions of Eqs. 119, inverse the Eqs. 107 to yield
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A = √
2
/√

C1 + C3 −
√
(C1 − C3)

2 + 4C2
2

B = √
2
/√

C1 + C3 +
√
(C1 − C3)

2 + 4C2
2

ϑ = 1
2

arctan 2 (−2C2, C3 − C1)

(121)

Then the five parameters of the approximate ellipse are all given, leaving the only
unknown in Eqs. 105 as χ(E). It can be solved approximately by substituting x/a and
y/a from Eq. 88 for x̂ and ŷ from Eq. 105

{
cosϑ (x/a − x0)+ sin ϑ (y/a − y0) ≈ A cos (χ (E))
− sin ϑ (x/a − x0)+ cosϑ (y/a − y0) ≈ B sin (χ (E))

(122)

Hence

χ (E) ≈ arctan 2
{[− sin ϑ (x/a − x0)+ cosϑ (y/a − y0)

]/
B,

[
cosϑ (x/a − x0)+ sin ϑ (y/a − y0)

]/
A
} (123)
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Hereto the six unknowns of the approximate ellipse in Eqs. 105 are given
in Eqs. 119, 121 and 123. Though solving the nonlinear Eqs. 119 analytically seems
impossible, obtaining computational solutions is very easy. In order to illustrate the
advantage of Eqs. 105 over Eqs. 100 to approximate first-order in-plane relative
motion, an example is given as follows:

Example 2: The leader’s COE and corresponding differences are given as
{
(a, e, i,�, M0,ω) = (1.5 × 107 m, 0.5,π/3 rad,π/6 rad, 0,π/4 rad

)

�(a, e, i,�, M0,ω) = (0, 0.001, 0.002 rad, 0.003 rad, 0.004 rad, −0.001 rad)

Then use Eqs. 104 to calculate the five parameters of the truncated ellipse Eqs. 100
as follows:
{

x(1)0 = 0.267949 × 10−3

y(1)0 = 4.497403 × 10−3 ,
{

A(1) = 3.109326 × 10−3

B(1) = 1.928146 × 10−3 ,ϑ(1) = 0.999668 = 57.28◦

Use Eqs. 119 and 121 to calculate the five parameters of the approximate ellipse
Eqs. 105 as follows:

{
x0 = −0.816504 × 10−4

y0 = 4.926381 × 10−3 ,
{

A = 3.432228 × 10−3

B = 2.029528 × 10−3 ,ϑ = 1.031120 = 59.08◦

As shown, these parameters are somewhat different between the truncated ellipse
and the approximate ellipse. Substituting them into Eq. 117, respectively, yields

ε(1) = 1.078592 + 0.566989 cos(E + 0.214960)+ 0.151924 cos(2E + 0.214960)

+ 0.155922 cos(3E + 0.774023)+ 0.0726920 cos(4E + 0.951973)

+ 0.0280078 cos(5E + 1.022784)+ 0.00981032 cos(6E + 1.060432)

+ 0.00324877 cos(7E + 1.083732)+ 0.00103698 cos(8E + 1.099557)+ · · ·
ε = 1.000000 + 0.115523 cos(3E + 1.039709)+ 0.0615564 cos(4E + 1.142292)

+ 0.0247520 cos(5E + 1.176613)+ 0.00884890 cos(6E + 1.193752)

+ 0.00296542 cos(7E + 1.204023)+ 0.000953895 cos(8E + 1.210863)+ · · ·
As predicted, the parameters of the truncated ellipse ε(1) do not satisfy Eqs. 119.

The numerical differences between the truncated and approximate ellipses are unable
to show the advantage of the latter intuitively, unless shown in Fig. 4. The solid line rep-
resents the accurate trajectory achieved by computing the x–y plane relative motion
equations (15) and (16), the dashed line represents the trajectory of the approximate
ellipse with the asterisk as its center and the dot line represents the trajectory of
the truncated ellipse with a small circle as its center. It is obvious that the trajec-
tory of the approximate ellipse is closer to the accurate trajectory than the truncated
ellipse. The similarity in trajectory does not necessarily imply similarity in motion
because the phase may not synchronize. Figure 5, where the various lines represent
the same quantities as in Fig. 4, shows that the motion of the approximate ellipse is
also closer than the truncated ellipse in both the x- and y-axes. Note that in Figs. 4 and
5, x and y are both nondimensionalized by the semi-major axis of the leader. Thus
the approximate ellipse expressed by Eqs. 105, with parameters given by Eqs. 119 and
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121, and the phase given by Eq. 123, is a useful approach to the real first-order relative
motion.

6 Conclusions

The reference orbital element approach, which describes the relative motion on the
celestial sphere, is applied to study the relative motion of satellite formation flying.
In close formation, the dimensionless distance, defined as the ratio of the maximal
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distance between the leader and follower satellites to the leader semi-major axis, is a
small quantity. In order to keep a formation close over time, the semi-major axis of the
follower should equal to that of the leader. The differences of orbital elements such as
eccentricity, orbit inclination, right ascension of the ascending node, mean anomaly,
eccentric anomaly, argument of latitude, true anomaly and argument of perigee should
all be small quantities with the same order of magnitude as the dimensionless distance.

The second-order relative motion equations are developed, of which the only
variable is the true anomaly and all other quantities are constant. Setting relative
position and velocity as fundamental variables, and expanding the semi-major axis of
the follower around that of the leader by Taylor series, it is shown that the period-
icity condition is equivalent to the Taylor series of order one being zero. It is then
explained why the periodicity condition derived from Lawden’s equations cannot be
equivalent to the equality of the semi-major axes absolutely. The integration constants
of the periodic solutions of Lawden’s equations formulate by the variations of orbit
elements instead of initial relative position and velocity. These periodic solutions pos-
sess similar forms as the first-order relative motion equations derived in this paper.
The former can be considered as further first-order approximations of the latter. It is
explained that the former is suitable for researching the problem of spacecraft ren-
dezvous and docking, and the latter is suitable for researching the problem of relative
orbit configurations.

Using eccentric anomaly as the angle variable, the first-order equations of in-plane
relative motion are expanded as trigonometric series. Except the terms of order one,
the trigonometric series’ amplitudes are geometric series and corresponding phases
are constant both in the x- and y-axes. When truncating the series of order higher than
one, the trajectory expressed by the retained series is an ellipse. An index is defined
to evaluate the upper bound of the error caused by truncation. When the trajectory
of the in-plane relative motion is similar to an ellipse, a method to seek this ellipse
is presented. An example is given to show that the approximate ellipse is useful to
approximate the real first-order relative motion, at least more accurately than the
truncated ellipse.
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Natural Science Foundation of China (No. 10602027 and No. 10672084).

Appendix A

In order to derive the second-order relative motion equations from the order-of-mag-
nitude relations, express the quantities of the follower as that of the leader adding
the corresponding differences, such as rf = r +�r and so on. Then Eqs. 15–17 can be
written as

x = (r +�r)
[
sin2 ir

2 cos (ϕ + 2f +�f )+ cos2 ir
2 cos (�β +�f )− 1

]
+�r (A1)

y = (r +�r)
[
− sin2 ir

2 sin (ϕ + 2f +�f )+ cos2 ir
2 sin (�β +�f )

]
(A2)

z = (r +�r) sin ir sin (α + f +�f ) (A3)

where the expressions in Eqs. 38 are used.
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Several of the terms above can be approximated as follows:

cos (ϕ + 2f +�f ) = cos (ϕ + 2f )− sin (ϕ + 2f )�f + O
(
(�f )2

)
(A4)

cos (�β +�f ) = 1 − 1
2
(�β +�f )2 + O

(
(�β +�f )4

)
(A5)

sin (ϕ + 2f +�f ) = sin (ϕ + 2f )+ cos (ϕ + 2f )�f + O
(
(�f )2

)
(A6)

sin (�β +�f ) = �β +�f + O
(
(�β +�f )3

)
(A7)

sin (α + f +�f ) = sin (α + f )+ cos (α + f )�f + O
(
(�f )2

)
(A8)

Substituting the equations above into Eqs. A1–A3, and truncating the terms of order
higher than second, yields

x = r sin2 ir

2

[
cos (ϕ + 2f )− 1

]+ cos2 ir

2

[
�r − r

2
(�β +�f )2

]
+ aO

(
10−3k

)
(A9)

y = −r sin2 ir

2
sin (ϕ + 2f )+ cos2 ir

2
(r +�r) (�β +�f )+ aO

(
10−3k

)
(A10)

z = sin ir
[
(r +�r) sin (α + f )+ r�f cos (α + f )

]+ aO
(

10−3k
)

(A11)

The problem left is to expand �r and �f to second order. As shown in Eqs. 2 and
4, both r and f are functions of e and E, and in Eq. 3 E is a function of e and M, so
r and f can be treated as functions of e and M, namely r = r(e,M) and f = f (e, M).
The increments of the two functions can be expanded as

�r = ∂r
∂e
�e + ∂r

∂M
�M + 1

2
∂2r
∂e2 (�e)2 + ∂2r

∂e∂M
�e�M + 1

2
∂2r
∂M2 (�M)2 + O

(
10−3k

)

(A12)

�f = ∂f
∂e
�e + ∂f

∂M
�M + 1

2
∂2f
∂e2 (�e)2 + ∂2f

∂e∂M
�e�M + 1

2
∂2f
∂M2 (�M)2 + O

(
10−3k

)

(A13)

where the partial derivatives can be derived from Eqs. 2–4.

⎧
⎪⎨

⎪⎩

∂r
∂e

= −a cos f
∂r
∂M

= ae√
1 − e2

sin f
,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂f
∂e

= 1
1 − e2 (2 + e cos f ) sin f

∂f
∂M

= (1 + e cos f )2

(
1 − e2

)
3
2

(A14)
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2r
∂e2 = a sin f

∂f
∂e

∂2r
∂e∂M

= a sin f
∂f
∂M

∂2r
∂M2 = ae cos f√

1 − e2

∂f
∂M

,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2f
∂e2 =

[
4e + (1 + e2) cos f

]
sin f

(
1 − e2

)2 + (2 cos f + e cos 2f )
1 − e2

∂f
∂e

∂2f
∂e∂M

= (2 cos f + e cos 2f )
1 − e2

∂f
∂M

∂2f
∂M2 = −2e sin f (1 + e cos f )

(
1 − e2

)
3
2

∂f
∂M

(A15)

Note that because �a = 0, the partial derivatives with respect to a are neglected.
Finally, substituting Eqs. A12–A15 into Eqs. A9–A11 yields the second-order relative
motion Equations 35–37.

Appendix B

B.1. In order to integrate the even trigonometric function (1 − e cos E)−1, change the
variable E to s through the formula E = 2 arctan(s).

b0 = 1
2π

∫ 2π

0

1
1 − e cos E

dE = 1
π

∫ +∞

0

2
1 − e + (1 + e) s2 ds (B1)

Then change the variable s to l through s =
√

1−e
1+e tan l

b0 = 1
π

∫ π/2

0

2
1 − e

√
1 − e
1 + e

dl = 1√
1 − e2

(B2)

Finally, apply the result of b0

b1 = 1
π

∫ 2π

0

cos E
1 − e cos E

dE = 1
π

∫ 2π

0

1
e

(
−1 + 1

1 − e cos E

)
dE = 2λ√

1 − e2

(B3)

where λ is defined in Eq. 95.

Similarly,

c0 = 1
2π

∫ 2π

0

1

(1 − e cos E)2
dE = 1

π

∫ +∞

0

2
(
1 + s2)

[
1 − e + (1 + e) s2

]2 ds

= 1
π

∫ π/2

0

2
(
1 − e2

)3/2 (1 + e cos 2l)dl =
(

1 − e2
)− 3

2 (B4)

c1 = 1
π

∫ 2π

0

cos E

(1 − e cos E)2
dE = 1

π

∫ 2π

0

1
e

[
− 1

1 − e cos E
+ 1

(1 − e cos E)2

]
dE

= −2b0

e
+ 2c0

e
= 2e

(
1 − e2

)− 3
2 (B5)

B.2. When substituting (1 − e cos E)−1 = b0 +∑+∞
n=1 bn cos nE into Eqs. 88, the diffi-

culty is to calculate sin E (1 − e cos E)−1 = b0 sin E + sin E
∑+∞

n=1 bn cos nE. Apply the
product to sum formula,
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b0 sin E + sin E
+∞∑

n=1

bn cos nE = b0 sin E +
+∞∑

n=1

bn

2

[
sin (n + 1)E − sin (n − 1)E

]

=
(

b0 − b2

2

)
sin E +

+∞∑

n=2

bn−1 − bn+1

2
sin nE (B6)

Substitution of bn from Eq. 94 into Eq. B6 yields

sin E (1 − e cos E)−1 = 2
e

+∞∑

n=1

λn sin nE (B7)

Applying Eq. B7 to Eqs. 88 and combining the coefficients yield Eqs. 96.

B.3. The center of the curve expressed by Eqs. 100 is obviously (X0, Y0), because
for arbitrary E, the two points [x(1)(E), y(1)(E)] and [x(1)(E + π), y(1) (E + π)] are
symmetric with respect to (X0, Y0). When X1V1 = Y1U1, Eqs. 100 lead to

x(1) − aX0

y(1) − aY0
= X1

Y1
= U1

V1
(B8)

Equation B8 expresses a line. Since x(1) and y(1) are bounded, Eqs. 100 express a line
segment, in fact. When X1V1 
= Y1U1, by regarding cos E and sin E as given, solving
Eqs. 100 yields

cos E = V1x∗ − U1y∗
X1V1 − Y1U1

, sin E = −Y1x∗ + X1y∗
X1V1 − Y1U1

(B9)

where x(1)/a−X0 and y(1)/a−Y0 are denoted by x∗ and y∗. Because cos2 E+sin2 E = 1,
Eqs. B9 yield

(
Y2

1 + V2
1

)
x2∗ − 2 (X1Y1 + U1V1) x∗y∗ +

(
X2

1 + U2
1

)
x2∗ = (X1V1 − Y1U1)

2

(B10)

If (x∗, y∗) is really on the ellipse assumed, it should satisfy

[
x∗ cosϑ(1) + y∗ sin ϑ(1)

]2

(
A(1)

)2 +
[−x∗ sin ϑ(1) + y∗ cosϑ(1)

]2

(
B(1)

)2 = 1 (B11)

Compared with Eq. B10, we can show that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

[(
A(1))−2 + (B(1))−2

]
− 1

2

[(
B(1)

)−2 − (A(1))−2
]

cos 2ϑ(1)

= (Y2
1 + V2

1

)
(X1V1 − Y1U1)

−2

1
2

[(
B(1)

)−2 − (A(1))−2
]

sin 2ϑ(1) = (X1Y1 + U1V1) (X1V1 − Y1U1)
−2

1
2

[(
A(1))−2 + (B(1))−2

]
+ 1

2

[(
B(1)

)−2 − (A(1))−2
]

cos 2ϑ(1)

= (X2
1 + U2

1

)
(X1V1 − Y1U1)

−2

(B12)
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Solving Eqs. B12 leads to the solutions (104).

B.4. From Eqs. 88, we can derive that

(x
a

)2 = [�e (e − cos E)+ e�M sin E]2 1

(1 − e cos E)2
(B13)

(y
a

)2 =
[

�β (1 − e cos E)+ �e√
1 − e2

sin E +
√

1 − e2 (�M +�e sin E)
1 − e cos E

]2

(B14)

xy
a2 =

[
�e (e − cos E)+ e�M sin E

1 − e cos E

][

�β (1 − e cos E)+ �e√
1 − e2

sin E

+
√

1 − e2 (�M +�e sin E)
1 − e cos E

]

(B15)

The following relationships involving trigonometric functions of E can be obtained:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin E cos E (1 − e cos E)−1 = e−1 sin E
[
(1 − e cos E)−1 − 1

]

sin2 E (1 − e cos E)−1 = e−2 + e−1 cos E + (1 − e−2) (1 − e cos E)−1

cos E (1 − e cos E)−2 = e−1
[
(1 − e cos E)−2 − (1 − e cos E)−1

]

cos2 E (1 − e cos E)−2 = e−2
[
(1 − e cos E)−2 − 2 (1 − e cos E)−1 + 1

]

sin E cos E (1 − e cos E)−2 = e−1 sin E
[
(1 − e cos E)−2 − (1 − e cos E)−1

]

sin2 E (1 − e cos E)−2 = (1 − e−2) (1 − e cos E)−2 + e−2
[
2 (1 − e cos E)−1 − 1

]

(B16)

Expanding Eqs. B13–B15 is not difficult but somewhat complicated. All the terms
involving (1 − e cos E)−1 are of one the forms in Eqs. B16. The key is to expand the
functions (1 − e cos E)−1, (1 − e cos E)−2, sin E(1 − e cos E)−1 and sin E(1 − e cos E)−2,
of which the first three are expanded as Eqs. 89, 108 and B7, respectively, and the
fourth is expanded as follows:

sin E (1 − e cos E)−2 = c0 sin E +
+∞∑

n=1

cn

2

[
sin (n + 1)E − sin (n − 1)E

]

=
(

c0 − c2

2

)
sin E +

+∞∑

n=2

cn−1 − cn+1

2
sin nE

= 2

e
√

1 − e2

+∞∑

n=1

nλn sin nE (B17)

Substitute Eqs. 89, 108, B7 and B17 into Eqs. B13, B14, B15. After combining the
coefficients, we can obtain Eqs. 114, where

G0 =
(

1√
1 − e2

− 1
)
(�M)2 + 1

1 + √
1 − e2

(�e)2 (B18)
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⎧
⎪⎪⎨

⎪⎪⎩

Gn = −2
[
(�M)2 − 1 − e2

e2 (�e)2
](

n − 1√
1 − e2

)
λn

Hn = −4

√
1 − e2

e
�e�M

(
n − 1√

1 − e2

)
λn

, n � 1 (B19)

J0 =
(

1 + 1
2

e2
)
(�β)2 + 2

√
1 − e2�β�M + (�M)2√

1 − e2
+
[

1 + λ

e
+ 1

2
(
1 − e2

)

]

(�e)2

(B20)

⎧
⎪⎪⎨

⎪⎪⎩

J1 = −2e (�β)2 + 2e√
1 − e2

(�M)2 + 2λ (�e)2

K1 = 2
(

1√
1 − e2

+ √
1 − e2

)
�β�e + 4�e�M

(B21)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

J2 = 1
2

e2 (�β)2 + 2
(

2 + 1√
1 − e2

)
λ2 (�M)2

−
[

2
1 − e2

e2

(
2 + 1√

1 − e2

)
λ2 +1

2
1

1 − e2

]
(�e)2

K2 = − e√
1 − e2

�β�e + 4

√
1 − e2

e

(
2 + 1√

1 − e2

)
λ2�e�M

(B22)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Jn = 2
[
(�M)2 − 1 − e2

e2 (�e)
]2 (

n + 1√
1 − e2

)
λn

Kn = 4

√
1 − e2

e
�e�M

(
n + 1√

1 − e2

)
λn

, n � 3 (B23)

P0 = e�β�e + e√
1 − e2

�e�M (B24)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P1 = −�β�e +
(

3
√

1 − e2 + 1√
1 − e2

λ2 − 1

)

�e�M

Q1 = e�β�M + 2λ (�M)2 +
(√

1 − e2

e
λ2 + e√

1 − e2

)

(�e)2
(B25)

⎧
⎪⎪⎨

⎪⎪⎩

Pn = −4

√
1 − e2

e
�e�Mnλn

Qn = 2
[
(�M)2 − 1 − e2

e2 (�e)2
]

nλn
, n � 2 (B26)

R0 =
(

1 + 1
2

e2
)
(�β)2 + 2

√
1 − e2�β�M +

(
2√

1 − e2
− 1
)
(�M)2

+
[

1 + 2λ
e

+ 1
2
(
1 − e2

)

]

(�e)2
(B27)
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⎧
⎪⎪⎨

⎪⎪⎩

R1 = −2e (�β)2 + 4λ√
1 − e2

(�M)2 + 2λ2

e
(�e)2

S1 = 2
(

1√
1 − e2

+ √
1 − e2

)
�β�e + 8λ

e
�e�M

(B28)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R2 = 1
2

e2 (�β)2 + 4√
1 − e2

λ2 (�M)2 −
(

4

√
1 − e2

e2 λ2 + 1
2
(
1 − e2

)

)

(�e)2

S2 = − e√
1 − e2

�β�e + 8
e
λ2�e�M

(B29)

⎧
⎪⎨

⎪⎩

Rn = 4√
1 − e2

[
(�M)2 − 1 − e2

e2 (�e)2
]
λn

Sn = 8
e
�e�Mλn

, n � 3 (B30)
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