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Abstract Attitude motion of a satellite subjected to gravitational and aerodynamic
torques in a circular orbit is investigated. In special case, when the center of pressure
of aerodynamic forces is located on one of the principal central axes of inertia of
the satellite, all equilibrium orientations are determined. Necessary and (or) suffi-
cient conditions of stability are obtained for each equilibrium orientation. Evolution
of domains where stability conditions take place is investigated. All bifurcation
values of parameters corresponding to qualitative change of domains of stability
are determined.

Keywords Satellite · Attitude motion · Gravitational torque · Aerodynamic torque ·
Equilibrium orientation · Conditions of stability

1 Introduction

The practical elaboration of attitude control systems for the Earth’s artificial satellites
is one of the key problems in the development of space technology. In accordance with
the purpose of specific space missions the orientation of a satellite can be accomplished
by means of active or passive methods. In developing passive attitude control systems
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it is possible to use the properties of gravitational and magnetic fields, the influence
of aerodynamic drag and solar pressure, gyroscopic properties of rotating bodies, etc.
An important advantage of passive attitude control systems consists in their capability
to operate without any fuel or energy consumption.

On circular or low-elliptic orbits, at altitudes from 250 km up to 500 km, it is possi-
ble to use aerodynamic torque to orient a satellite’s symmetry axis along the incident
air flow which will be in a direction close to the orbit tangent. In the case of an
aerodynamically stable satellite, any disturbance of the desired orientation produces
a restoring aerodynamic torque along the axes perpendicular to the flow. As a result,
this torque can force the longitudinal axis of the satellite to align with the incident air
flow.

Dynamics of a satellite subjected to gravitational and aerodynamic torques are
considered in many papers. The essential idea of the satellite’s orientation by means
of aerodynamic torque and elementary results of investigations are presented in
(Roberson 1958; DeBra 1959; Wall 1959; Schrello 1961, 1962). More in-depth stud-
ies of that subject are described in (Beletskii 1967; Meirovitch and Wallace Jr. 1966;
Modi and Schrivastava 1972; Sarychev and Ovchinnikov 1994). Positive and nega-
tive effects of aerodynamic drag influence on dynamics of the gravitational system
satellite—stabilizer are analyzed in (Sarychev 1964, 1965a).

The first successful realization of an aerodynamic attitude control system was per-
formed in the Soviet Union on the satellite Cosmos-149 (the “Space Arrow”) launched
in 1967. The attitude control system included an aerodynamic stabilizer and two
single-axis gyroscopes. The aerodynamic stabilizer in the form of a truncated conical
shell was mounted on four long (4–6 m) tubes (Fig. 1). The stabilizer of this con-
struction provides enough aerodynamic restoring torque in pitch and yaw to achieve
stability. The gyrodamper (V-yaw scheme composed of two integrating gyroscopes
connected with the satellite body through a viscous-spring restraint) provides a damp-
ing of the satellite’s natural oscillations (the satellite oscillations cause precession of
the gyro rotor linked to the vehicle through a damping device, thus producing dissi-
pation of energy) and restoring torques in pitch and yaw axes. The basic problems
of the satellite’s dynamics with an aerodynamic attitude control system have been

Fig. 1 Soviet artificial satellite Cosmos-149
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discussed in (Sarychev 1968, 1969, 1978; Dranovsky et al. 1974; Sarychev and Sadov
1974; Sarychev et al. 1984).

The small American satellite PAMS (project GAMES) (see Pacini and Skillman
1995; Kumar et al. 1995, 1996) is another example of aerodynamic torque usage in
attitude control of satellites. Here damping of natural oscillations of the satellite was
performed with the help of hysteresis magnetic rods. This satellite was launched from
the Space Shuttle board in May, 1996.

A number of works analyze the influence of aerodynamic torque on the dynam-
ics of the orbital stations Salyut-6 and Salyut-7 with batteries of large solar arrays,
when the orbital station was in a mode of gravitational orientation (see Sarychev and
Sazonov 1981, 1982, 1984; Grechko et al. 1984; Sarychev et al. 1987).

Nurre (1968) and Frik (1970) study the influence of nonconservative components
of the aerodynamic torque on the satellite’s equilibria stability. This problem is con-
sidered in more detail in (Sazonov 1989) in case of attitude motion of orbital station
Salyut-7 subjected to gravitational, aerodynamic, and damping torques. The original
numerical-analytical research explains the basic properties of the mode of gravita-
tional orientation of the orbital station.

The satellite’s attitude motion in a circular orbit under the action of gravitational
and aerodynamic torques is considered in (Sarychev and Mirer 2000). The effect of
the atmosphere on a satellite is reduced to the drag force applied to the center of
pressure and directed against the velocity of the satellite’s center of mass relative to
the air. The center of pressure is assumed to be at a fixed point in the satellite body.
Note that the last assumption is valid if the shape of the satellite body is close to a
sphere. In the case when the center of pressure is located on the satellite’s principal
central axis of inertia, all isolated equilibrium positions are determined in the orbital
reference frame, and sufficient conditions of their stability are obtained. Moreover,
the existence of eight one-parameter families of stationary solutions is proven.

The present work pushes forward the study started in (Sarychev and Mirer 2000).
The main attention is devoted to detailed examination of the equilibria stability of
the satellite. Sufficient conditions of stability obtained in Sarychev and Mirer (2000)
are simplified and represented in a form convenient for further analysis. Along with
sufficient conditions of stability, necessary conditions are discussed as well, keeping in
mind their great importance for the general analysis of system stability (De Bra and
Delp 1961; Longman et al. 1981). The point is that necessary conditions breakdown
guarantees the instability, while the necessary conditions existence results, as a rule,
in stability of equilibriums. Common analysis of sufficient and necessary conditions
allows separating full space of a system’s parameters into three domains: domain
of stability (where sufficient and necessary condition hold true at once), unstable
domain (all types of stability conditions are violated) and domain of possible stability
(only necessary conditions hold true). Of course, to make the final conclusion about
stability or instability of specific equilibrium we need to carry out an additional and
rather laborious investigation of nonlinear equations of motion using, for example,
an approach described in (Markeev and Sokolskii 1975). Necessary conditions of sta-
bility are determined from consideration of the linearized equations of motion and
from the requirement that all the roots of the characteristic equation should be purely
imaginary. Symmetry properties proved in the problem being considered allow one
to restrict the investigation to only three of the six groups of equilibrium orientations.
The results of a numerical-analytical research are presented in a series of figures. Here
the domains where necessary and (or) sufficient conditions hold true are shown in
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a plane of two dimensionless inertial parameters at various values of dimensionless
aerodynamic parameter.

2 Equations of motion

Consider the motion of a satellite subjected to gravitational and aerodynamic torques
in a circular orbit. We introduce two right-handed Cartesian coordinate systems with
origin in the satellite’s center of mass O. OX1X2X3 is the orbital reference frame.
The axis OX3 is directed along the radius vector of the satellite’s center of mass; the
axis OX1 is in direction of the satellite’s orbital motion. Ox1x2x3 is the satellite’s body
reference frame; Oxi(i = 1, 2, 3) are the principal central axes of inertia of the satellite.

The orientation of the satellite’s body reference frame with respect to the orbital
reference frame is determined by the angles α, β and γ (see Fig. 2) and the direction
cosines of the axes Oxi in the orbital reference frame aij = cos(Xi, xj) can be written
as

a11 = cos α cos β a23 = − cos β sin γ

a12 = sin α sin γ − cos α sin β cos γ , a31 = − sin α cos β,
a13 = sin α cos γ + cos α sin β sin γ , a32 = cos α sin γ + sin α sin β cos γ ,
a21 = sin β, a33 = cos α cos γ − sin α sin β sin γ .
a22 = cos β cos γ ,

(1)

Then equations of the satellite’s attitude motion take the form (see Sarychev and
Mirer 2000)

Aṗ + (C − B)qr − 3ω2
0(C − B)a32a33 − ω2

0(h2a13 − h3a12) = 0,
Bq̇ + (A − C)rp − 3ω2

0(A − C)a33a31 − ω2
0(h3a11 − h1a13) = 0,

Cṙ + (B − A)pq − 3ω2
0(B − A)a31a32 − ω2

0(h1a12 − h2a11) = 0;
(2)

Fig. 2 Orientation of
body-fixed axes with respect to
the orbital reference frame
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p = (α̇ + ω0)a21 + γ̇ = p̄ + ω0a21,
q = (α̇ + ω0)a22 + β̇ sin γ = q̄ + ω0a22,
r = (α̇ + ω0)a23 + β̇ cos γ = r̄ + ω0a23.

(3)

Here

h1 = −Qa

ω2
0

, h2 = −Qb

ω2
0

, h3 = −Qc

ω2
0

,

A, B, C are the principal central moments of inertia of the satellite; p, q, r are the
projections of the satellite’s angular velocity in the axes Oxi; ω0 is the angular velocity
of the orbital motion of the satellite’s center of mass; Q is the drag force acting on
the satellite; a, b, c are the coordinates of the satellite’s center of pressure in the
reference frame Ox1x2x3. The dot designates differentiation with respect to time t.

For systems of equations (2) and (3) the generalized integral of energy
(Beletskii 1966; Pars) reads as

1
2

(
Ap̄2 + Bq̄2 + Cr̄2

)
+ 3

2
ω2

0

[
(A − C) a2

31 + (B − C) a2
32

]

+1
2
ω2

0

[
(B − A) a2

21 + (B − C) a2
23

]
− ω2

0 (h1a11 + h2a12 + h3a13) = const.

(4)

3 Equilibrium orientations of satellite

Putting in (2) and (3) α = α0 = const, β = β0 = const, γ = γ0 = const, we get the
equations

(C − B)(a22a23 − 3a32a33) − h2a13 + h3a12 = 0,
(A − C)(a23a21 − 3a33a31) − h3a11 + h1a13 = 0,
(B − A)(a21a22 − 3a31a32) − h1a12 + h2a11 = 0,

(5)

which allow us to determine the satellite’s equilibria in the orbital reference frame.
Instead of (5) it is more convenient to use the equivalent system

Aa21a31 + Ba22a32 + Ca23a33 = 0,
3(Aa11a31 + Ba12a32 + Ca13a33) + h1a31 + h2a32 + h3a33 = 0,
(Aa11a21 + Ba12a22 + Ca13a23) − h1a21 − h2a22 − h3a23 = 0.

(6)

Taking into account expressions (1), the system (6) can be considered as a system of
three equations in unknowns α0,β0,γ0. Another way of closing equations (6) is to add
the following orthonormality conditions for the direction cosines:

a2
11 + a2

12 + a2
13 = 1, a11a21 + a12a22 + a13a23 = 0,

a2
21 + a2

22 + a2
23 = 1, a11a31 + a12a32 + a13a33 = 0,

a2
31 + a2

32 + a2
33 = 1, a21a31 + a22a32 + a23a33 = 0.

(7)

Next we will use systems (6) and (7) to investigate the satellite’s equilibria.
As shown in (Sarychev and Mirer 2000), systems (6), (7) at A �= B �= C can be

resolved with respect to a11, a12, a13, a21, a22, a23. Then we get

a11 = 3 (I3 − A) a31/F, a12 =3 (I3 − B) a32/F, a13 =3 (I3 − C) a33/F,
a21 = 3(B − C)a32a33/F, a22 = 3(C − A)a33a31/F, a23 = 3(A − B)a31a32/F,

(8)
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where F = h1a31 + h2a32 + h3a33, I3 = Aa2
31 + Ba2

32 + Ca2
33, and the direction cosines

a31, a32, a33 satisfy the equations

9
[
(B − C)2 a2

32a2
33 + (C − A)2 a2

33a2
31 + (A − B)2 a2

31a2
32

]
= (

h1a31 + h2a32 + h3a33
)2 ,

3 (B − C) (C − A) (A − B) a31a32a33 − [
h1 (B − C) a32a33

+ h2 (C − A) a33a31 + h3 (A − B) a31a32
] × (

h1a31 + h2a32 + h3a33
) = 0,

a2
31 + a2

32 + a2
33 = 1.

(9)

After solving (9) the formulas (8) allow us to determine the remaining six direction
cosines. Note that solutions (8) exist only in the case when any two direction cosines of the
a31, a32, a33 set do not vanish simultaneously. Specific cases a31 = a32 = 0, a32 = a33 = 0,
a33 = a31 = 0 must be examined by the direct investigation of systems (6) and (7).

Introducing the new variables x1 = a31/a33, y1 = a32/a33 and using the approach given
in Sarychev and Gutnik (1984) it is possible to reduce the first two equations (9) to a single
polynomial equation of the 12th order (for example, with respect to x1) with real coeffi-
cients. This equation has at most 12 real roots, moreover, each root x1 determines the only
y1 satisfying the first two equations of system (9). Next, using the last equation (9), we find
values of direction cosinea33 for each solution x1, y1. So, two sets of values a31, a32, a33
correspond to each real root of polynomial equation. Each set a31, a32, a33 in turn, by
virtue of (8), uniquely determines the remaining direction cosinesa11, a12, a13, a21, a22,
a23. Therefore, we conclude that the satellite subjected to gravitational and aerodynamic
torques can have no more than 24 equilibrium positions in a circular orbit.

Further we consider a particular case h1 �= 0, h2 = h3 = 0 where the pressure center
locates on the axis Ox1 of the satellite (see Sarychev and Mirer 2000). Introducing dimen-
sionless parameters θB = B/A, θC = C/A, and H1 = h1/A, the system (9) takes the form

9
[
(θB − θC)2 a2

32a2
33 + (θC − 1)2 a2

33a2
31 + (1 − θB)2 a2

31a2
32

]
= H2

1a2
31,

(θB − θC)
[
H2

1 − 3 (1 − θB) (θC − 1)
]

a31a32a33 = 0,

a2
31 + a2

32 + a2
33 = 1.

(10)

Note, that it is sufficient to consider only positive H1, since the case H1 < 0 can be reduced
to the case H1 > 0 by rotating the satellite-body reference frame on π radians about any
degree-of-freedom perpendicular to the Ox1 axis.

It follows from the second equation of system (10) that

H2
1 = 3 (1 − θB) (θC − 1) (11)

or
a31a32a33 = 0. (12)

It is possible to show that in the case (11) the system (10) has 8 one-parameter families
of solutions. Their properties are investigated in (Sarychev and Mirer 2000).

Now let H2
1 �= 3 (1 − θB) (θC − 1). Then the second equation of system (10) takes the

form (12). Successive consideration of the cases a31 = 0, a32 = 0, a33 = 0 results in the
following six groups of isolated solutions (only nonzero direction cosines are presented)
(see Sarychev and Mirer 2000):

a11 = a22a33, a22 = ±1, a33 = ±1; (13)

a11 = −a23a32, a23 = ±1, a32 = ±1; (14)

a11 = −x, a13 = −a22a31, a22 = ±1 a31 = ±
√

1 − x2, a33 = −xa22; (15)
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a11 = −y, a12 = a23a31, a23 = ±1, a31 = ±
√

1 − y2, a32 = ya23; (16)

a11 = 3y, a12 = ±
√

1 − 9y2, a21 = −a12a33, a22 = 3ya33, a33 = ±1; (17)

a11 = 3x, a13 = ±
√

1 − 9x2, a21 = a13a32, a23 = −3xa32, a32 = ±1. (18)

Here x = H1/3 (1 − θC), y = H1/3 (1 − θB). Note that each group (13)–(18) consists of
four solutions corresponding to four specific sets of signs + and −. Solutions (13) and (14)
exist for arbitrary values of systems parameters, solutions (15) exist at x2 ≤ 1, solutions
(16) at y2 ≤ 1, solutions (17) at 9y2 ≤ 1, and solutions (18) exist at 9x2 ≤ 1. Therefore,
four straight lines decompose the plane (x2, y2) into nine domains with a fixed number of
equilibria (Fig. 3). Of course, at H1 = 0 (x = y = 0) the solutions (13)–(18) coincide with
the well known (Sarychev 1965b; Likins and Roberson 1966) 24 equilibrium orientations
of a rigid body in a circular orbit.

Note that solutions (13), (15), and (17) transform to solutions (14), (16), and (18) corre-
spondingly if we define the body reference frame in a different manner. Indeed, introduce
a new reference frame Ox̃1x̃2x̃3 which can be obtained from Ox1x2x3 by rotation around
the axis Ox1 through the angle of π/2. It is evident, that the axes Ox̃i are also the prin-
cipal central axes of inertia of the satellite, but their indexes and directions differ from
Oxi. Actually, the change-over from the axes Oxi to the axes Ox̃i can be accomplished by
substitution θB → θC, θC → θB (and, as a consequence, x → y, y → x).

Consider, for example, solutions (15). In the reference frame Ox̃1x̃2x̃3 it takes the form

∥∥ãij
∥∥ =

∥∥∥∥∥∥
a11 0 a13

0 a22 0
a31 0 a33

∥∥∥∥∥∥
·
∥∥∥∥∥∥

1 0 0
0 0 −1
0 1 0

∥∥∥∥∥∥
=

∥∥∥∥∥∥
a11 a13 0
0 0 −a22

a31 a33 0

∥∥∥∥∥∥
,

from which

ã12 = a13 = −a22a31 = ã23ã31, ã11 = a11 = −x, ã23 = −a22 = ±1,
ã31 = a31 = ±

√
1 − x2, ã32 = a33 = −xa22 = xã23.

Fig. 3 Domains with fixed
number of equilibrium
orientations
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So, taking into account that x → y, the obtained expressions really coincide with (16).
Therefore, we can restrict ourselves to analyze only solutions (13), (15), and (17). The

results for solutions (14), (16), and (18) can be obtained after corresponding substitution.
As for geometrical meaning of the solutions, note that for solutions (13) the similar axes

of the orbital and satellite-body reference frames are collinear to each other. So the axis
Ox1 is directed along the axis OX1 if ā11 = 1 and it is oppositely directed at ā11 = −1.

Solutions (15) and (17) can be obtained from (13) by rotation around the axes OX2 and
OX3 through the angles α0 and β0 correspondingly, where cos2 α0 = x2 = H2

1/9 (1 − θC)2

and cos2 β0 = 9y2 = H2
1/(1 − θB)2.

4 Sufficient conditions of stability

To derive the sufficient conditions of stability (hereinafter called S-conditions) of equi-
librium orientations (13)–(18) it is possible to use the energy integral (4). Designating

α = α0 + ᾱ, β = β0 + β̄, γ = γ0 + γ̄ , (19)

where ᾱ, β̄, γ̄ are small deviations from the satellite’s equilibrium α = α0 = const,
β = β0 = const, γ = γ0 = const, the energy integral takes the form (see Sarychev and
Mirer 2000)

p̄2 + θBq̄2 + θCr̄2

+ ω2
0

(
Aααᾱ2 + Aββ β̄2 + Aγ γ γ̄ 2+ 2Aαβ ᾱβ̄ + 2Aβγ β̄γ̄ + 2Aγαγ̄ ᾱ

)

+ � = const. (20)

Here the symbol � designates the terms of the third and higher order with respect
to ᾱ, β̄, γ̄ ,

Aαα = 3
[
(1 − θC)

(
ā2

11 − ā2
31

)
+ (θB − θC)

(
ā2

12 − ā2
32

)]
+ H1ā11,

Aββ =
[
(θB − 1) − (θB − θC) sin2 γ0

] (
1 + 3 sin2 α0

)
cos 2β0

− 3
4

(θB − θC) sin 2α0 sin β0 sin 2γ0 + H1ā11,

Aγ γ = (θB − θC)
[(

ā2
22 − ā2

23

)
− 3

(
ā2

32 − ā2
33

)]
,

Aαβ = −3
2

(1 − θC) sin 2α0 sin 2β0 + 3 (θB − θC)
(
ā32 cos α0 − ā12 sin α0

)
ā22

− H1 sin α0 sin β0,

Aβγ = −1
2

(θB − θC) sin 2β0 sin 2γ0 − 3 (θB − θC) (ā33 cos γ0 − ā32 sin γ0) ā31,

Aγα = −3 (θB − θC)
(
ā12ā33 + ā13ā32

)
;

āij = aij (α0, β0, γ0) .

It follows from the Lyapunov theorem that solution α = α0, β = β0, γ = γ0 is stable if the
quadratic form

Aααᾱ2 + Aββ β̄2 + Aγ γ γ̄ 2 + 2Aαβ ᾱβ̄ + 2Aβγ β̄γ̄ + 2Aγαγ̄ ᾱ
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is positive definite, that is the following inequalities take place

Aαα > 0, AααAββ − A2
αβ > 0,

AααAββAγ γ + 2AαβAβγ Aαγ − AααA2
βγ − AββA2

αγ − Aγ γ A2
αβ > 0.

Taking into account expressions (1) for direction cosines, we get for solutions (13)
sin α0 = 0, sin β0 = 0, sin γ0 = 0, whence follows Aαβ = Aαγ = Aβγ = 0 and stability
conditions take the form

Aαα > 0, Aββ > 0, Aγ γ > 0,

or

3 (1 − θC) + H1ā11 > 0, (θB − 1) + H1ā11 > 0, θB − θC > 0; (21)

for solution (15), which exist at H2
1 ≤ 9 (θC − 1)2, sin β0 = sin γ0 = 0, Aαβ = Aαγ = 0 and

stability conditions take the form

Aαα > 0, Aββ > 0, AββAγ γ − A2
βγ > 0,

or
θC − 1 > 0, θB − θC > 0, H2

1 < 12(θB − 1) (θC − 1)2/(θB − θC); (22)

for solutions (17), which exist at H2
1 ≤ (θB − 1)2, sin α0 = sin γ0 = 0, Aαβ = Aβγ = 0 and

stability conditions take the form

Aαα > 0, Aββ > 0, AααAγ γ − A2
αγ > 0,

or
1 − θB > 0, θB − θC > 0. (23)

At substitution θB → θC, θC → θB conditions (21) for solutions (13) go over into con-
ditions for solutions (14), conditions (22) for solutions (15) transform to conditions for
solutions (16), and conditions (23) for solutions (17) transform to conditions for solutions
(18). Note that the last inequality (22) follows from the first two inequalities and condition
9 (θC − 1)2 ≥ H2

1 , and therefore can be omitted. Indeed

12
(θB − 1) (θC − 1)2

θB − θC
= 9 (θC − 1)2 4θB − 4

3 (θB − θC)
=

= 9 (θC − 1)2
[

1 + (θB − θC) + 4 (θC − 1)

3 (θB − θC)

]
> 9 (θC − 1)2 ≥ H2

1 .

Remember also, that it is necessary to take into account the conditions of physical realiza-
tion of a rigid body, i.e., we must take into account inequalities

θB + 1 ≥ θC, θB + θC ≥ 1, 1 + θC ≥ θB. (24)

Further the region where (24) are valid will be referred to as the working region.
Now we consider domains in the plane (θB, θC) where S-conditions are valid (hereinaf-

ter called S-domains) and analyze their evolution depending on dimensionless parameter
H1 (Fig. 4). Eight straight lines generally take part in forming S-domains. It is convenient
to enumerate these lines as following:

1. θB = 1 − H1, 5. θC = 1 − H1,
2. θB = 1 − H1/3, 6. θC = 1 − H1/3,
3. θB = 1 + H1/3, 7. θC = 1 + H1/3,
4. θB = 1 + H1, 8. θC = 1 + H1.

(25)
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Fig. 4 Evolution of S-domains: (a) H1 = 0, (b) H1 = 0.3, (c) H1 = 0.5, (d) H1 = 0.75

If H1 = 0, the satellite is a rigid body subjected only to gravitational torque. In this
case solutions (13)–(18) are stable in the domains shown in Fig. 4a (here and below the
horizontal and vertical axes correspond to dimensionless parameters θB and θC, respec-
tively). The whole plane (θB, θC) is partitioned by the straight lines θB = 1, θC = 1, and
θB = θC into six domains. In each domain S-conditions hold true only for a single specific
group of solutions (the domains in the figure are marked by the numbers of corresponding
solutions).

When H1 > 0, the character of domain boundaries changes. Boundaries of
S-domains are defined now by the straight lines (25). Moreover, for solutions (13) and
(14) the following peculiarity takes place: S-domains in cases ā11 = 1 and ā11 = −1 do not
coincide (see Fig. 4b). S-conditions hold true for ā11 = ±1 in domains (13) and (14), while
in domains designated (13)+ and (14)+ S-conditions are satisfied only for ā11 = 1.

When H1 increases, the mutual positions of the partition boundaries change, and the
form of S-domains changes qualitatively at two bifurcation values of H1 (1/2 and 3/4).
Domains (17) and (18) degenerate at the first bifurcation value, and domains (13) and (14)
also degenerate at the second value.
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5 Necessary conditions of stability

To investigate necessary conditions of stability (hereinafter called N-conditions) of the
satellite’s equilibrium orientations we must study the stability properties of the linearized
equations of motion in the vicinity of the specific solution α = α0 = const, β = β0 = const,
γ = γ0 = const. To derive linearized equations of motion it is necessary to substitute

α = α0 + ᾱ, β = β0 + β̄, γ = γ0 + γ̄ ,

where ᾱ, β̄, γ̄ are small deviations from the satellite’s equilibrium α0, β0, γ0, into
(2)–(3) and after Taylor series expansion of obtained equations drop second and higher
order terms.

First of all it is convenient to obtain linearized expressions of direction cosines.
So we have

a11 = cos (α0 + ᾱ) cos
(
β0 + β̄

)

= (cos α0 − ᾱ sin α0)
(
cos β0 − β̄ sin β0

)

= cos α0 cos β0 − ᾱ sin α0 cos β0 − β̄ cos α0 sin β0

= ā11 + ᾱā31 − β̄ā21 cos α0,

a12 = ā12 + ᾱā32 − β̄ā11 cos γ0 + γ̄ ā13,

a13 = ā13 + ᾱā33 + β̄ā11 sin γ0 − γ̄ ā12,

a31 = ā31 − ᾱā11 + β̄ā21 sin α0,

a32 = ā32 − ᾱā12 − β̄ā31 cos γ0 + γ̄ ā33,

a33 = ā33 − β̄ā13 + β̄ā31 sin γ0 − γ̄ ā32.

Here āij = aij (α0, β0, γ0). Linearization procedure of the direction cosine a11
described maximum in detail.

Next, linearization of kinematical equations (3) results in

p = ˙̄αā21 + ˙̄γ + β̄ω0 cos β0 + ω0ā21,

q = ˙̄αā22 + ˙̄β sin γ0 − β̄ω0ā21 cos γ0 + γ̄ ω0ā23 + ω0ā22,

r = ˙̄αā23 + ˙̄β cos γ0 + β̄ω0ā21 sin γ0 − γ̄ ω0ā22 + ω0ā23.

Substituting linearized direction cosines and angular velocity components in the Eq. (2)
and turning to dimensionless parameters after simple manipulation we get

θB ¨̄αā22 + 2 (1 − θC) ˙̄αā21ā23 + [
3 (1 − θC)

(
ā11ā33 + ā13ā31

) + H1ā33
]
ᾱ

+θB
¨̄β sin γ0 − (θB + θC − 1) ˙̄β sin β0 cos γ0

−
{
(1 − θC)

[(
1 + 3 sin2 α0

)
cos 2β0 sin γ0 + 3

2 sin 2α0 sin β0 cos γ0

]
+ H1ā23 cos α0

}
β̄

+ (θB − θC + 1) ˙̄γ ā23 − [
(1 − θC)

(
ā21ā22 − 3ā31ā32

) + H1ā12
]
γ̄ = 0,

θC ¨̄αā23 + 2 (θB − 1) ˙̄αā21ā22 + [
3 (θB − 1)

(
ā11ā32 + ā12ā31

) − H1ā32
]
ᾱ

+ θC
¨̄β cos γ0 + (θB + θC − 1) ˙̄β sin β0 sin γ0

+
{
(θB − 1)

[(
1 + 3 sin2 α0

)
cos 2β0 cos γ0 − 3

2
sin 2α0 sin β0 sin γ0

]
+ H1ā22 cos α0

}
β̄

+ (θB − θC − 1) ˙̄γ ā22 + [
(θB − 1)

(
ā21ā23 − 3ā31ā33

) − H1ā13
]
γ̄ = 0, (26)
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¨̄αā21 − 2 (θB − θC) ˙̄αā22ā23 − 3 (θB − θC)
(
ā12ā33 + ā13ā32

)
ᾱ

+ [
1 − (θB− θC) cos 2γ0

]
cos β0

˙̄β
− (θB − θC)

[(
1 + 3 sin2 α0

)
sin β0 sin 2γ0 − 3

2
sin 2α0 cos 2γ0

]
cos β0β̄

+ ¨̄γ + (θB − θC)
[(

ā2
22 − ā2

23

)
− 3

(
ā2

32 − ā2
33

)]
γ̄ = 0,

Here the dot designates differentiation with respect to τ = ω0t. Note, that zero order terms
with respect to ᾱ, β̄, γ̄ vanish due to (5)–(6).

Now consider a specific group of the satellite’s equilibria. Taking into account expres-
sions (1) for direction cosines, we get for solutions (13) sin α0 = 0, sin β0 = 0, sin γ0 = 0,
and linearized equations (26) become

θB ¨̄α + ā1ᾱ = 0,
θC

¨̄β + b2β̄ + (
b1 − 1

) ˙̄γ cos β0 = 0,
¨̄γ + 4b1γ̄ + (

1 − b1
) ˙̄β cos β0 = 0,

(27)

where

ā1 = 3 (1 − θC) + H1ā11, b1 = θB − θC, b2 = θB − 1 + H1ā11, cos β0 = ±1,

ā11 = ±1.

The characteristic equation of system (27)
(
θBλ2 + ā1

) (
θCλ4 + a1λ2 + a2

)
= 0

decomposes into quadratic and biquadratic equations. Here the following new
designations are introduced:

a1 = b2 + 4θCb1 + (
1 − b1

)2 , a2 = 4b1b2.

N-conditions imply that there are no roots of characteristic equation with positive real
parts. Hence, in the case when there are only even terms in the polynomial, one should
require all roots to be purely imaginary. Therefore, λ2 should be real and negative and we
can write down the following conditions:

ā1 > 0 , a1 > 0, a2 > 0, D2 = a2
1 − 4θCa2 > 0. (28)

Of course, physical constraints (24) must be satisfied together with conditions (28).
Note, that inequality a1 > 0 can not become the equality on the boundary of the domain

where N-conditions take place (below N-domain), because at a1 = 0 the condition D2 > 0
results in a2 < 0 and violates (28).

The condition a2 > 0 holds true either at b1 > 0 and b2 > 0, or at b1 < 0 and b2 < 0. In
the first case all sufficient conditions of stability (21) are satisfied. It is evident that in this
case all necessary conditions (28) are also satisfied, i.e. a1 > 0 and D2 > 0. In that way,
we get the domain with all necessary and sufficient conditions of stability of solution (13)
satisfied which was already obtained in the previous section.

Let now b1 < 0, b2 < 0. Then S-conditions are violated, and N-conditions take the
form

ā1 > 0 , a1 > 0, D2 > 0 , θB < θC , θB < 1 − H1ā11. (29)

We can disregard the third inequality of the system (24), since it holds true automatically
at θB < θC.
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At least one of inequalities (29) becomes an equality on the boundary of the N-domain.
At the same time the equality a1 = 0 is possible only if a2 = 0 and D2 = 0simulta-
neously. In that way, the domain can be bounded by the straight lines ā1 = 0, θC = 1 ± θB,
b1 = 0, b2 = 0and by the curve D2 = 0. An example of such a domain and corresponding
boundaries are given in Fig. 5 (ā11 = 1). The domain where the necessary and sufficient
conditions of stability are satisfied is marked out by light-gray color, while the domain
where only the necessary conditions of stability hold true are dark-gray. Note, that the
curve D2 = 0 is tangent to the straight line b2 = 0 at point P1. The curve a1 = 0 also
passes through this point. The straight lines b1 = 0 and b2 = 0 intersect at point P2 where
θB = θC = 1 − H1ā11. Further we analyze the cases ā22 = 1 and ā22 = −1 individually.

If ā22 = 1, then N-domains modify their form qualitatively at specific values of H1
either when the point P1 is located on the straight line θC = 1+H1/3 or at the intersection
of the straight lines θB = θC − 1 and θB = 1 − θC, or when the point P2 is located on the
straight line θB = 1 − θC. From here we get bifurcation values H1 = 3/8, H1 = 1/2, and
H1 = 1. N-domain degenerates at H1 = 1 and vanishes at H1 > 1. The evolution of the
domain form is shown in Fig. 6 where N-domains for solutions (13) in case ā11 = 1 are
presented.

Now let ā11 = −1. N-domain is formed by the straight lines θB = θC, θB + θC = 1,
ā1 = 0, and by the curve D2 = 0. If the parameter H1 increases then the curve D2 = 0
approaches the straight line θB = θC and, as a consequence, N-domain decreases. More-
over, a point P3 (where D2 = 0 and b1 = 0 intersect) shifts. Note, that the condition a1 = 0
also holds at point P3. Qualitative change of the domain’s form takes place at H1 = 1/2
and H1 = 3/4.

The point P3 is located on the boundary θB +θC = 1 of the working region at H1 = 1/2,
and after that the N-domain is bounded only by the lines θB = θC, ā1 = 0, and D2 = 0. At
H1 = 3/4 the point P3 is located on the line ā1 = 0. As a result, the N-domain degenerates
to a point and vanishes. Remember that the domain where sufficient conditions of stability
exist also degenerates to a point and vanishes at H1 = 3/4. Thus, in the case ā11 = −1
at H1 > 3/4, a domain of sufficient and (or) necessary conditions of stability does not

Fig. 5 S-domain (light-gray)
and N-domain (dark-gray)
for solutions (13) at H1 = 0.3
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Fig. 6 Evolution of stability domains for solutions (13) in the case ā22 = 1: (a) H1 = 0, (b) H1 = 0.375,
(c) H1 = 0.5, (d) H1 = 1

exist for solutions (13). Corresponding examples of domains for solutions (13) in the case
ā11 = −1 are shown in Fig. 7.

Now let us consider solutions (15). In this case sin β0 = 0, sin γ0 = 0, cos2 α0 = x2 =
H2

1/9 (1 − θC)2, and the system (26) takes the form

θB ¨̄α + ā1ᾱ = 0,

θC
¨̄β +

[
4 (θB − 1) − 3b1 cos2 α0

]
β + (

b1 − 1
) ˙̄γ cos β0 + 3b1xā31γ̄ cos β0 = 0,

¨̄γ cos β0 + b1

(
1 + 3 cos2 α0

)
γ̄ cos β0 + (

1 − b1
) ˙̄β + 3b1xā31β̄ = 0,

(30)

where

ā1 = 3 (1 − θC) sin2 α0, b1 = θB − θC, a31 = ±
√

1 − x2, cos β0 = ±1.

The characteristic equation of system (30)
(
θBλ2 + ā1

) (
θCλ4 + a1λ2 + a2

)
= 0
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Fig. 7 Evolution of stability domains for solutions (13) in the case ā22 = −1: (a) H1 = 0.1,
(b) H1 = 0.5, (c) enlarged fragment in (b), (d) H1 = 0.6, (e) H1 = 0.75

decomposes into quadratic and biquadratic equations. Here

a1 = 3b1 (θC − 1) cos2 α0 + b1θC + 4 (θB − 1) + (
1 − b1

)2 ,
a2 = 4b1b2, b2 = θB − 1 + 3(θC − 1) cos2 α0.

Necessary conditions of stability (N-conditions) have the form (28). Moreover, the
conditions of existence of solutions (15) must be satisfied, i.e. x2 < 1.
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At least one of inequalities (28) becomes an equality on the boundary of the
N-domain. It is possible to show that the line a1 = 0 cannot be boundary. Indeed, if
a1 = 0 the condition D2 > 0 results in a2 < 0 and violates (28).

The equality ā1 = 0 takes place on the straight lines c1,2 = θC − 1 ∓ H1/3 = 0 and
c3 = θC −1 = 0. The first two straight lines are the boundaries of domains where solutions
(15) exist, while the last straight line can be excluded, since solutions (15) do not exist at
1 − H1/3 < θC < 1 + H1/3.

The condition a2 > 0 holds true either at b1 > 0 and b2 > 0, or at b1 < 0 and b2 < 0.
In the first case all sufficient conditions of stability (22) are satisfied. It is evident that in
this case all necessary conditions of stability (28) are also satisfied, i.e. a1 > 0 and D2 > 0.
Therefore, we get the domain in which necessary and sufficient conditions of stability for
solution (15), already obtained in the previous section, are satisfied.

Now let b1 < 0, b2 < 0. Then sufficient conditions of stability are not met, and necessary
conditions take the form

ā1 > 0 , a1 > 0, D2 > 0 , θB < θC , θB < 1 − 3(θC − 1) cos2 α0. (31)

We can exclude the third inequality of system (24) since it is automatically satisfied if
θB < θC. An example of N-domain in the plane (θB, θC) is shown in Fig. 8.

The curves D2 = 0, b2 = 0, and a1 = 0 intersect in a common point P (more exactly,
the curve a1 = 0 passes through a tangency point of the curves D2 = 0 and b2 = 0). At
small H1 the point P is located between the straight lines c1 = 0 and c2 = 0.

The first bifurcation value H1 = 3/8 occurs when the point P is situated on the line
c1 = 0. At H1 = √

3/2 the point P is on the boundary of the working region θC − θB = 1.
As a result, the N-domain degenerates, and at H1 >

√
3/2 ≈ 0.866 it ceases to exist. The

examples of N-domains for solutions (15) are presented in Fig. 9.
Finally, let us consider solutions (17). In this case sin α0 = 0, sin γ0 = 0, cos2 β0 = 9y2 =

H2
1/(1 − θB)2, and the characteristic equation of the system (25) takes the form

a0λ6 + a1λ4 + a2λ2 + a3 = 0, (32)

Fig. 8 N-domain for solutions
(15) at H1 = 0.4
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Fig. 9 Evolution of stability domains for solutions (15): (a) H1 = 0, (b) H1 = 0.25, (c) enlarged
fragment in (b), (d) H1 = 0.375, (e) enlarged fragment in (d), (f) H1 = 0.6, (g) H1 = 0.866
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where

a0 = θBθC,

a1 = [
θBθC + (1 − θC) (1 − θB + 3θC) + 3θBθC (θB − θC)

]

− (1 − θB)
(

1 + θ2
B − θB − 2θC − θBθC

)
cos2 β0,

a2 =
[
4 (1 − θB) (1 − θC) + 3 (θB − θC)

(
1 − 3θ2

C − θB + 2θC + 2θBθC

)]

+ (1 − θB)
[
4θC − (θB − θC) (5 + 2θB − 12θC) − 3 (1 − θB) (θB − θC) cos2 β0

]

× cos2 β0,

a3 = 4 (1 − θB) (θB − θC)
[
3 (1 − θC) + (1 − θB) cos2 β0

]
sin2 β0 .

The necessary conditions of stability are the conditions of purely imaginary roots of the
polynomial (32), and they can be written as (see Kats 1951)

a1 > 0 , a2 > 0 , a3 > 0,

D2 = a2
1 − 3a0a2 > 0 , D3 = a2

1a2 − 4a0a2
2 + 3a0a1a3 > 0, (33)

D4 = a2
1a2

2 + 18a0a1a2a3 − 4a0a3
2 − 4a3

1a3 − 27a2
0a2

3 > 0.

As in the previous cases, inequalities (24) should hold true together with (33). Moreover,
the condition of existence of solutions (17) must be taken into account, i.e. y2 < 1/9.

At least one of inequalities (33) becomes the equality on the boundary of the N-domain.
It is possible to show that lines a1 = 0 and a2 = 0 cannot be boundaries. Indeed, if a1 = 0
(remind that a0 = θBθC �= 0) the condition D2 > 0 results in a2 < 0 and violates (33). If
a2 = 0(a0 �= 0, a1 �= 0) the condition D4 > 0 results in −4a3

1a3 − 27a2
0a2

3 > 0 witch, in
turn, results in a3 < 0 and also violates (33).

Fig. 10 Typical shape of
domains for solutions (17)
at H1 = 0.3
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Fig. 11 Evolution of stability domains for solutions (17): (a) H1 = 0, (b) H1 = 0.1, (c) H1 = 0.5,
(d) H1 = 0.75.

Thus, it is shown that the N-domain can be bounded by the lines a3 = 0, D2 = 0, D3 = 0
and D4 = 0. Moreover, numerical investigations demonstrate that only the lines a3 = 0 or
D4 = 0 can be the boundaries of domain (33).

It follows from the form of a3 that the equality a3 = 0 takes place on the straight lines
b1,2 = 0

(
θB − 1 ∓ H1 = 0

)
, b3 = 0 (θB = θC), and on the hyperbola

b4 = 0
(

3 (1 − θB) (1 − θC) + H2
1 = 0

)
, while the straight line b5 = 0 (θB = 1) can be

excluded since solutions (17) do not exist at 1 − H1 < θB < 1 + H1. An example of N-
domain in the plane (θB, θC) is shown in Fig. 10. The N-domain is marked out by dark-gray
color and is bounded by the straight line θC = θB −1, and by the curves b4 = 0 and D4 = 0.
The domain of fulfillment of the necessary and sufficient conditions of stability (S-domain)
is marked out in the same figure in light-gray color. It is bounded by the straight lines
θC = 1 − θB, b2 = 0, and b3 = 0. The curves D4 = 0, a2 = 0, and the straight lines b1 = 0
and b4 = 0 intersect in a common point P1 = (

1 + H1, 1 − H1/3
)
.

For varying H1, the evolution of domains is presented in Fig. 11. Figure 11a corresponds
to the case when the aerodynamic torque equals zero (H1 = 0). At H1 �= 0 the line θB = 1
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is split into two straight lines θB = 1 ± H1 (b1,2 = 0). When H1 increases, the band
1 − H1 < θB < 1 + H1, where solutions (17) do not exist, widens, and at H1 = 0.5 the
point P2 is located on the boundary of the working region θC = 1−θB. Thus, the S-domain
degenerates into a point (Fig. 11c), and at H1 > 0.5 ceases to exist.

The N-domain also reduces when H1 increases, and degenerates into a point at H1 = 3/4
when the point P1 is situated on the boundary θC = θB − 1. At H1 > 3/4 N-conditions are
violated in any point of the working region.

6 Conclusion

In this work the attitude motion of a satellite under the action of gravitational and aero-
dynamic torques in a circular orbit has been investigated. The main attention was given
to determination of a satellite equilibrium orientations in the orbital reference frame and
to the analysis of their stability. The numerical method of determination of all satellite
equilibria is suggested in the general case (h1 �= 0, h2 �= 0, h3 �= 0). The explicit expres-
sions for direction cosines as functions of parameters θB, θC, H1 for six groups (13)–(18)
of equilibrium orientations are presented in particular case when h1 �= 0, h2 = 0, h3 = 0.
It is proved that groups of solutions (13), (15), and (17) may be transformed to groups
of solutions (14), (16), and (18), respectively, by the substitutions θB → θC, θC → θB.
Using the Lyapunov theorem, the sufficient conditions of stability of the equilibrium ori-
entations are obtained in the form of simple inequalities. In the final part of the work, the
evolution of domains of the necessary conditions of stability is investigated in detail by
numerical-analytical method in the plane of two dimensionless moments of inertia (θB,
θC) at different values of parameter H1. All bifurcation values of H1 corresponding to
the qualitative change of the stability domains are determined. Moreover, all types of
domains, where sufficient and (or) necessary conditions of stability of solutions (13), (15),
and (17) hold true, are given. Corresponding domains for solutions (14), (16), and (18) are
symmetric to them with respect to the straight line θB = θC.
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