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Abstract The space mission planning process is considered as a hybrid optimal
control problem. Hybrid optimal control problems are problems that include categor-
ical variables in the problem formulation. For example, an interplanetary trajectory
may consist of a sequence of low thrust arcs, impulses and planetary flybys. However,
for each choice of the structure of the mission, for example, for a particular choice of
the number of planetary flybys to be used, there is a corresponding optimal trajectory.
It is not a priori clear which structure will yield the most efficient mission. In this
work we present a mathematical framework for describing such problems and solu-
tion methods for the hybrid optimal control problem based on evolutionary principles
that have the potential for being a robust solver of such problems. As an example, the
methods are used to find the optimal choice of three asteroids to visit in sequence, out
of a set of eight candidate asteroids, in order to minimize the fuel required.

Keywords Mission planning · Trajectory optimization · Evolutionary methods ·
Genetic algorithms

1 Introduction

Many interesting problems in space mission planning are hybrid optimal control
problems. Hybrid optimal control problems (HOCP) are problems that include both
continuous-valued variables such as those for position, velocity and mass of the space-
craft and categorical variables in the problem formulation. For the types of problems
envisioned here the categorical variables will specify the structure or sequence of
events that qualitatively describes the trajectory or mission. For example, for an
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interplanetary spacecraft trajectory a mission could be described by the following
sequence of categorical variables: Earth departure, low-thrust powered heliocentric
flight, Mercury arrival. An equally valid and perhaps lower cost sequence might be:
Earth departure, low-thrust powered heliocentric flight, Venus gravity assist, low-
thrust powered heliocentric flight, Mercury arrival.

An approach to the solution of the HOCP is to separate the problem into an “outer-
loop” that specifies the structure or sequence of categorical variables that will describe
the trajectory or mission (Ross and D’Souza 2005; von Stryk and Glocker 2001) and
an “inner-loop” that optimizes the trajectory for the given sequence, e.g. by a two-
point-boundary-value-problem (TPBVP) solver or by recent methods that convert
the continuous problem into a discrete problem with nonlinear constraints, such as
collocation + nonlinear programming (NLP) (Enright and Conway 1992; Herman and
Conway 1996). The mission event sequence can always be represented as a sequence
of numbers that can be written as a (perhaps lengthy) binary number. It is thus an
integer programming problem.

For every feasible sequence of the categorical variables an optimal trajectory can
in principle be found. The value of the objective function for that particular mission,
i.e. the “cost” of that sequence, can then be associated with that sequence. For “small”
problems one obvious approach is to enumerate all of the possible ways in which
the mission can be accomplished, determine the optimal trajectory for each of them,
and then choose the trajectory with the lowest cost. This would perhaps be a feasible
approach for the Earth to Mercury flight, if there were only a few options available
such as the intermediate flyby of Venus and/or an impulsive velocity change. How-
ever, for problems of even moderate size this is an unreasonable approach since the
number of possible sequences increases rapidly as the number of events allowed in a
sequence (NS) increases.

There are additional difficulties, among which are:

(i) the number of events in the sequence of optimal events (N∗
S)may not be known

a priori,
(ii) transitions from event A to event B may not be allowed, while going from event

A to event C is allowed,
(iii) some events (such as an impulsive departure impulse or an impulsive maneuver

for capture into orbit about a target planet) must only be the first or last event
in the sequence.

A mathematical framework for describing such problems has only recently been
presented. Only a small number of solutions for such problems are available in the
literature. For example, Buss et al. (2002) solve an example problem of three robotic
arms cooperatively transporting an object from an initial position to a goal. von Stryk
and Glocker (2001) create a “benchmark” HOCP they call the motorized traveling
salesman problem. It is similar to the well known traveling salesman problem but
here the salesman drives a car with limited acceleration/deceleration capability and
a limited turning rate. The hybrid problem is to select the order in which a given
set of cities should be visited, i.e. the “tour”, with each city being visited only once,
returning to the departure point, and then, for a given tour, to find the optimal control
time history (and resulting path) to minimize the travel time. The problem is simple
in concept but for N cities there are N!/2 tours, so the problem is NP-complete. Such
problems can be formulated as mixed-integer optimal control problems (MIOCP’s),
however, no general solution techniques are currently available for such problems.
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Thus the “best” approach, or even a feasible approach, for solving all but the simplest
problems remains to be determined.

In this work two methods based on an evolutionary principle, in this case a genetic
algorithm (GA), are applied to the solution of an example mission planning problem.
In the first solution a GA is used as a solver for the “outer-loop” problem of deter-
mining the optimal sequence of events constituting the mission. This is combined with
a robust “inner-loop” solver that discretizes the general continuous trajectory opti-
mization problem and solves it as a NLP problem. In the second solution of the same
problem the “branch and bound” (B&B) method is used as the outer-loop solver and
a GA is used to find the optimal trajectories after the continuous problem has been
converted into a discrete sequence of Lambert problems.

As an example, the problem of departing Earth orbit and visiting 3 asteroids out
of a population of 8 asteroids in various orbits about the Sun is presented. Impulsive
velocity changes are allowed at Earth, at the first asteroid flyby (to arrange intercep-
tion of the second asteroid) and at the second flyby (to arrange interception of the
third asteroid). The objective is to minimize the sum of the three velocity changes.
Of course no asteroid may be visited more than once. The problem is inspired by the
“benchmark” motorized traveling salesman problem but is more ambitious because
(i) the optimizer may choose not only the order of interception but which subset of
targets to visit, (ii) the system equations of motion are nonlinear, and (iii) the asteroid
targets are moving while the cities are of course stationary. The evolutionary methods
we have developed solve this problem very efficiently, that is they require evaluation
of the cost or “fitness” for a relatively small number of the total number of feasible
trajectories.

2 Mathematical description of the HOCP

The first challenge is to create a mathematical formalism for description of the prob-
lem. von Stryk and Glocker (2000) have done this as have Ross and D’Souza (2005).
The latter approach is better suited to aerospace trajectory/mission planning; it is more
flexible, accommodating an event sequence of arbitrary length, and it introduces a
method for categorizing unallowed event transitions that is well suited to the solution
method we propose to use.

A maneuver automaton can be described in a directed graph or “digraph” (Ross
and D’Souza 2005). Figure 1 shows a digraph for an example problem in which there
are three possible events that can be combined in some order to qualitatively describe
the mission plan. The categorical state space, that is, the totality of events, is graphi-
cally depicted, as are the allowed transitions. The edges shown represent the allowed
transitions. Depending on the nature of events the edges may require changes in the
system dynamics from one vector field to another.

A succinct description of the mathematical formalism for the hybrid optimal
control problem follows. Suppose that the categorical state space for the problem
(e.g. from its digraph) is

Q = {qa, qb, qc} (1)

with cardinality NQ (NQ = 3 for this example).
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Fig. 1 Digraph for a simple mission

A mission plan is described qualitatively by an event (or maneuver) sequence
string, e.g.

q1 = (qa, qb, qc, qa) (2)

with events chosen from the categorical state space.
Associated with each state q ∈ Q is a continuous-time dynamical system

ẋ = f (x, u, v, t) (3)

with states x ∈ RNq
x and controls u ∈ RNq

u , i.e. the number of state and control variables
may depend on the event q, as mentioned previously.

It is important to model or encode the information contained in the digraph, espe-
cially the unallowed transitions. Ross and D’Souza (2005) describe a “switching set”
S(qi, qk). If S(qi, qk) �= 0 then transition from event qi to event qk is allowed, i.e.
(qi, qk) is an edge of the digraph whose vertices are qi and qk. If S(qi, qk) = 0 then the
transition is not allowed. The system adjacency matrix A can be used to encode the
digraph [1].

Let matrix A, having dimension NQ × NQ, have elements Aik such that:

Aik =
{

1, if S(qi, qk) �= 0
0, if S(qi, qk) = 0

}
(4)

Then A contains all the information on the allowed transitions.
The outer-loop problem of determining the optimal sequence (of length NS, not

known a priori) of the categorical variables, q, can now be redefined as the problem
of finding the optimal value of the matrix �, with � ∈ DNQ×NS . That is, the optimal
sequence q, of length NS, can be determined as the “product” of the categorical state
space, expressed as a 1 × NQ, row vector, and the matrix �:

q = [Q]∗� (5)

To prevent q from containing unallowed transitions, the � matrix must be consistent
with the digraph. This requires that elements of � satisfy the relation:

�i,j+1 ∈ {Aki, 0} for �kj = 1, i = 1, 2, . . . , NQ; j = 1, 2, . . . , NS (6)
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i.e. if �kj = 1, then �i,j+1 can only assume the values 0 or the Aki element of the
adjacency matrix, or to put it another way, in a feasible choice of the � matrix, if
element�kj = 1, then element�i,j+1 can be 1 only if the Aki element of the adjacency
matrix is 1, that is, if the transition S(qi, qk) �= 0.

2.1 Solution of the inner-loop optimal control problem

To determine the optimal event sequence q∗ one must be able to determine the cost
or objective function of the optimal trajectory corresponding to sequence q. That is,
one must solve the inner-loop optimal control problem, which will normally be a con-
tinuous optimal control problem that can be modeled as a Bolza or Mayer problem
for which the necessary conditions of optimality form a two-point-boundary-value
problem. There are many approaches available for solving such problems. The solu-
tion methods are generally categorized as indirect or direct depending on whether
the necessary conditions are or are not explicitly considered, respectively. Practically
speaking, indirect solutions employ the Lagrange multipliers or costate variables
of the problem while direct solutions do not. Direct methods, e.g. collocation with
nonlinear programming (DCNLP) (Enright and Conway 1991; Enright and Conway
1992; Herman and Conway 1996), pseudospectral methods (Ross and Fahroo 2004),
or Runge–Kutta (R–K) parallel shooting (Enright 1991; Enright and Conway 1992)
have been developed in the past two decades and are probably the most efficient and
robust methods extant for the solution of such optimal control problems.

The method used in the solution of the example problem in this work is the R–K
parallel shooting method. In this method a continuous optimal control problem is
transcribed into a discrete problem, which becomes a NLP problem. The structure of
the transcribed problem is shown in the cartoon of Fig. 2. The cartoon shows how con-
tinuous time is divided into N segments, the boundaries being the problem “nodes.”
A representative state time history is shown; note that the state assumes values only
at the nodes. Of course for a feasible solution there must be some way of relating the
values of the state and control variables at adjacent nodes so that the system differen-
tial equations (3) are satisfied. The R–K parallel shooting method accomplishes this.
It is illustrated in Fig. 3, which shows just one of the segments from Fig. 2 further
divided into 3 internal segments.

x1 x2 x3

Nodes

Segments

States

1 2 3 N-1 N N+1

xN-1

xN

xN+1

N-1 N1 2

Fig. 2 Discretization of the problem when using collocation or R–K parallel shooting
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Fig. 3 Structure for 3-step R–K implicit integration scheme

In this scheme, the left side state of each segment is propagated to the right side
node by using the control parameters, the u’s and v’s shown in the cartoon, defined
within the segment, yielding a continuity constraint, or “defect.” The defect is the
difference, at the right-hand side, between the value of the state (x∗

i ) obtained by
propagation from the left-hand side, using the starting value xi−1 and three succes-
sive applications of the well known 4-step implicit R–K integration formula, and the
current value of the state at the right-hand side known to the NLP solver, i.e. xi. The
defect x∗

i − xi is a nonlinear constraint equation which is a function of the state vector
at the left-hand side and all of the intervening control variables (if any).

The inner-loop optimal control problem thus becomes a nonlinear programming
problem. The NLP parameters can be defined as a single vector P that collects all the
independent variables, which are ordinarily the discrete state and control variables
but often also important event times, such as the final time tf, i.e.

PT = [
ZT]

where, for example, one might have ZT =
(

xT
1 , uT

1 , xT
2 , uT

2 , . . . , xT
N+1, uT

N+1, tf
)

.

In the same manner, the nonlinear constraints, all or most of which are the defect
equations, can be collected into a vector CT . The NLP problem becomes:

Minimize φ(P)

subject to

bL ≤



P
AP

C (P)


 ≤ bU

where AP is formed by all the linear constraints of the problem, and vectors bL and
bU are the lower and upper bounds, respectively, of the parameters and constraints.

Fixed initial and terminal conditions for some state parameters are easily enforced
by setting the upper and lower bounds to the specified value. The upper and lower
bounds for the nonlinear constraints corresponding to the defects are set to zero,
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because this forces the solver to choose values for the parameters that satisfy the
EOMs when they are integrated forward using the R–K rule within each segment.
Once the NLP problem is clearly defined, it can be solved by using dense or sparse
solvers such as NPSOL or SNOPT (Gill et al. 1998), respectively. However, since the
problem is sparse large problems benefit greatly from using the SNOPT solver.

2.2 Summary of the HOCP

Assuming that there exists an inner-loop solver capable of determining the optimal
trajectory for each feasible sequence q, the problem of determining the optimal event
sequence q∗ (and with it the optimal trajectory and optimal control) becomes an
integer programming problem:

Find �, NS
subject to � ∈ DNQ×NS

NS ≤ NS,max

(7)

That is, � and NS implicitly determine the optimal event sequence q∗ through Eq. 5.
Returning to the outer-loop optimal control problem; in principle all feasible

sequences of events q (of length NS,max) could be enumerated and for each the inner-
loop problem solved. The optimal choice would then be the one with the smallest
objective function. This total enumeration approach would be costly and very ineffi-
cient for all but the simplest problems. The research challenge is to find the optimal�
and NS while determining as few as possible of the optimal trajectories for the feasible
sequences, i.e. while solving the time-consuming inner-loop problem as few times as
possible.

3 Evolutionary optimization methods applied to the HOCP

A genetic algorithm is a search algorithm using the mechanism of natural genetics to
find a set of parameters having the best “fitness.” The mechanism of a simple GA is
described here in accordance with a text by Goldberg (1989). A numerical analysis
code used in this research, which is provided by Carroll (1998), is also consistent with
this description of GA.

First, the approximate optimal trajectory needs to be determinable given a set of
discrete parameters, for example, initial unspecified state and costate variables and
an estimate of the final time (if the final time is “free”). This set of parameters needs
to be expressed in binary form. The binary numbers are then placed in a “string,”
becoming an individual. A simple GA searches for the best individual from a popu-
lation. Each individual in a population is randomly provided in a search area at the
beginning of the simple GA operation. The simple GA has better convergence char-
acteristics as the population size, n, is larger and length of string, l, is generally smaller.
A simple GA improves the individuals in a population via three genetic operators,
reproduction, crossover and mutation, in a generation. Reproduction is a process to
select the individuals surviving into the next generation. A tournament selection is
the most popular reproduction operator; it compares two individuals and selects one,
which has a better cost, for the next generation. A crossover operator is the most
“genetic” algorithm. A simple crossover operator, single-point crossover, selects two
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individuals, who have survived into the next generation, cuts each individual string at
the same point and exchanges a part of each string under crossover probability pc. A
mutation operator flips a digit in a string under mutation probability pm. The muta-
tion applies to all digits in all individual strings after operations of reproduction and
crossover. The simple GA operation is convergent when the best individual through
a population is not improved even if the generation proceeds.

As an example, a flight-path optimization problem may be expressed as

V = max
u

J(x(tf), tf) (8)

with system governing Eq. 3, initial conditions

χ(x(t0), t0) = 0 (9)

and terminal constraints

ψ(x(tf), tf) = 0 (10)

In a simple GA operation, a cost function is defined as:

Jfit = J(x(tf), tf)− kψ(x(tf), tf)
Tψ(x(tf), tf) (11)

that is, the terminal constraint (10) is dealt with using penalty terms in (11) with
weighting coefficients, k. The dynamic system (3) can be numerically integrated to
obtain the state variables at the terminal time. Some of the initial states required are
found using (9); remaining initial states are optimized parameters. Other parameters
optimized in the simple GA operation are the final time (if time is free) and discretized
control variables.

Using GA for the solution of the outer-loop problem of determining the optimal
sequence of events for the mission, q∗, seems natural since every event in the set of
categorical variables Q can be represented by an integer and hence any sequence q
can be represented by a string of 0’s and 1’s. Alternatively, the matrix � of Eqs. (5)
and (6), which represents the solution to the integer programming problem, i.e. it
determines the optimal sequence of events q∗ through (5), is composed entirely of
elements which are either 0 or 1. It could be encoded into a string for use in a GA. We
have experience with the first approach, which will be described in the next section.

The advantages of using GA for numerical optimization are well-known: (i) GA’s
are generally fast and robust; (ii) it is generally straightforward to create a solver using
GA, e.g. in comparison to deriving analytical necessary conditions using the calculus
of variations, and (iii) GA’s need no a priori information about the solution, in fact
they begin from a randomly generated guess.

3.1 Solution of constrained problems, i.e. those with unallowed transitions

In order to use a GA as an outer-loop problem solver the GA must accommodate
information regarding unallowed transitions, i.e. transitions from event qi to event qk
such that the switching function S(qi, qk) = 0, which is equivalent to having element
Aik of the adjacency matrix A equal to 0. One of the very attractive characteristics of
the GA method of optimization is that the initial population is created randomly, that
is, no initial information regarding the optimal solution is required by the method.
However, this will guarantee that the initial population will include unallowed strings,
those with unallowed transitions of events. It is also certain that the GA processes of
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crossover and mutation will create unallowed strings from parent strings that are free
of them. The question for future research is how best to remove unallowed strings
from the population. We believe there are two possible satisfactory approaches. The
first approach is the obvious one; filter out unallowed strings as soon as they are
created. This approach may be problematic as it creates the need for immediate
replacement of lost strings if the population size is not to decrease. An alternative
that we have derived is to use “fitness-augmentation” to remove unallowed strings
via natural selection. That is, we give unallowed strings a supplemental cost so that
their total objective function is so large that they are unlikely to propagate into the
next generation.

4 Example: multi-asteroid interception mission

A spacecraft is to depart Earth orbit about the Sun and visit 3 asteroids out of a
population of 8 asteroids in various orbits about the Sun. Impulsive velocity changes
are allowed at Earth, at the first asteroid flyby (to arrange interception of the second
asteroid) and at the second flyby (to arrange interception of the third asteroid). The
objective is to minimize the sum of the three velocity changes (�V1 +�V2 +�V3).
The times of interception of the three asteroids are free variables to be chosen by the
optimizer. No asteroid may be visited more than once.

To simplify the problem the orbit of the Earth is assumed circular and the aster-
oids are in circular orbits in the ecliptic plane, making the problem two-dimensional.
Canonical units are used in which 1 AU is one distance unit (DU) and 2π time units
(TU) equal the period of an orbit at 1 AU (i.e. 1 year), thus the gravitational parameter
µSun = 1 DU3/TU2. The system equations of motion for the spacecraft then become:

dr
dt

= vr

dθ
dt

= vθ /r

dvr

dt
= v2

θ /r − 1/r2

dvθ
dt

= −vθvr/r

(12)

If the times of interception of the three asteroids are t1, t2, t3, respectively, then the
interception conditions are:

r(ti) = rast(ti), θ(ti) = θast(ti), i = 1, 2, or 3. (13)

At the initial time, the polar coordinates of the spacecraft (and Earth) are r = 1 AU
and θ = 0. The initial locations of the eight asteroids are given in Table 1.

Table 1 Initial positions of asteroids

Asteroid 1 2 3 4 5 6 7 8

r 1.450 1.699 2.001 1.490 1.650 1.730 1.960 1.700
θ 0.377 0.564 0.761 0.430 0.512 0.617 0.708 0.812
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4.1 Solution via GA + NLP

The outer-loop problem is to determine the choice of asteroids to be visited and the
order of interception. This is a particularly straightforward problem to convert for
solution by GA; the chromosome for the problem is a string of 9 binary numbers,
for example |001| 110 |010|, representing a mission to asteroids 2, 7 and 3 (since the
asteroids are labeled 1–8). The population size was arbitrarily chosen to be 30. The
initial population is randomly generated. The inner-loop problem is to determine the
optimal trajectories, for the three “legs” of the mission; Earth to first asteroid, first
to second asteroid, and second to third asteroid, satisfying conditions (13) while min-
imizing total �V. The R–K parallel shooting method described in Sect. 2.1 is used.
We chose to use 35 segments for each of the three legs of the flight; thus there are
108 problem nodes. With 4 state and no control variables in the equations of motion
(12) there are 432 states as NLP parameters. There are additionally three impulses
applied and for each impulse the magnitude, direction and time of the impulse (or
asteroid encounter) need to be specified, yielding 9 more variables. The NLP problem
thus consists of optimally determining 432 + 9 = 441 NLP parameters subject to
105 × 4 = 420 nonlinear constraint equations, 6 interior-point constraints (13) rep-
resenting the interceptions, 4 constraints describing the continuity of the two state
(position) variables before and after the impulses applied at the 1st and 2nd asteroids,
4 constraints relating the discontinuity of the state (velocity) variables to the impulses
applied at the 1st and 2nd asteroids, and various initial conditions.

The progress in time of the solution algorithm is shown in Table 2. The first row
(generation 1) results differ from subsequent results because the first generation con-
sists of randomly generated strings. It indicates that of the 30 asteroid visit sequences
generated 11 are infeasible, which here implies that these 11 strings do not specify

Table 2 Progress of the GA solution

Generation Infeasible Cumulative Best cost (DV) Average cost Best sequence
sequences evaluations DU/TU (DV) DU/TU found

1 11 19 0.219 20.1805 8-1-4
2 6 36 0.216 15.2037 5-1-8
3 12 44 0.1876 21.828 8-5-4
4 9 57 0.1876 16.8529 8-5-4
5 4 66 0.1876 6.9009 8-5-4
6 3 75 0.1672 5.2374 8-4-5
7 6 81 0.1672 11.8666 8-4-5
8 9 85 0.1672 18.4812 8-4-5
9 7 89 0.1672 20.1498 8-4-5
10 8 93 0.1672 18.478 8-4-5
11 8 95 0.1672 13.5151 8-4-5
12 2 98 0.1672 3.563 8-4-5
13 6 100 0.1672 11.8382 8-4-5
14 5 100 0.1672 10.1688 8-4-5
15 1 101 0.1672 1.869 8-4-5
16 0 101 0.1672 0.199 8-4-5
17 2 101 0.1672 3.5143 8-4-5
18 0 103 0.1672 0.1848 8-4-5
19 0 103 0.1672 0.1816 8-4-5
20 0 103 0.1672 0.1721 8-4-5
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three different asteroids. For the 19 feasible strings optimal trajectories are found
using the NLP based inner-loop problem solver described in Sect. 2.1. The best solu-
tion, visiting asteroids in the sequence 8-1-4, has a total �V of 0.219 DU/TU. The 30
individuals in the first generation are then subjected to the evolutionary processes of
selection, crossover and mutation, as described in Sect. 3. The “fitness-augmentation”
method described in Sect. 3.1 is used to remove unallowed strings via natural selec-
tion. This yields a new population of 30 individuals; 6 of which are infeasible. Only
17 new optimal trajectories need to be found by the inner-loop solver, as there is no
need to determine solutions for either infeasible strings or new strings which are the
same as strings found in a previous generation, bringing the cumulative number of
inner-loop problem solutions at the 2nd generation to 36.

By the 6th generation we see in retrospect that the GA has found the optimal
sequence of asteroids to visit (8-4-5) but the process is continued for a fixed term of
20 generations in the event a better sequence is located. The optimal trajectory is
shown in Fig. 4. A total of 103 solutions of the inner-loop continuous optimal control
problem are required. Note that a total enumeration of all of the possible ways in which
3 asteroids can be chosen, without repetition, from a set of 8 asteroids, would require
336 optimal trajectories. The GA + NLP hybrid optimal control problem solver thus
locates the minimum without needing to find solutions for more than a fraction of the
total possible solutions. (This fraction would be significantly smaller if the GA had
been programmed to stop after the same best sequence had been found several times
in a row, rather than proceeding for a full 20 generations.)

4.2 Solution via branch and bound + GA

The same problem has been solved using a different evolutionary algorithm. For the
second solution the branch and bound (B&B) method (von Stryk and Glocker 2001)
has been used as the outer-loop solver. B&B is an optimization method widely used in

x

y

Spacecraft Trajectory

Orbit of Asteroid 8

Orbit of Asteroid 4

Orbit of Asteroid 5

Earth Orbit

positions at departure

positions at arrival

Fig. 4 Optimal asteroid interception trajectory for case 8-4-5
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level 2 

level 3 

a b c

b c a c a

a c a b c a b c

Fig. 5 Decision tree for branch and bound method

industrial applications such as process optimization and task scheduling. It has been
applied recently for discrete optimization in the context of HOCP’s.

The construction of an event sequence requires a decision process for each event
that is placed in the sequence. The set of all the possible choices can be depicted
graphically as a tree. Fig. 5 shows a decision tree with Ns1 = 3 corresponding to the
digraph shown in Figure 1. The notation for the states, qi, is changed to i for clarity in
the figure.

The tree traverse starts at level 0 by taking the root node as the current parent
and selecting a child node from among those in level 1. The chosen node constitutes
the first event in the sequence and becomes the parent for the next selection to be
performed over its children in level 2. This process continues until the search arrives
at one of the leaves at level Ns1 when a complete sequence has been determined.

Every selection of a child node during the traverse yields a partial sequence that
is a relaxed instance of a nominal problem, i.e. a complete sequence. Optimal con-
trol theory states that a problem with relaxed or fewer constraints has a smaller cost
than the nominal problem. Hence, evaluating partial branches of the tree provides
lower bounds that can be compared with the cost of a complete “incumbent” solution
sequence. The incumbent solution is a feasible suboptimal sequence of length Ns1
that can be easily found by intuition or experience. If the cost of any of the partial
sequences is higher than that of the incumbent, the tree can be pruned at that node
because no sequence proceeding from that point will have a smaller cost.

When the search arrives at a leaf and the complete sequence is found to be better
than the incumbent, the newly found sequence becomes the new incumbent. This
operation may indicate that performing a depth-first search on the tree may be more
efficient than a breadth-first approach. Modeling is also a very important matter to
ensure that relaxations of the problem exist in order to compute the cost of partial
sequences.

An important feature of the method is that it is not heuristic. It finds the best solu-
tion while reducing the search space methodically. The performance of the method
is affected primarily by the selection of the incumbent solution sequence. A poor
incumbent will do little to prune the tree in a significant way causing the search to be
similar to total enumeration. A good incumbent, however, will find the best global
solution by performing a small number of candidate evaluations. A more subtle issue
is the order of evaluation of nodes at a particular level. This can be done left-to-right



Evolutionary principles applied to mission planning problems 85

or vice versa. One search direction can be better than the other depending on the
location of the leaf that completes the best sequence, which is not known a priori.

A GA was used as the inner-loop problem solver. The only GA parameters for
this problem were the transfer times on the three legs of the trajectory. Given the
transfer times the positions of the asteroids at the interception times can be calcu-
lated. With this information a Lambert’s solution, including the magnitude of the
impulse required to arrive at the asteroid in the given transfer time, can be found
using the universal Lambert solver (Battin 1987). Because the solution is exact, the
equations of motion (3) are not required. This is of course a great simplification in
comparison to the integration of the equations of motion (3) that was required when
the GA + NLP solver was used. However that solver, as previously mentioned, could
easily accommodate more complicated systems, for example where low-thrust pro-
pulsion is used or where the attraction of a third body is included as a perturbation,
while the approach using Lambert’s method cannot be extended to such cases.

Two versions of relaxed problems were required by the B&B method. Fortunately
for this case relaxed versions of the problem exist naturally and have a physical sig-
nificance. The first relaxation was defined as the minimum-fuel intercept of only the
first asteroid since any two-asteroid sequence that includes the first asteroid must
have a greater or equal cost. Similarly, the second relaxed problem was defined as the
minimum-fuel interception of the first two asteroids. Each GA was run for 100 gener-
ations. After 8 single-asteroid interception evaluations, 56 two-asteroid interception
evaluations, and 132 three-asteroid interception evaluations the optimal sequence of
asteroids to visit (8-4-5) was found with a cost �V = 0.1688 AU/TU. The small dis-
crepancy between the cost for the previous GA + NLP solution (0.1672 AU/TU) and
that of the B&B + GA solution can be attributed to the way in which the GA solves
the inner-loop problem. There is an imprecise resolution in the flight time parameters
that necessarily results when the GA needs to describe a base 10 number with a binary
number of reasonably modest length. That is, the GA found interception times for the
1st, 2nd, and 3rd asteroids of 2.92, 13.85 and 20.85 TU, respectively, to 2 decimal place
accuracy. The nearly exact results obtained using the transcription of the problem
into a NLP problem via R–K parallel shooting were 2.9114, 13.8469, and 20.8820 TU,
respectively. Of course the inner-loop solver using transcription to a NLP problem is
much more precise.

Note that even use of the B&B algorithm cannot guarantee location of the global
minimum for MIOCP’s with nonlinear dynamics subject to nonlinear constraints
and with transitions at unspecified event times. Thus as an additional check, the
B&B + GA solver was run for all 336 possible itineraries for visiting three asteroids out
of the 8 available and this again confirmed the result that the 8-4-5 itinerary yields the
global minimum.

5 Conclusions

The problem of optimal space mission planning has been described as a problem in
hybrid optimal control theory. While no general methods exist for the solution of such
problems two algorithms using evolutionary principles have been discussed and dem-
onstrated in the solution of a simple but challenging orbit transfer problem. For hybrid
optimal control problems perhaps the most relevant measure of performance is how
many possible solutions need to be determined, in comparison to total enumeration
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of the solution space, in order to locate the global minimum. By this measure both
algorithms do quite well, so that these or similar algorithms have the potential to save
mission planners much effort. Future work will apply the method to more challenging
trajectories and cases where total enumeration is clearly impractical. The researchers’
goal is to enable the evolutionary methods to create an optimal interplanetary tra-
jectory autonomously from a catalog of possible maneuvers such as low-thrust arcs,
impulses, and planetary flybys.

References

Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. AIAA (1987)
Buss, M., Hardt, M., von Stryk, O.: Numerical solution of hybrid optimal control problems with appli-

cations in robotics. Proc. 15th IFAC World Congress on Automatic Control, Barcelona (2002)
Carroll, D.L.: Fortran Genetic Algorithm (GA) Driver (1998). http://www.staff.uiuc.edu/

∼carroll/ga.html
Enright, P.J.: Optimal finite thrust spacecraft trajectories using direct transcription and nonlinear

programming. Ph.D. Thesis, University of Illinois at Urbana-Champaign (1991)
Enright, P.J., Conway, B.A.: Optimal finite-thrust spacecraft trajectories using collocation and non-

linear programming. J. Guidance, Control Dynamics 14(5), 981–985 (1991)
Enright, P.J., Conway, B.A.: Discrete approximations to optimal trajectories using direct transcription

and nonlinear programming. J. Guidance, Control, Dynamics 15(4), 994–1002 (1992)
Gill, P. E., Murray, W., Saunders, M.A.: User’s Guide for SNOPT 5.3: A Fortran Package for Large-

scale Nonlinear Programming. Stanford Univ., Stanford, CA (Jan. 1998)
Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA,

Addison-Wesley (1989)
Herman, A.L., Conway, B.A.: Direct optimization using collocation based on high-order

Gauss-Lobatto Quadrature Rules. J. Guidance, Control, Dynamics 19(3), 592–599 (1996)
Ross, I.M., Fahroo, F.: Pseudospectral knotting methods for solving optimal control problems.

J. Guidance, Control, Dynamics 27(3) 397–405 (2004)
Ross, I.M., D’Souza, C.N.: A hybrid optimal control framework for mission planning. J. Guidance,

Control, Dynamics 28(4), 686–697 (2005)
von Stryk, O., Glocker, M.: Decomposition of mixed-integer optimal control problems using branch

and bound and sparse direct collocation. In: Engell, S., Zaytoon, J. (eds.) Proc. 4th Int. Conf. on
Automation of Mixed Processes: Hybrid Dynamic Systems, Dortmund, pp. 99–104 (2000)

von Stryk, O., Glocker, M.: Numerical mixed-integer optimal control and motorized traveling
salesman problems. Eur. J. Control 35(4), 519–533 (2001)


	Evolutionary principles applied to mission planning problems
	Abstract
	Introduction
	Mathematical description of the HOCP
	Solution of the inner-loop optimal control problem
	Summary of the HOCP
	Evolutionary optimization methods applied to the HOCP
	Solution of constrained problems, i.e. those with unallowed transitions
	Example: multi-asteroid interception mission
	Solution via GA+NLP
	Solution via branch and bound+GA
	Conclusions
	References

