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Abstract A sixth-order accurate scheme is presented for the solution of ODE
systems supplemented by two-point boundary conditions. The proposed integration
scheme is a linear multi-point method of sixth-order accuracy successfully used in
fluid dynamics and implemented for the first time in astrodynamics applications. A
discretization molecule made up of just four grid points attains a O(h6) accuracy which
is beyond the first Dahlquist’s stability barrier. Astrodynamics applications concern
the computation of libration point halo orbits, in the restricted three- and four-body
models, and the design of an optimal control strategy for a low thrust libration point
mission.

Keywords Non-linear boundary value problem · Restricted three-body problem ·
Bicircular four-body problem · Halo orbits

1 Introduction

Two-point boundary value problems (TPBVPs) appear frequently in astrodynamics
when solving a system of ordinary differential equations (ODEs) with boundary con-
ditions on both sides of the integration interval is required. A typical example occurs
in preliminary mission analysis in the frame of the two-body problem, in which an arc
linking two fixed points in a given time is required—the classic Lambert’s problem.
Such a problem can be solved by using efficient semi-analytical algorithms since an
analytic solution is available in the case of Kepler’s problem (Battin 1987). Another
example of TPBVP is solving an optimal control problem: the full system, made up
by the states and the Lagrange multipliers dynamics, must be solved by respecting
generic initial and final conditions derived by problem requirements. This kind of
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problem is typically difficult to solve due to the doubled dimension of the system,
the non-linear behavior of the Lagrange multipliers and their non-physical meaning,
which frequently results in the lack of an appropriate initial guess.

Numerical methods for solving initial value problems (IVPs) are more developed
than methods for solving BVPs. The latter are usually solved employing simple or
multiple shooting schemes, in which the boundary value problem is divided into
several IVPs to be solved within each subinterval. Such methods can reach effec-
tive convergence but are highly sensitive to intermediate initial conditions when the
subintervals become large. The technique proposed in this paper belongs to a class
called difference methods according to the standard classification of Stoer and Bulirsch
(1993) which are based on the discretization of first-order ODEs over an appropriate
grid. The resulting finite-dimensional problem, satisfying both the defects, resulting
by the discretization process, and the boundary conditions, is solved. In this paper, we
present a method which can solve a large class of BVPs and apply it for the first time
in astrodynamics.

Quartapelle and Rebay (1990) developed a discretization strategy based on linear
approximations of both sides of the first-order system of differential equations, similar
to the linear multi-step methods in solving IVPs. The discrete approximations of the
two-point boundary value problems is made to embody the fundamental theorem of
differential calculus, whose exact fulfillment is reproduced at the level of the discrete
equations. This is achieved by retaining a discrete representation of the entire prob-
lem, consisting of the equations and supplementary conditions, by means of discrete
equations linking the unknowns at all grid points. The presence of this special equation
involving the discrete unknowns gives to the method an intrinsically implicit character:
hence the name linear multi-point method, to underline the difference with respect to
the time-marching nature of the linear multi-step schemes for initial value problems.
In its original presentation this method was of fourth- and sixth-order accuracy and
involved four and six grid points at each discretization interval, respectively.

Recently, Quartapelle and Scandroglio (2003) have implemented a new linear
multi-point scheme, following a suggestion of Paolo Luchini, to reach sixth-order
accuracy with improved computational efficiency. This new scheme resorts to four
grid points instead of six to attain an accuracy beyond the first Dahlquist’s stability
barrier. This formulation gives rise to an algebraic system characterized by a bor-
dered quadri-diagonal matrix that can be easily factorized. This new method has
been successively applied in fluid dynamics to determine the multiple solutions of the
Falkner–Skan equation for normal and reverse flows.

The sixth-order linear multi-point method (LMPM) of Quartapelle and Scandroglio
has been revised and applied to BVPs in astrodynamics. The core of the method has
been preserved and described throughout the paper for the sake of clarity. As a coun-
terpoint, the computation of periodic orbits, for which the final time is unknown, has
required a further improvement. The original dynamical system has been rearranged
by introducing a new independent variable and adding an auxiliary differential equa-
tion for the final time. This allows us in computing the L1 and L2 halo orbits appearing
in the three-body problem with the Earth and Moon as primaries. We then analyze
how these orbits behave when the gravitational attraction of the Sun is taken into
account. In the latter case, an exceptional behavior occurs around the L2 point, where
there is a strong effect due to the 2:1 resonance between the frequency of the halo
orbits and the synodical frequency of the Sun in the Earth–Moon system (Masdemont
and Mondelo 2004). This effect causes a sort of “breakage” in the periodicity of halo
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orbits. Even if periodic solutions are found for a specific phase of the Sun, we will talk
about quasi-periodic halo orbits because the periodicity is lost in successive times as
the Sun moves in its circular orbit. Finally, a more complicated BVP, concerning the
design of an optimal control strategy for a low thrust libration point mission is solved.

This paper is organized as follows. The next section illustrates the problem state-
ments: the equations of the restricted three-body problem (R3BP) and the restricted
four-body problem (R4BP) with their respective boundary conditions. Then the
Euler–Lagrange equations and the boundary conditions are derived for the opti-
mal control case. In Sect. 3 we reproduce the construction of the sixth-order accurate
method for discretizing a general dynamics in first-order form. Then the Newton’s
method for the iterative solution to a system of non-linear algebraic equations is illus-
trated. In Sect. 4 we show the solutions to the above problems obtained by the O(h6)

LMPM. In the Appendix, the algorithmic flow chart of the method and the block
bordered quadri-diagonal profile of the matrix corresponding to the discretization
scheme are reported.

2 Problem statement

In this section the systems of ODEs to be solved with LMPM are described; for a
detailed derivation of the equations of motion, refer to Szebehely (1967) for R3BP,
Simó et al. (1995) for R4BP, and Bryson and Ho (1975) for the necessary conditions
of the optimal control problem.

2.1 Restricted three-body problem

The differential equations describing the motion of a negligible mass under the grav-
itational attraction of the Earth and the Moon (primaries) are written in a synodic
reference frame

ẍ − 2ẏ = ∂�3

∂x
, ÿ + 2ẋ = ∂�3

∂y
, z̈ = ∂�3

∂z
, (1)

in which the three-body centrifugal–gravitational potential function is

�3(x, y, z) = 1
2
(x2 + y2) + 1 − µ

r1
+ µ

r2
+ 1

2
µ(1 − µ), (2)

and (x, y, z) are the co-ordinates of the spacecraft. System of equations (1) is written in
dimensionless units that set the sum of the masses of the primaries, their distance, and
their angular velocity equal to one. The Moon has mass µ and is located at (1−µ, 0, 0)

while the Earth has mass 1 − µ and is placed at (−µ, 0, 0). The mass parameter used
for the Earth–Moon problem is µ = 0.01215 0582. The distances in Eq. 2 are

r2
1 = (x + µ)2 + y2 + z2, r2

2 = (x − 1 + µ)2 + y2 + z2. (3)

Dynamical system (1) presents five points of equilibrium. Three points L1, L2
and L3, called collinear, are aligned with the primaries; the L4 and L5 points, called
triangular, are at the vertex of two equilateral triangles with the primaries. In a linear
analysis collinear points behave like the product of a saddle × a 4D center, and this
paper is mostly focused on the L1 and L2 periodic orbits arising from the presence
of the center part. This region, indeed, is characterized by the presence of planar and
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vertical Lyapunov orbits, three-dimensional halo and quasi-halo orbits, and Lissajous
trajectories. Halo orbits are large orbits with equal in-plane and out-of-plane fre-
quencies. Such orbits are usually obtained by means of a simple shooting method
which corrects a third-order analytic first guess obtained by expanding in power series
the gravitational terms in Eq. 2; this procedure is called the “Richardson method”
(Richardson 1980; Thurman and Worfolk 1996). A more refined process consists
of expanding the gravitational terms up to an arbitrary order, using the Lindstedt–
Poincaré method, and then correcting this initial guess in a complete ephemeris model
with a multiple shooting technique; this is the method used by the “Barcelona group”
(Masdemont 2005; Gómez et al. 2000).

In this paper, the developed O(h6) LMPM is used to correct a first guess obtained
by means of a third order analytical solution. These corrections are carried out both
under three- and four-body dynamics.

2.2 Restricted four-body problem

When the presence of the Sun is taken into account, the resulting dynamical system
is no longer autonomous since the Sun does not have a fixed position in the synodic
system. In order to make the system autonomous, an additional “clock” equation
must be added to system (1) (Yagasaki 2004)

ẍ − 2ẏ = ∂�4

∂x
, ÿ + 2ẋ = ∂�4

∂y
, z̈ = ∂�4

∂z
, θ̇ = ωS, (4)

in which the potential function accounts for the gravitational attraction given by the
presence of the Sun

�4(x, y, z, θ) = �3(x, y, z) + mS

r3
− mS

ρ2 (x cos θ + y sin θ). (5)

The dimensionless physical parameters of the Sun are assumed to be in agree-
ment with the rotating and normalized Earth–Moon system introduced in Sect. 2.1.
The distance between the Sun and the Earth–Moon barycenter corresponds to ρ =
3.8881 × 102, the mass of the Sun is mS = 3.2890 × 105, and its angular velocity with
respect to the Earth–Moon synodic system is ωS = −0.9251. With these constants the
co-ordinates of the Sun are given by {ρ cos θ , ρ sin θ , 0}T and so the Sun–spacecraft
distance is

r2
3 = (x − ρ cos θ)2 + (y − ρ sin θ)2 + z2. (6)

Note that the bicircular system (4) is not coherent because the primaries do not
respect Newton’s equations. However, it is expected to be a good approximation of
the real four-body dynamics because the Earth and Moon eccentricity is equal to 0.016
and 0.054, respectively, and the Moon’s orbit is inclined to the ecliptic by only 5◦.

2.3 First-order reduction and periodicity conditions

In solving a boundary value problem using LMPM, the equations of motion, either
those describing the three- or the four-body dynamics, must be written in the generic
first-order form

ẏ = f(t, y). (7)
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It is straightforward that the states y and the vector field f have a different meaning
for the two models discussed; in the R3BP

y = {
x, y, z, vx, vy, vz

}T,

f =
{
vx, vy, vz, 2vy + ∂�3

∂x
, −2vx + ∂�3

∂y
,

∂�3

∂z

}T

,
(8)

while in the bicircular R4BP

y = {
x, y, z, vx, vy, vz, θ

}T,

f =
{
vx, vy, vz, 2vy + ∂�4

∂x
, −2vx + ∂�4

∂y
,

∂�4

∂z
, ωS

}T

.
(9)

When the final time (i.e. the period) is unknown, the first-order form (7) is not suit-
able to solve BVP, as the computation of halo orbits. In this case a time scale change
could be completed by setting t = Tτ , in which T is the final time (an unknown
constant) and 0 ≤ τ ≤ 1 is the new independent variable. The dynamical system with
the unknown variables y = y(τ ) and T = T(τ ) becomes






dy
dτ

= T f(τ , y)

dT
dτ

= 0
. (10)

Note that system (10) must be integrated within the interval [0, 1]. The period T
becomes an unknown of the differential system itself and, as for y(τ ), its value is given
once the BVP is solved. An additional boundary condition must be supplied to solve
system (10) since the unknown vector is now ỹ = {y, T}T . System (10) can be rewritten
into the first-order compact form (7) as ˙̃y = f̃(τ , ỹ), with f̃ = {Tf, 0}T . Note that the
unknown final time formulation further increases the non-linearity of the vector field,
and so the BVP becomes more sensitive to the initial guess and more difficult to solve.

2.4 Boundary conditions for halo orbits

With y(t0) and y(tf ) equal to the unknown y = {x, y, z, vx, vy, vz}T evaluated at the
initial and final times t0 and tf , respectively, the periodicity condition is y(t0) = y(tf ).
The unknown final time formulation, which is used to compute halo orbits, requires
one more boundary condition to find the orbital period. Hence, in the formalism of
(10), the boundary conditions for a T-periodic orbit become

{
y(0) − y(1)= 0

T(0)= T.
(11)

A more interesting application concerns the possibility of prescribing a geometrical
dimension of the periodic orbit. This is the case of the out-of-plane amplitude Az used
to design the best orbit that is suitable for a mission, making the boundary conditions

{
y(0) − y(1)= 0

z(0)= Az.
(12)
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The boundary conditions for the computation of quasi-periodic halo orbits in the
R4BP are






y(0) − y(1)= 0

θ(0)= θ0

z(0)= Az,

(13)

in which the initial phase of the Sun θ0 must be prescribed to let system (9) to be
supplemented by eight boundary conditions.

2.5 Low thrust optimal transfer to halo orbits

The controlled R3BP

ẍ − 2ẏ = ∂�3

∂x
+ u1, ÿ + 2ẋ = ∂�3

∂y
+ u2, z̈ = ∂�3

∂z
+ u3, (14)

can be rewritten in the first order form as

ẏ = f(y, u), (15)

in which u = {u1, u2, u3}T and y = {x, y, z, vx, vy, vz}T are the control and state vectors,
respectively. We aim at minimizing the objective function

J =
tf∫

t0

L(y, u, t) dt = 1
2

tf∫

t0

uTu dt, (16)

with prescribed initial and final conditions y0 and yf on the states and within the
time interval [tf , t0]. Introducing the Lagrange multipliers λi, i = 1, . . . , 6, the Euler–
Lagrange equations read

ẏ = ∂H
∂λ

, λ̇ = −∂H
∂y

, 0 = ∂H
∂u

, (17)

in which H = λT f +L is the Hamiltonian of the optimal control problem. System (17)
represents a set of differential algebraic equations (DAEs) to be solved by substitu-
tion exploiting the last equation which provides the values of the control functions in
terms of Lagrange multipliers

ui = −λ3+i, i = 1, 2, 3. (18)

Hence, system (17) must be solved together with the following 12 boundary
conditions

{
y(t0)= y0

y(tf )= yf .
(19)

Solving system (17) with boundary conditions (19) means finding the functions
y = y(t) and λ = λ(t) for t ∈ [t0, tf ]; then, with relation (18), the set of optimal
control functions u = u(t) is derived. This problem is difficult to solve due to the high
non-linearities of the dynamics of the Lagrange multipliers. Their lack of physical
meaning makes it difficult to find an appropriate initial guess close to the final solution.
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3 Sixth-order linear multi-point method

In this section we report the sixth-order LMPM for the solution of the BVPs stated
above (Quartapelle and Scandroglio 2003). We refer to the generic n first-order
equations

ẏ = f(t, y), (20)

supplemented by the appropriate n boundary conditions that are assumed to be of
the general non-linear form

g(y(ta), y(tb)) = 0. (21)

The problem is to solve (20) and (21) within a finite time interval [ta, tb], over a
uniform grid consisting of N points so that the step size of the discretization is

h = �t = tb − ta
N − 1

, (22)

with the grid points defined by ti = ta + (i − 1)h, for i = 1, . . . , N.
The problem is now discretized by a strategy akin to that classically adopted to

solve initial value problems for ODEs, namely, the linear multi-step method. Due
to the non-initial-value character of the first-order system associated with a bound-
ary value problem, only central difference approximations are applied. Constructed
below is the sixth-order accurate method belonging to the class of schemes called
linear multi-point methods to be distinguished from those developed for the time
integration of initial value problems.

3.1 Construction of the sixth-order accurate scheme

The sixth-order linear multi-point method is obtained by approximating the differ-
ential system (20) at midpoints ti+1/2, i = 2, . . . , N − 2, by means of a general com-
putational molecule involving four points and of two special molecules involving five
points at the both ends of the integration interval, as illustrated by the following
scheme. In the figure, the • denotes the grid point of the computational molecules
involved in the discretization while the � indicates the location chosen for the discrete
approximation of the equations.

t1 t2 t3 t4 t5 . . . . . . tN−3 tN−2 tN−1 tN
• � • • • •
• • � • •

• • � • •
• • � • •

• • � • •
• • � • •

• • � • •
• • � • •

• • � • •
• • • • � •
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For the first special molecule associated with the left extreme, the relation express-
ing the linear approximation to a scalar equation dy/dt = f (t, y) based on five points
is given by

α̂1y1 + α̂2y2 + α̂3y3 + α̂4y4 + α̂5y5

= h(β̂1f1 + β̂2f2 + β̂3f3 + β̂4f4 + β̂5f5), (23)

in which fi = f (ti, yi). Generally, for any internal molecule with midpoint ti+1/2, the
linear discretization based on four points is

α1yi−1 + α2yi + α3yi+1 + α4yi+2

= h(β1fi−1 + β2fi + β3fi+1 + β4fi+2). (24)

A special molecule using five points analogous to that in (23) is used at the right
end of the interval, leading to a total of N − 1 discrete equations approximating the
first-order dynamical system. The αi and βi coefficients are now determined by impos-
ing cancellation conditions that enforce the exact respect of the fundamental theorem
of calculus at the level of the discrete equations, according to the method followed
in Quartapelle and Scandroglio (2003). After some computations, the values of the
coefficients of the linear approximation are, for the two special five-point molecules






α̂1 = −49
60

, α̂2 = 38
60

, α̂3 = 11
60

, α̂4 = 0, α̂5 = 0,

β̂1 = 403
1440

, β̂2 = 591
720

, β̂3 = −11
60

, β̂4 = 73
720

, β̂5 = − 27
1440

,
(25)

and, for the general four-point molecule,






α1 = −11
60

, α2 = −27
60

, α3 = 27
60

, α4 = 11
60

,

β1 = 1
20

, β2 = 9
20

, β3 = 9
20

, β4 = 1
20

.
(26)

Thus, the five-point molecule assumes the form

−49
60

y1 + 38
60

y2 + 11
60

y3

= h
(

403
1440

f1 + 591
720

f2 − 11
60

f3 + 73
720

f4 − 27
1440

f5

)
, (27)

and the general four-point molecule is instead

−11
60

yi−1 − 27
60

yi + 27
60

yi+1 + 11
60

yi+2

= h
(

1
20

fi−1 + 9
20

fi + 9
20

fi+1 + 1
20

fi+2

)
. (28)

For completeness, let us explicitly write the set of computational molecules which
involve the first grid points. Replacing α̂i and αi through (25) and (26), the left hand
side of the discrete equations becomes the following scheme
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−49
60

y1
38
60

y2
11
60

y3 0 0

−11
60

y1 −27
60

y2
27
60

y3
11
60

y4

−11
60

y2 −27
60

y3
27
60

y4
11
60

y5

−11
60

y3 −27
60

y4
27
60

y5
. . .

−11
60

y4 −27
60

y5
. . .

−11
60

y5
. . .

. . . .

(29)

The summation of the coefficients in each column of this triangular matrix cor-
responds to “integrate” the left hand side of the discrete equations and therefore
verifies the fundamental theorem of calculus,

∫ tb
ta

dy
dt dt = y(tb) − y(ta), because the

sum of all elements in each column is zero except for the first column whose total is
−y1 = −y(ta). Analogously, the right hand side of the discrete equation is

403
1440

h f1
591
720

h f2 −11
60

h f3
73

720
h f4 − 27

1440
h f5

1
20

h f1
9
20

h f2
9

20
hf3

1
20

h f4

1
20

h f2
9

20
h f3

9
20

h f4
1

20
h f5

1
20

h f3
9

20
h f4

9
20

h f5
. . .

1
20

h f4
9

20
h f5

. . .

1
20

h f5
. . .

. . . .

(30)

It is worth noting that the summation of the β̂i and βi in the scheme (30) leads
to an approximation of the definite integral coincident with the Gregory quadrature
formula of precision O(h6). Gregory formulas provide the natural numerical quadra-
ture for a known discrete function on a uniform grid. In those formulas, the weight is
constant at internal points except for those near to the ends of the integration interval
where end corrections are applied (Fox 1957).

After discretizing the problem over a uniform grid of N points, N −1 discrete equa-
tions in the scalar case could be derived because they correspond to the number of
integration sub-intervals. The N-th equation, which allows one to solve the algebraic
problem, is obtained through the (scalar) boundary condition.

One feature of the sixth-order LMPM is that it attains an accuracy beyond the first
Dahlquist stability barrier (Lambert 1991). Dahlquist’s theorem states that the order
of accuracy q of a stable linear method based on p points (namely, p − 1 steps), in the
language of linear multi-step methods, satisfies
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q ≤





p − 1 if the method is explicit,
p if p is even,
p + 1 if p is odd.

The present O(h6) Linear Multi-Point discretization is implicit and its general mol-
ecule has p = 4 points; therefore, from Dahlquist’s theorem the highest order of
accuracy attainable by the new method is expected to be q = p = 4 while the con-
struction guarantees an order of accuracy of six. The point is that the theorem pertains
to linear multi-step methods for IVPs while the proposed O(h6) accurate method is
established to solve BVPs, although expressed as a first-order system. In fact, the
LMPM is characterized by the presence of a (block) row, to enforce the two-point
boundary conditions, which contains non-zero elements either in both the first and
last block or along the entire row. It is the occurrence of this special row that allows
the method with only four points to reach the sixth-order accuracy and therefore
to overcome the first Dahlquist stability barrier. Note that Quartapelle and Rebay
(1990) introduced fourth-order and sixth-order LMPM based on computational mol-
ecules with four and six points, respectively. Thus, the accuracy of the two old schemes
was within Dahlquist’s barrier and required a greater computational effort. On the
contrary, the present method reaches an O(h6) accuracy involving just four points. As
a result, a better computational efficiency is gained since fewer function evaluations
are needed, and an increased sparsity of the discretization matrix is reached.

3.2 Newton’s method for the block non-linear system

After discretization by LMPM, a set of n ODEs on a uniform grid of N points, n(N−1)

algebraic equations are generated and the unknown vector function y(t) is represented
by a set of nN discrete values. The two nN column vectors are

Y=











y1
y2
.
.
.

yN











=



























y1,1
y2,1

.
yn,1







.

.

.





y1,N
y2,N

.
yn,N



























and F(Y)=











f(t1, y1)

f(t2, y2)

.

.

.
f(tN , yN)











=



























f1,1
f2,1

.
fn,1







.

.

.





f1,N
f2,N

.
fn,N



























. (31)

Thus, the LMPM approximation of this problem leads to the following non-linear
system of n(N − 1) algebraic equations

AY = hBF(Y), (32)

in which A and B denote two n(N − 1) × nN matrices filled by the coefficients α̂i, αi
and β̂i, βi, respectively. The problem is well posed when the n non-linear two-point
conditions (21) are included. In the frame of the discretization strategy introduced
so far, such equations can be rewritten in the form g(y1, yN) = 0, or more generally
g(Y) = 0, including also integral boundary conditions. The resulting nN system can be
solved by means of Newton’s method. To this aim, let us define
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ϕϕ(Y) ≡ {g(Y), AY − hBF(Y)}T , (33)

so that the non-linear system of equations is written as

ϕϕ(Y) = 0. (34)

Note that the nature of the boundary conditions, either linear, non-linear or inte-
gral, would not affect the generic non-linear nature of (34). Dealing with non-linear
dynamics results in non-linear discretized system of algebraic equation (32) and the
inclusion of the boundary conditions has a little impact on (33). This feature has
been proven in Quartapelle and Rebay (1990) in which different sets of boundary
conditions have been analyzed.

Assuming an initial guess Y0 is given, its correction �Y0 defined by Newton’s
method in incremental form is given by expanding ϕϕ(Y0 + �Y0) around Y0 by the
Taylor series to the first order

ϕϕ(Y0 + �Y0) ≈ ϕϕ(Y0) + J(Y0)�Y0 = 0, (35)

in which

J(Y) ≡ ∂ϕϕ(Y)

∂Y

=





∂g(Y)

∂Y

A − hB
∂F(Y)

∂Y




 . (36)

By solving Eq. 35 with respect to �Y0, we find

�Y0 = −[J(Y0)]−1ϕϕ(Y0), (37)

and the new approximate solution Y1 is

Y1 = Y0 + γ�Y0 = Y0 − γ [J(Y0)]−1ϕϕ(Y0). (38)

A full step of the Newton iteration is taken by setting γ = 1, otherwise a step size
control can be introduced by taking 0 < γ < 1 allowing the method to include a form
of continuation to ease the convergence in though problems. The linear system to be
solved at the first iteration assumes the form

A 0�Y0 = −ϕϕ(Y0), with A 0 =







∂g(Y)

∂Y

A − hB
∂F(Y)

∂Y







Y=Y0

. (39)

Note that the nN-order Jacobian A 0 can be computed either analytically evaluating
the derivatives of both the vector field and the boundary condition, or numerically
with a finite-difference approximation. Thus, the UL factorization A 0 = U 0L 0 is used
to determine the new iterate by means of the substitutions

�Y0 = −L
−1
0 U

−1
0 ϕϕ(Y0). (40)

This is the solution to the linear system for the first step, while the incremental
unknown �Yk for any subsequent iteration with k ≥ 0 is given by the relation

�Yk = −L
−1
k U

−1
k ϕϕ(Yk), (41)
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in which U kL k = A k. Iterations terminate when the relative or the absolute norm of
the corrections is below the acceptable tolerance ε

‖�Yk‖
‖Yk‖ ≤ ε if ‖Yk‖ ≥ 1 or ‖�Yk‖ ≤ ε if ‖Yk‖ < 1. (42)

For completeness the algorithmic flow chart, the block bordered quadri-diagonal
profile of the matrix A k, and the factorized triangular matrixes L k and U k are reported
in Appendix.

4 Astrodynamics applications

All the results shown in this section concern the R3BP with the Earth and Moon
as primaries; when the Sun perturbation is accounted for, we refer to the R4BP as
discussed in Sect. 2.2. Periodic halo orbits are located about L1 and L2 equilibrium
points. Once the BVP is solved, the solution is further assessed with a RKF78 integra-
tor which solves the IVP with initial condition taken equal to the first grid point, with
absolute and relative tolerance set to 10−10. This integration scheme is eighth-order
accurate and it is used to validate the solution that is sixth-order accurate. Algorithms
have been written in MATLAB7 on a PC with a 2.6 GHz processor and 512 MB RAM.

4.1 Halo orbits in the R3BP

L1 and L2 halo orbits are easily computed with the LMPM starting by third-order ana-
lytical initial guesses. Figure 1a shows an L1 periodic halo orbit with an out-of-plane
amplitude equal to Az = 8, 000 km obtained with boundary conditions (12). Figure
1b illustrates that the solution satisfies the boundary condition on the out-of-plane
amplitude. This example has been computed using N = 51 points with convergence in
four Newton iterations. The computational time is 0.20 s. Figure 2 illustrates the two
families of halo orbits with amplitudes ranging from 1, 000 to 20, 000 km. Using either
boundary conditions (11) or (12), these two families of orbits can be parameterized
with T or Az as parameter.
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Fig. 1 An Az = 8, 000 km L1 halo orbit in the R3BP; third-order initial guess (dotted), LMPM
solution (dash-dot) and RKF78 validation (solid). (a) 3D view; (b) (x, z) view
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Fig. 2 Families of halo orbits around L1 and L2. (a) L1 family; (b) L2 family

4.2 Quasi-periodic halo orbits in the R4BP

If LMPM is applied to compute halo orbits in the Sun-perturbed R4BP assuming the
third-order initial guess and the eight boundary conditions (13), the algorithm does
not converge. This problem can be circumvented by observing that if the mass of the
Sun mS in Eq. 5 equals zero, the four-body dynamics degenerates into three-body
dynamics described by system of equations (1). This means that if a halo orbit has
been obtained in the R3BP, as the ones mentioned in the previous section, the param-
eter mS could be slightly increased from zero to the final value mS = 3.2890 × 105.
Several intermediate BVPs, with vector field (9), boundary conditions (13), and an
initial guess equal to the solution at the previous step, can be solved. In this case the
LMPM is able to converge. This process is called numerical continuation and the mass
of the Sun is called continuation parameter.

Note once again that, even if a set of solutions satisfying boundary conditions (13)
is found, they correspond to quasi-periodic orbits. Even though the values of position
and the velocity coincide with those after one revolution, the Sun moving in its circular
orbit will cause the loss of this periodicity with successive revolutions.

4.2.1 Numerical continuation of quasi-periodic halos in the R4BP

The problem stated in Sect. 2.4 for a definite value of mS is addressed. The non-linear
system of discrete equations for such a value is indicated by

ϕϕ(Y; mS) = 0, (43)

in which

ϕϕ(Y; mS) = {g(Y), A Y − hB F(Y; ms)}T . (44)

As stated, the continuation method consists of solving a sequence of non-linear
problems for different values of mS approaching the true value of mS gradually. To
distinguish the q-th step of the continuation procedure, the following notation is used

ϕϕ(q
Y; qmS) = 0, (45)

and the procedure is completely defined by specifying the qmS updating strategy.
As anticipated, the first step of the continuation procedure assumes mS = 0, and

the initial guess provided by the third-order expansion, is indicated by Yig. Hence, the
first problem to solve can be represented as
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




1mS = 0

1
Y0 = Yig

ϕϕ(1
Y; 1mS) = 0.

(46)

The subsequent steps of the numerical continuation procedure for q = 2, 3, . . . are
performed by taking the solution q−1

Y of the previous step q − 1 as the initial guess
for the Newton iteration. The problem at step q is stated by






qmS = q−1mS + �mS

q
Y0 = q−1

Y

ϕϕ(q
Y; qmS) = 0.

(47)

The choice for the value �mS deserves further discussion. A constant increment
�mS turns out to increase the computational effort since 1mS = 0 while the final value
of mS = 3.2890 × 105. An appropriate method for generating a non-uniform spacing
of the continuation parameter mS is to expand the current value q−1mS according to
the relation qmS = c mq−1

S such that qmS = 1mScq−1 with c > 1—but for q = 2 where
the increment of Eq. 47 is used.

Figure 3 shows the sample solution of Fig. 1 continued under four-body dynamics.
For this case N = 101 points are assumed; five intermediate BVPs, which increase mS
by one order of magnitude (c = 10), were necessary for convergence. The number of
Newton iterations ranges from three to eight, and the total computational time for
this orbit is 5 s. The termination tolerance ε (cfr. Eq. 42) was “relaxed” for the first
steps and then set equal to 10−10 for the last one. The initial value taken for the phase
of the Sun accordingly to equation set (13) is θ0 = 0.

In analogy with the previous section, the whole L1 and L2 families of halo orbits,
which are governed by four-body dynamics, have been computed (Fig. 4). Each orbit is
amplitude-parameterized by Az. Furthermore, supplying p-periodic initial guesses, it
is possible to compute quasi-periodic solutions orbiting p-times about the substitute of
the equilibrium point. An example is illustrated in Fig. 5 in which an L2 quasi-periodic
halo performs four revolutions. Nevertheless, such kinds of solutions require an ele-
vated computational effort because, as mentioned before, the Sun’s perturbations act

Fig. 3 L1 halo orbit of Fig. 1
continued in the R4BP; orbit
of Fig. 1 (dotted), LMPM
solution (dash-dot) and
RKF78 validation (solid)
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Fig. 4 Families of quasi-periodic halo orbits around the substitutes of L1 and L2 under the R4BP
dynamics. (a) L1 family; (b) L2 family

Fig. 5 A four-revolution
quasi-periodic Sun-perturbed
orbit about the L2 substitute
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to break the periodicity of the L2 halos. For example, the solution shown in Fig. 5 has
been computed using N = 10, 000 points (which means nN = 80, 000 variables in this
case) and its computation has been possible using the efficient factorization algorithm
reported in the appendix.

4.3 Optimal low thrust transfer to a L1 halo

As stated in Sect. 2.1, L1 and L2 represent hyperbolic equilibrium points, and so they
give rise to two invariant one-dimensional subsets: the stable and unstable manifolds
(Ws,u

Li
, i = 1, 2). This characteristic holds also for the periodic orbits about such points,

but for this case two-dimensional stable and unstable manifolds (Ws,u
Li,p.o., i = 1, 2)

exist. For example, Fig. 6 shows the interior branch of the stable manifold associated
to a Az = 8, 000 km L1 halo orbit of Fig. 1 (Bernelli-Zazzera et al. 2004).

Stable manifolds associated with the halo orbits are of particular interest in mis-
sion design since the dynamical system (1) by itself will bring a spacecraft placed on
this manifold toward the orbit without using propellant. Hence, the optimal control
problem illustrated in Sect. 2.5 is rewritten in terms of y and λ, based on Eq. 18,






ẏ = f(y, λ)

λ̇ = −
( ∂f

∂y

)T
λ,

(48)
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Fig. 6 Interior branch of the
Ws

L1,p.o. (Bernelli-Zazzera

et al. 2004)
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and it must be solved with the two-point conditions

{
y(t0)= y0
y(tf )= yf ,

(49)

in which yf ∈ Ws
L1,p.o.. In other words, the final point yf of the controlled leg must

lie on the stable manifold associated to the periodic orbit in the phase space sense
(i.e. position and velocity). The initial time t0 and the initial state y0 are properly
chosen on a tangential thrust spiral starting from the perigee of a 200 × 36,000 km
GTO orbit. The final time tf has been selected to be consistent with the choice of
initial conditions.

Figure 7 shows an example of the solution to the optimal control problem stated
above. After the tangential thrust leg, which determines the initial point y0, the BVP
(48) and (49) is solved, and the right boundary condition sets the point yf to lie on the
stable manifold branch. The solution has been validated using a RKF78 integration
scheme and a cubic spline interpolation of the optimal control values. The algorithm
has been able to converge using N = 1,001 grid points.

The initial tangential thrust u = 2 × 10−4 m/s2 acts for a time equal to t0. Its value
is an order of magnitude greater than the optimal control law, reported in Fig. 8a, and
contributes mostly to the computation of the propellant mass fraction necessary for
the transfer, defined by the rocket equation as

f = mp

m0
= 1 − e

−
∫ t0

0 ‖u(t)‖dt
Ispg0 . (50)

To derive f , a specific impulse Isp = 3, 000 s is assumed. Table 1 summarizes a set
of five solutions found in terms of time interval, propellant mass fraction, and total
time of flight (TOF), which includes the tangential thrust spiral, the optimal leg, and
the stable manifold branch. The first row corresponds to the solution of Fig. 7.
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Fig. 7 An example of the
solution to the optimal control
problem; tangential thrust
spiral (solid), solution with the
LMPM and RKF78 + cubic
spline validation (bold); stable
manifold leg and L1 periodic
orbit (solid)
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Fig. 8 Optimal thrust profile and low thrust transfer trajectory relative to the solution of Fig. 7.
(a) optimal control law; (b) trajectory in the Earth-centered frame

Table 1 Solutions found for
the low thrust optimal control
problem

f t0 tf TOF
(adim.) (adim.) (adim.) (days)

0.0498 20 21 188.5
0.0498 20 22 192.9
0.0618 25 28 219.0
0.0737 30 31 232.0
0.0855 35 36 253.7

5 Final remarks

A linear multi-point method has been applied for the solution of several represen-
tative boundary value problems in astrodynamics. This method is based on the dis-
cretization of the problem on a uniform grid by means of a sixth-order accurate
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scheme. In practice, the proposed formulation expresses the solution of the BVP in
first-order form, and it becomes an ordinary matter of numerical non-linear alge-
bra. Simultaneously, the profile of the block matrices is bordered quadri-diagonal,
and this structure can be easily preserved by properly choosing the direction in the
factorization and elimination process.

Such a solution scheme has been applied to generate halo orbits from both the
restricted three- and four-body problems. While in the former case the families of
L1 and L2 halo orbits have been easily computed, the latter required a numerical
continuation method for convergence. Thanks to numerical efficiency, each BVP has
been solved in fractions of a second. Furthermore, the LMPM has been applied to
solve an open problem in astrodynamics (Senent et al. 2005) concerning the design
of trajectories reaching the halo orbits by combining low thrust and invariant mani-
folds. The associated optimal control problem, stated by the Euler–Lagrange system
of equations, have been solved comfortably.

Finally, in Fig. 9 the error values versus grid-point number is shown. Since the
analyzed problems do not have any analytical solutions, the error can be defined as
e = |yN − ỹf |∞ where ỹf = ϕ(t0, tf , y1) is the solution at time tf flowed with the RKF78
integrator (relative and absolute tolerance set to 10−12) starting from (t0, y1). In this
context y1 and yN represent the unknowns corresponding, respectively, to first and to
the final mesh point. The maximum distance, in the phase space sense, between the
solution given by LMPM and the validated orbit in Fig. 1 is e = 5.85 10−8 (N = 51),
while the maximum error of the solution in Fig. 3 is e = 3.07 10−7 (N = 101). The
optimal control problem has been validated with the same integration method which
implements a cubic interpolation of the control force history ui, i = 1, . . . , N. The
solution in Fig. 7 (N = 1, 001) has a final error equal to e = 4.41 10−9 which is much
less than the thrust level.

We conclude by emphasizing once more the extreme efficiency, flexibility and reli-
ability of the proposed method which is based on an algebraic transcription of the
original differential problem.

Fig. 9 The points (N, e)
relative to the three
astrodynamics application
discussed in the previous
sections
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Appendix

Algorithmic flow chart

For the sake of clarity we report below the algorithmic flow chart summarizing the
process to solve the discussed BVPs. Equation numbers refer to those introduced
throughout the paper (Fig. 10).

Factorization of the bordered quadri-diagonal matrix

The solution �Yk at the k iteration is given by �Yk = A
−1
k ϕϕ(Yk) and is determined

by a UL block factorization of the matrix of the system, Ak = UkLk. The adoption of
the UL factorization proceeding from the bottom right corner in place of the more
classical UL factorization is needed to avoid the fill-in of the zero triangle comprised
between the first row and the band of the matrix.

The matrix Ak of this system has the block bordered quadri-diagonal profile, with
four extra-band elements associated with the two special computational molecules
based on five points at the interval extremes. The profile of the block matrix associ-
ated with the O(h6) LMPM is given for completeness

Fig. 10 Algorithm flow chart
used to solve the BVPs
discussed in the paper ta, tb, N
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Ak =


















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











G1 G2 G3 G4 G5 · · · GN−2 GN−1 GN

B1 C2 D3 D̂2 D̂1

A1 B2 C3 D4

A2 B3 C4 D5

A3 B4 C5 D6

· · · ·
· · · ·

· · · ·
AN−4 BN−3 CN−2 DN−1

B̂N AN−3 BN−2 CN−1 DN

ÂN ÂN−1 AN−2 BN−1 CN




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


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

















.

Notice the four extra quadri-diagonal blocks for the first and last special molecule,
with five points stored as blocks D̂2, D̂1, ÂN and ÂN−1 to exploit the first two and last
two available unused entries of the block diagonals Di and Ai, respectively. Notice
furthermore that in the matrix profile an additional block B̂N has been added to the
second last row. This block is initially empty but must be retained in the matrix profile
since the block factorization process fills-in this position with non-zero values. We wish
to emphasize that the first row of Ak represents the discretized boundary conditions.
This row is non-zero if integral boundary conditions are supplied; otherwise only G1
and GN are full.

The factorization algorithm produces the block, bordered upper-bi-diagonal matrix
and block lower-tri-diagonal matrix below

U =


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L =
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