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Abstract We continue the study undertaken in Efroimsky [Celest. Mech. Dyn.
Astron. 91, 75–108 (2005a)] where we explored the influence of spin-axis variations of
an oblate planet on satellite orbits. Near-equatorial satellites had long been believed
to keep up with the oblate primary’s equator in the cause of its spin-axis variations.
As demonstrated by Efroimsky and Goldreich [Astron. Astrophys. 415, 1187–1199
(2004)], this opinion had stemmed from an inexact interpretation of a correct result by
Goldreich [Astron. J. 70, 5–9 (1965)]. Although Goldreich [Astron. J. 70, 5–9 (1965)]
mentioned that his result (preservation of the initial inclination, up to small oscilla-
tions about the moving equatorial plane) was obtained for non-osculating inclination,
his admonition had been persistently ignored for forty years. It was explained in
Efroimsky and Goldreich [Astron. Astrophys. 415, 1187–1199 (2004)] that the equa-
tor precession influences the osculating inclination of a satellite orbit already in the
first order over the perturbation caused by a transition from an inertial to an equato-
rial coordinate system. It was later shown in Efroimsky [Celest. Mech. Dyn. Astron.
91, 75–108 (2005a)] that the secular part of the inclination is affected only in the
second order. This fact, anticipated by Goldreich [Astron. J. 70, 5–9 (1965)], remains
valid for a constant rate of the precession. It turns out that non-uniform variations of
the planetary spin state generate changes in the osculating elements, that are linear

in |
.
�µ | , where �µ is the planetary equator’s total precession rate that includes the

equinoctial precession, nutation, the Chandler wobble, and the polar wander. We
work out a formalism which will help us to determine if these factors cause a drift of
a satellite orbit away from the evolving planetary equator.

∗By “precession,” in its most general sense, we mean any change of the direction of the spin axis of
the planet—from its long-term variations down to nutations down to the Chandler wobble and polar
wander.
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1 The scope of the project

1.1 The motivation

Calculation of the obliquity of a planet (Ward 1973; Laskar and Robutel 1993; Touma
and Wisdom 1994) are always obtained within a simplified model based on repre-
sentation of the planet by a symmetrical rigid rotator, with no internal structure or
dissipative phenomena taken into consideration. This model yields, via the Colombo
(1966) equation, the history of the planet axis’ inclination in an inertial frame. Thence
the evolution of the obliquity can be found. The Colombo (1966) equation was derived
for a rigid planet in the principal rotation state. These assumptions raise questions
when it comes to real physics. First, a planet is deformable and, thereby, is subject
to solar tides. It also tends to yield its shape to the instantaneous axis of rotation.
(This phenomenon is always acknowledged in regard to the Chandler wobble, but
never in regard to the equinoctial precession.) Second, a forced rotator is never in a
principal spin state, and its angular–velocity vector is always slightly off its angular–
momentum vector. These three phenomena influence the equinoctial precession and,
through it, the obliquity variations. On the one hand, these phenomena are feeble;
on the other hand, we are interested in their accumulation over the longest time
scales, and therefore we are unsure of the outcome. Last, and by no means least, the
Colombo description of the equinoctial precession ignores the possibility of planetary
catastrophes that might have altered the planet’s spin mode.

It would be good to develop a model-independent check of whether the planet
could have maintained, through its entire past, the same equinoctial precession as it
has today. Such a check is offered by Mars’ two satellites. The present proximity of
both moons to the Martian equatorial plane is hardly a mere coincidence. Hence, the
question becomes: could Mars have maintained equinoctial precession, predicted by
the Colombo model, through its entire history without pushing an initially near-equa-
torial satellite too far away from the equatorial plane?

1.2 The objective

If it turns out that the equinoctial precession, predicted by the Colombo (1966) model,
does not drive the satellites away from the equator, or drives them away at a very slow
rate, then this will become an independent confirmation of this model’s applicability.
If, however, it turns out that the predicted precession of the spin axis leads to con-
siderable variations in the satellite inclination relative to the equator of date, this will
mean that the Colombo model should be further improved or/and that a planetary
catastrophe may have altered Mars’ spin state.

According to Goldreich (1965) and Kinoshita (1993) the inclination of a near-
equatorial satellite only oscillates about its initial value, provided the equinoctial
precession is uniform. However, even within the simple Colombo model, the equi-
noctial precession is variable. Besides, in these works non-osculating elements were
used, circumstance noticed by Goldreich (1965) but missed by many authors who
employed and furthered his result.
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Whenever the disturbance depends upon velocities (like a transition from inertial
axes to ones co-precessing with the planet), a mere amendment of the disturbing
function makes the planetary equations render not the osculating but the so-called
contact orbital elements whose physical interpretation is non-trivial (Efroimsky and
Goldreich 2003, 2004). To furnish osculating elements, the equations should be en-
riched with extra terms, some of which will not be additions to the disturbing function.1

Some of them will be of the first order in the velocity-dependent perturbation, others
of the second. For uniform precession, the first-order extra terms average out, except
for a term showing up in the equation for dMo/dt (Efroimsky 2005a), as predicted by
Goldreich 40 years ago. Thus, if we address not the elements per se but their secular
parts, Goldreich’s result obtained for the contact elements stays also for the osculat-
ing ones: the orbit will oscillate about the uniformly moving equator but will not shift
away from it.

Under variable precession of the spin axis, the secular parts of the precession-

caused first-order terms are of the first order in |
.
�µ | where �µ is the total precession

rate of the equator (Efroimsky 2005a). Accordingly, the secular parts of the osculating
elements may differ from those of their contact counterparts already in this order.

To understand if Mars could have kept through its entire past the same equinoctial
precession, we need to determine if the satellite orbits might have shifted away from
the equator in the cause of nonuniform precession. To see how the secular parts of
the osculating elements evolve, we shall build the required mathematical formalism
based on the averaged equations.

1.3 The means

The motion of a satellite about a precessing oblate planet is most naturally described
with orbital elements defined in a coprecessing equatorial frame. It is also convenient
to choose the elements to be osculating. The physical interpretation of such orbital
variables will be most straightforward.

1.3.1 Exact planetary equations

The above defined setting is the two-body problem disturbed by two perturbations—
the gravitational pull of the equatorial bulge and the transition to a non-inertial frame
of reference associated with the precessing planetary equator. Together, they gen-
erate the following variation of the Hamiltonian (Efroimsky and Goldreich 2003;
Efroimsky 2005a, b):

�H(osc) = −
[

Roblate(ν) + �µ · (�f × �g) + ( �µ × �f ) · ( �µ × �f )
]

, (1)

where the oblateness-caused disturbing potential is

Roblate(ν) = G m J2

2
ρ2

e

r3

[
1 − 3 sin2 i sin2(ω + ν)

]
, (2)

ρe being the mean equatorial radius of the planet, and ν denoting the true anomaly.
The vector

1 These terms will complicate both the Lagrange- and Delaunay-type equations. The Delaunay equa-
tions will no longer be Hamiltonian. This parallels a predicament with the Andoyer elements used
in the theory of rigid-body rotation with angular–velocity-dependent perturbations (Efroimsky 2007;
Gurfil et al. 2007).
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�µ = µ1 x̂ + µ2 ŷ + µ3 ẑ = x̂
dIp

dt
+ ŷ

dhp

dt
sin Ip + ẑ

dhp

dt
cos Ip (3)

is the precession rate of the planetary spin axis (Sometimes �µ is referred to as the
rotational vector of the equator.) Angles Ip and hp are the inclination and the
longitude of the node of the planetary equator of date relative to that of epoch; unit
vectors x̂ , ŷ , ẑ denote a coordinate system fixed on the moving equatorial plane
of date, ẑ being orthogonal to the equator-of-date plane, and x̂ pointing towards
the ascending node of the equator of date relative to the one of epoch. For details of
calculation of Ip and hp see Sect. 2.2.2 and Appendix A.

Notations �f and �g stand for two auxiliary vector functions which play an important
role in the theory. These are the implicit functional dependencies of the unperturbed
(two-body) position and velocity upon time and six orbital elements. These depen-
dencies emerge as a solution

�r = �f (C1, . . . , C6, t) ,

�v = �g (C1, . . . , C6, t) , �g ≡ ∂�f
∂t

(4)

to the reduced two-body problem

�̈r + G m
r2

�r
r

= 0 (5)

and define, geometrically, a Keplerian ellipse or hyperbola parameterised with some
set of six independent orbital elements Ci which are constants in the absence of dis-
turbances. Under perturbation, these elements are endowed with time dependence.

This way, our Hamiltonian variation �H(osc) , too, becomes, through composition,
a function of time and the six elements used in (4)—these could be the Keplerian
or Delaunay or Poincare or Jacobi elements. The Hamiltonian variation is equipped
with superscript “(osc)” in order to emphasise that this is the form taken by the Ham-
iltonian expressed as a function of osculating orbital elements. This clause, seemingly
trivial and therefore redundant, turns out to be crucial. As pointed out in Efroimsky
and Goldreich (2004) and explained in detail in Efroimsky (2005a), a naive develop-
ment of the planetary equations in precessing frames leads to a Hamiltonian variation
different from (1); but that Hamiltonian variation tacitly turns out to be a function of
non-osculating orbital elements. This tacit loss of osculation in problems with velocity-
dependent perturbations is an old pitfall in orbit calculations. Although some 40 years
ago Goldreich (1965) warned of these difficulties, the issue has until recently been
ignored in the literature.

For some general-type parameterisation of the instantaneous conics through six
orbital variables C1 , . . . , C6 , the variation-of-parameters equations will read

[Cn Ci] dCi

dt
= − ∂ �H(osc)

∂Cn

+ �µ ·
(

∂�f
∂Cn

× �g − �f × ∂�g
∂Cn

)
− �̇µ ·

(
�f × ∂�f

∂Cn

)

−
(

�µ × �f
) ∂

∂Cn

(
�µ × �f

)
, (6)
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provided these conics are chosen to be always tangent to the trajectory, i.e., pro-
vided the parameters are chosen to be osculating2 (Efroimsky and Goldreich 2004;
Efroimsky 2005a).

A more convenient representation of the above equation will be achieved if one

includes the −
(

�µ × �f
)

∂
(

�µ × �f
)
/∂Cn term in the Hamiltonian:

[Cn Ci] dCi

dt
= − ∂ “�H”

∂Cn
+ �µ ·

(
∂�f

∂Cn
× �g − �f × ∂�g

∂Cn

)

− �̇µ ·
(

�f × ∂�f
∂Cn

)
, (7)

the amended “Hamiltonian” being defined through

“�H” = −
[

Roblate(ν) + �µ · (�f × �g) + 1
2

( �µ × �f ) · ( �µ × �f )
]

. (8)

Here the quotation marks are necessary to emphasise that “�H" is not the real
Hamiltonian variation but merely a convenient mathematical entity. Under this con-
vention, and under the assumption that the parameterisation is implemented through
the Kepler elements, (7) yields the following system of Lagrange-type planetary
equations:

da
dt

= 2
na

[
∂ (− “�H”)

∂Mo
− �̇µ ·

(
�f × ∂�f

∂Mo

) ]
, (9)

de
dt

= 1 − e2

n a2 e

[
∂ (− “�H”)

∂Mo
− �̇µ ·

(
�f × ∂�f

∂Mo

) ]
− (1 − e2)1/2

n a2 e

×
[

∂ ( − “�H”)

∂ω
+ �µ ·

(
∂�f
∂ω

× �g − �f × ∂�g
∂ω

)
− �̇µ ·

(
�f × ∂�f

∂ω

) ]
, (10)

dω

dt
= − cos i

na2(1−e2)1/2 sin i

×
[

∂ (− “�H”)

∂i
+ �µ ·

(
∂�f
∂i

× �g − �f × ∂�g
∂i

)
− �̇µ ·

(
�f × ∂�f

∂i

)]

+ (1 − e2)1/2

n a2 e

[
∂ (− “�H”)

∂e
+ �µ ·

(
∂�f
∂e

× �g − �f × ∂�g
∂e

)
− �̇µ ·

(
�f × ∂�f

∂e

) ]
,

(11)

2 Had we simply amended the Hamiltonian by the above variation �H(osc), without inserting the
extra �µ-dependent terms into (6), such equations would yield non-osculating elements, ones para-
metrising a family of non-tangent conics. This would happen because the Hamiltonian perturbation
depends not only upon positions but also upon the canonical momenta. Another way of getting into
this hidden trap is to start with the Cartesian or spherical coordinates and momenta, and to perform the
Hamilton–Jacobi operation. The resulting variables Cj will then come out canonical and will be the
well-known Delaunay elements. In case the Hamiltonian perturbation depends upon the momenta,
these Delaunay elements will be non-osculating, i.e., will parameterise a sequence of instantaneous
conics non-tangent to the physical orbit (Efroimsky and Goldreich 2003; Efroimsky 2005a).
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di
dt

= cos i

na2 (1 − e2)1/2 sin i

[
∂ (− “�H”)

∂ω
+ �µ ·

(
∂�f
∂ω

× �g − �f × ∂�g
∂ω

)

− �̇µ ·
(

�f × ∂�f
∂ω

)]
− 1

na2 (1 − e2)1/2 sin i

[
∂ (− “�H”)

∂�

+ �µ ·
(

∂�f
∂�

× �g − �f × ∂�g
∂�

)
− �̇µ ·

(
�f × ∂�f

∂�

)]
,

(12)

d�

dt
= 1

na2 (1 − e2)1/2 sin i

[
∂ ( − “�H” )

∂i
+ �µ ·

(
∂�f
∂i

× �g − �f × ∂�g
∂i

)

− �̇µ ·
(

�f × ∂�f
∂i

)]
, (13)

dMo

dt
= − 1 − e2

n a2 e

[
∂ ( − “�H”)

∂e
+ �µ ·

(
∂�f
∂e

× �g − �f × ∂�g
∂e

)
− �̇µ ·

(
�f × ∂�f

∂e

) ]

− 2
n a

[
∂ (− “�H”)

∂a
+ �µ ·

(
∂�f
∂a

× �g − �f × ∂�g
∂a

)
− �̇µ ·

(
�f × ∂�f

∂a

) ]
,

(14)

where terms �µ ·
(

(∂�f /∂Mo) × �g − (∂�g/∂Mo) × �f
)

have been omitted in (9) and

(10), because these terms vanish identically (see the appendix to Efroimsky 2005a).

1.3.2 The approximation

To obtain the first-order (over �µ ) secular parts of the osculating elements, we shall
carry out two operations:

(1) First, we shall drop the O( �µ2
) contribution to “�H” and shall assume that pres-

ervation of the first-order terms and neglect of the second-order ones in the
equations makes them render solutions valid in the first-order. This assumption
should remain valid for some interval of time, an interval whose actual duration
can be determined only through accurate numerical simulation. In our analytical
developments we shall hope that this interval is sufficiently long.3

(2) Second, we shall substitute both the disturbing function ( − “�H” ) and the
other precession-generated (i.e., �µ-dependent) terms with their orbital averages.
To be more exact, the rate �µ and each of the elements will be considered as a
function of the true anomaly ν and expanded into a Fourier integral which will

3 In (9)–(14), the �µ-terms on the right-hand side are of order | �µ|2/n. According to Ward (1973), the
range of values of | �µ| for Mars hardly ever exceeded 10−3 year−1. The value of n for the Martian
satellites is of order one day−1. If we now look for example at (1.3.1), we shall see that the quadratic
in �µ terms surely cannot contribute to di/dt more than an angular degree over a million of years,
and are quite likely to remain insignificant over dozens of millions years. Whether these terms may
be omitted at timescales of 100 millions of years and longer—should be checked by numerical com-
putation. As demonstrated in Lainey et al. (2007), the model remains surprisingly exact for, at least,
20 Myr.
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then be split into two pieces—an integral over the band of frequencies less than
the orbital frequency and an integral over the higher frequencies:

Cj = 〈 Cj 〉 + C♥
j , �µ = 〈 �µ 〉 + �µ♥ (15)

The first term, 〈 �µ〉 or 〈Cj〉, will be regarded as the secular part, while the second one,
�µ♥ or C♥

j , will be averaged out. The left-hand sides of the averaged planetary equa-
tions will now contain the time derivatives not of the elements but of their secular
parts. To understand the structure of the averaged right-hand sides, consider some
product A(ν)B(ν), where A and B denote some of the elements or the projection of
�µ onto the instantaneous normal to the satellite orbit:

A B =
(
〈 A 〉 + A♥) (〈 B 〉 + B♥) = 〈A B〉 + (A B)♥. (16)

The secular and high-frequency components of this product will read, correspon-
dingly, as

〈A B〉 ≡ 〈 A 〉 〈 B 〉 + 〈
A♥ B♥〉 (17)

and

(A B)♥ ≡ 〈 A 〉 B♥ + 〈 B 〉 A♥ +
(

A♥ B♥ − 〈
A♥ B♥〉) . (18)

An obvious circumstance is that the secular part of the product consists not only of the
product of the secular parts of the multipliers but also of the term

〈
A♥ B♥〉 containing

resonances. A less evident but crucially important circumstance is that, technically, the
above separation of timescales is never implemented exactly (unless one deals from
the very beginning with the Fourier expansions of all the functions involved). There-
fore, the (imperfectly calculated) high-frequency parts A♥, B♥ and (A B)♥ are
unavoidably contaminated with the lower-frequency modes, modes whose effect may
considerably accumulate at large times and exert “back-reaction” upon the secular
part of the product (Laskar 1990).

1.3.3 The planetary equations for the first-order secular parts
of the osculating elements

Naively, the afore proposed approximation will lead us to a new system of plane-
tary equations. It will be identical to the systems (9)–(14), except that now the letters
a, e, ω, �, i, Mo will denote not the osculating elements but their secular parts. Sim-
ilarly, �µ will now stand for the secular part of the precession rate. The Hamiltonian
will now be substituted with

�H(eff) = −
[

〈Roblate〉 + 〈 �µ · (�f × �g) 〉
]

= − G m J2

4
ρ2

e

a3

3 cos2 i − 1(
1 − e2

)3/2 −
√

G m a
(
1 − e2

)

× ( µ1 sin i sin � − µ2 sin i cos � + µ3 cos i ) , (19)

where, once again, all letters denote not the appropriate variables but their averages.
By doing so, we would, however, ignore that the �µ-dependent terms in (9)–(14)

contain products of high-frequency quantities (such as, e.g. the product of the true-
anomaly-dependent expression (∂�f /∂ω) × �g − (∂�g/∂ω) × �f by the high-frequency
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part of �µ in formula (10)). Averages of such products will contribute to the sec-
ular parts of the right-hand sides of the approximate planetary equations, as in the
example (17). (As we shall see below, these inputs will be due to the commensurabil-
ities between the orbital motion of the satellite and the short-term nutations of the
primary.) Keeping this in mind, we should approximate the exact planetary equations
rather with the following system:

da
dt

= 2
na

[
−
〈

.
�µ
(

�f × ∂�f
∂Mo

) 〉 ]
, (20)

de
dt

= 1 − e2

n a2 e

[
−
〈

.
�µ
(

�f × ∂�f
∂Mo

) 〉 ]

− (1 − e2)1/2

n a2 e

[ 〈
�µ ·
(

∂�f
∂ω

× �g − �f × ∂�g
∂ω

)〉
−
〈

.
�µ
(

�f × ∂�f
∂ω

) 〉 ]
, (21)

dω

dt
= − cos i

na2(1 − e2)1/2 sin i

×
[

∂
(−�H(eff))

∂i
+
〈

�µ ·
(

∂�f
∂i

× �g − �f × ∂�g
∂i

) 〉
−
〈

.
�µ
(

�f × ∂�f
∂i

) 〉 ]

+ (1 − e2)1/2

n a2 e

[
∂
(−�H(eff))

∂e
+
〈

�µ ·
(

∂�f
∂e

× �g − �f × ∂�g
∂e

) 〉

−
〈

.
�µ
(

�f × ∂�f
∂e

) 〉 ]
, (22)

di
dt

= cos i

na2 (1 − e2)1/2 sin i

[ 〈
�µ ·
(

∂�f
∂ω

× �g − �f × ∂�g
∂ω

) 〉
−
〈

.
�µ
(

�f × ∂�f
∂ω

) 〉 ]

− 1
na2 (1 − e2)1/2 sin i

[
∂
(−�H(eff))

∂�
+
〈

�µ ·
(

∂�f
∂�

× �g − �f × ∂�g
∂�

) 〉

−
〈

.
�µ
(

�f × ∂�f
∂�

) 〉 ]
, (23)

d�

dt
= 1

na2 (1 − e2)1/2 sin i

×
[

∂
(−�H(eff) )

∂i
+
〈

�µ ·
(

∂�f
∂i

× �g − �f × ∂�g
∂i

)〉
−
〈

.
�µ
(

�f × ∂�f
∂i

)〉]
,

(24)

dMo

dt
= −1 − e2

n a2 e

[
∂
(−�H(eff))

∂e
+
〈

�µ ·
(

∂�f
∂e

× �g − �f × ∂�g
∂e

)〉
−
〈

.
�µ
(

�f × ∂�f
∂e

)〉]

− 2
n a

[
∂
(−�H(eff))

∂a
+
〈

�µ ·
(

∂�f
∂a

× �g − �f × ∂�g
∂a

)〉
−
〈

.
�µ
(

�f × ∂�f
∂a

)〉]
(25)
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the angular brackets denoting the secular parts. In (16), (17) and (19) we took into
account the fact that the averaged and truncated Hamiltonian (15) depends neither
on Mo nor on ω .

It should be emphasised that in this section and hereafter the symbols a, e, ω, �, i,
Mo, �µ stand not for the exact values but for the mean values of the appropriate variables.
A mean value of an element is understood to include the secular and long-period parts,
the short-period components being averaged out.

The case of uniform planetary precession ( �µ = const ) was studied in Efroimsky

(2005a). In that case, the terms containing
.
�µ evidently vanish. Besides, it turns out

that, for constant �µ, the mean values of the other �µ-dependent terms, except one,
vanish too:

�µ ·
〈 (

∂�f
∂Cj

× �g − �f × ∂�g
∂Cj

) 〉
= 0, Cj = e , � , ω , i , Mo, (26)

�µ ·
〈 (

∂�f
∂a

× �g − �f × ∂�g
∂a

) 〉
= �µ ·

(
∂�f
∂a

× �g − �f × ∂�g
∂a

)

= 3
2

µ⊥

√
G m

(
1 − e2

)

a
, (27)

where

µ⊥ ≡ µ1 sin i sin � − µ2 sin i cos � + µ3 cos i

= İp sin i sin � − ḣp sin Ip sin i cos � + ḣp cos Ip cos i
(28)

is the projection of the planets’ precession rate �µ onto the instantaneous normal to
the satellite’s orbit.4

Hence, in this approximation and under the assumption of constant �µ , in order to
compute the secular parts of the orbital elements, it is sufficient to amend the Hamil-
tonian with the �µ-dependent addition and to ignore all the other �µ-dependent terms
except the one given by (27). This will no longer be the case for variable precession,
i.e., for time-dependent �µ . Section 2 of our article will address itself to calculation of
the secular parts (26)–(27) in the case of time-dependent �µ.

2 Equations for the first-order secular parts of the osculating elements

2.1 Two Fourier expansions of the precession spectrum

Precession of the planetary spin axis has a continuous spectrum that spans from
the polar wander and the fastest nutations to the Chandler wobble to the long-term
variations whose time scales go all way to billions of years. When the planet has a
sufficiently massive moon capable of influencing the planetary precession, the rate
of this precession, �µ , should be regarded as a function not only of time but also of

4 Here µ⊥ is expressed in the basis x̂ , ŷ , ẑ associated with the planet’s equator of date. Unit vector
ẑ is perpendicular to the equator of date, while x̂ is pointing along the line of the ascending node of
the equator of date on the equator of epoch; therefore, the components µj are given by (3).
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the position of the satellite. We shall be interested, however, in the situation where
the satellites are small and do not considerably influence rotation of their primary
(while rotation variations of the primary still may affect the satellite orbits). This is,
for example, the case of Mars whose tiny satellites affect its precession only in a very
high order (Laskar 2004). Under these circumstances, it is fair to treat the precession
rate as a function of time solely:

�µ(t) =
∞∫

0

[
�µ(s)

(u) sin(ut) + �µ(c)
(u) cos(ut)

]
du, (29)

u standing for the angular frequency. In what follows, it will be convenient to describe
the evolution not in terms of time but via the true anomaly ν of the satellite. For our
present purposes, it will be advantageous to express the precession rate as function of
the satellite’s true anomaly:

�µ(ν) =
∞∫

0

[
�µ(s)

(W) sin(Wν) + �µ(c)
(W) cos(Wν)

]
dW, (30)

W being the circular “frequency” related to the true anomaly ν . Evidently, �µ(t) �µ(ν),
�µ(u) , and �µ(W) are four different functions. We nevertheless denote them with the
same notation �µ( . . . ) because the argument will always single out which particular
function we mean. The interconnection between functions �µ(ν) and �µ(t) is given
by

�µ(t) = �µ(ν) |
ν = ∫ n dt.

The interconnection between the Fourier components is less obvious. However, it sim-
plifies under the assumption of vanishing eccentricity and slowly changing semimajor
axis:

�µ(W) ≈ n �µ(u) | W = u/n , n ≡ (G m)1/2 a−3/2. (31)

A rigorous relation to be used below is:5

d �µ(ν)

dν
= d �µ(t)

dt

(
∂t
∂ν

)

a, e, i, ω, �, Mo

=
.
�µ
(

∂t
∂M

)

a, . . .

(
∂M
∂ν

)

a, . . .
=

.
�µ (1 − e2)3/2

n (1 + e cos ν)2 .

(32)

2.2 The role of the 〈 �µ · (...)〉 and 〈
.
�µ · (...)〉 terms

These terms, ignored in the literature hitherto, implement the subtle influence of the
planet’s orbit precession upon its satellites’ motion. The physical content of this effect
is as follows: first, the precession of the planetary orbit slowly alters the solar torque
acting on the planet; second, the variations of this torque entail changes in the plan-
etary spin axis’ precession; and, finally, third: these changes influence the satellites’
orbits. This three-step interaction is extremely weak; still, its effect may accumulate
over very long periods of time.

5 This relation immediately follows from the well known equality dM (1 + e cos ν)2 =
dν

(
1 − e2

)3/2
, one upon which also the averaging rule (75) is based.
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2.2.1 The 〈 �µ · ( . . . ) 〉 terms

To illustrate the role of commensurabilities between the satellite orbital motion and
the planetary nutations, let us consider the average

〈 �µ ·
(
(∂�f /∂e) × �g − (∂�g/∂e) × �f

) 〉

emerging in Eq. (22) for dω/dt and in Eq. (25) for dMo/dt: as shown in Sect. A.4 of
the appendix to Efroimsky (2004),

�µ ·
(

∂�f
∂e

× �g − �f × ∂�g
∂e

)
= − µ⊥

n a2 (3 e + 2 cos ν + e2 cos ν
)

(1 + e cos ν)
√

1 − e2
, (33)

µ⊥ being given by (29). By virtue of (75) and (30), its secular part at some ν will be:
〈

�µ ·
(

∂�f
∂e

× �g − �f × ∂�g
∂e

)〉

= − 1 − e2

2π
na2

∫ ν′=π

ν′=−π

µ⊥(ν + ν ′) 3e + 2 cos(ν + ν ′) + e2 cos(ν + ν ′)
(1 + e cos(ν + ν ′))3 dν ′

= − 1 − e2

2π
n a2

∫ ∞

0
dW

π∫

−π

dν′ [µ(s)
⊥ (W) sin(W(ν + ν′)) + µ

(c)
⊥ (W) cos(W(ν + ν′))

]

×
[ (

2 + e2
)

cos(ν + ν ′) +
(

− 3 e − 5
2

e3
)

cos 2(ν + ν ′)

+ 3 e2 cos 3(ν + ν′) − 5
2

e3 cos 4(ν + ν′) + O(e4)

]

− 1 − e2

2 π
na2

[(
2 + e2

)
µ

(c)
⊥ (1) +

(
−3e − 5

2
e3
)

µ
(c)
⊥ (2)

+ 3e2 µ
(c)
⊥ (3) − 5

2
e3 µ

(c)
⊥ (4) + O(e4)

]
, (34)

W being the angular “frequency” related to the true anomaly ν , as in Eq. (30). Not
surprisingly, the integral over W has been reduced to an infinite sum over the discrete
values W = 1, 2, 3, 4, . . . corresponding to commensurabilities between the orbital
frequency of the satellite and the nutational frequencies of the oblate planet.6 The
main resonant input comes from the principal commensurability W = 1 , i.e., from
the nutation mode resonant with the orbit. The higher-order resonant inputs origi-
nate from the faster nutations characterised by W = 2 , 3, 4, . . . In Eqs. (20)–(25),
almost all terms proportional to �µ produce such resonances. At the time when we
are writing this paper, our knowledge about the fast nutations and polar wander of
Mars is yet very limited, and we shall not venture to offer quantitative estimates of the
time scale over which the effect of these resonances upon the satellite orbit becomes
considerable.

Slower than W = 1 variations of �µ bring no non-resonant contributions into the
average of the right-hand side of (33). It can be shown that none of the 〈 �µ · ( . . . ) 〉
6 It should be emphasised that (34) was obtained by a certain approximation: the averaging ignored
the back-reaction of the short-period motions upon the long-period ones (i.e., it ignored the fact that,
after each orbital period, the satellite does not return to exactly the same point it started); for example,
it was assumed that the elements e and a remained constant during the integration over ν ′ from 0
to 2π .
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term emerging in (20)–(24) yield a non-resonant input (hence (26)). For these reasons,
in the rest of this paper, the terms 〈 �µ ( . . . ) 〉 will be omitted.

2.2.2 The 〈
.
�µ · ( . . . ) 〉 terms

Let us consider, as an example, the term 〈
.
�µ ·
(

− �f × (∂�f /∂ω)
)

〉 showing up on the

right-hand sides of Eqs. (21) and (23). We have from Appendix A11 of Efroimsky
(2004):

.
�µ ·

(
− �f × ∂�f

∂ω

)
= − µ̇⊥ a2

(
1 − e2)2

(1 + e cos ν)2 . (35)

Just as in the preceding example (34), orbital averaging of this expression would yield
resonant terms entailed by commensurabilities between the orbital frequency of the

satellite and the fast variations of
.
�µ . For the reasons explained above, here we omit

these contributions. However, in distinction from the 〈 �µ · ( . . . ) 〉 terms, some of the

〈
.
�µ · ( . . . ) 〉 do have nonresonant components. For example, the mean part of (35)

will be finite even for a constant
.
�µ:

〈 .
�µ ·
(

−�f × ∂�f
∂ω

) 〉
= − µ̇⊥a2

(
1 − e2

)2
(
1 − e2)3/2

2 π

∫ π

−π

dν

(1 + e cos ν)4

= − µ̇⊥
a2

2

(
2 + 3 e2

)
, (36)

the superscript dot denoting a time derivative taken in the frame co-precessing with
the equator of date. In other words, µ̇⊥ is, by definition, not a full time derivative but
its projection onto the instantaneous normal to the satellite’s orbit. So defined µ̇⊥
contains only derivatives of µj but not of the angles:

µ̇⊥ = µ̇1 sin i sin � − µ̇2 sin i cos � + µ̇3 cos i. (37)

As shown in the Appendix below, µ̇⊥ can be expressed via the longitude of the node,
hp , and the inclination, Ip , of the equator of date relative to the one of epoch:

µ̇⊥ = Ïp sin i sin � −
(

ḧp sin Ip + ḣp İp cos Ip

)
sin i cos �

+
(

ḧp cos Ip − ḣp İp sin Ip

)
cos i

≈ ḧp
(− sin Ip sin i cos � + cos Ip cos i

)
. (38)

The quantities hp , Ip and their time derivatives can be calculated from integration
of the Colombo equation of spin precession in inertial space,

dk̂
dt

= α
(

k̂ · n̂
) (

k̂ × n̂
)

, (39)

k̂ = (
sin Ip sin hp, − sin Ip cos hp and cos Ip

)T
being a unit vector pointing along

the major-inertia axis of the planet, and n̂ = (sin Iorb sin �orb, − sin Iorb cos �orb and
cos Iorb)

T
being a unit normal to the planetary orbit plane defined (relative to some
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fiducial plane) through the inclination Iorb and longitude of the node �orb . The
constant (or, better to say, the slowly varying factor) α is given by

α ≡ 3 n2
p

2 s
(

1 − e2
p

)3/2

C − (A + B)/2
C

, (40)

where np, ep, s and A, B, C are the mean motion, the eccentricity, the spin angular
velocity, and the moments of inertia of the planet (as ever, C ≥ B ≥ A). Even in the
relatively simple case of C > B = A, the planet’s axis of rotation does not describe
a circular cone because the unit normal to the planet’s orbit, �n, is subject to variations
caused by the precession of the planet’s orbit about the Sun. While integration of
the Colombo equation is explained below in Appendix A, here we would emphasise
that this equation describes the evolution of planetary spin only under a very strong
assumption of this spin being principal, i.e., in neglect of the Chandler wobble and
polar wander.

3 Evolution of the elements in the leading order of e

3.1 The semimajor axis and the eccentricity

As explained in subsection 2.2.1, the 〈 �µ · ( . . . ) 〉 terms may be omitted. The expres-

sions for the orbital averages of the
.
�µ-dependent terms, derived in the Appendix to

Efroimsky (2006), have the form:
〈 .

�µ ·
(

− �f × ∂�f
∂Mo

) 〉
= − µ̇⊥ a2

√
1 − e2, (41)

〈 .
�µ ·

(
− �f × ∂�f

∂ω

) 〉
= − µ̇⊥ a2

(
1 + 3

2
e2
)

. (42)

Here

µ⊥ ≡ �µ · �w = µ1 sin i sin � − µ2 sin i cos � + µ3 cos i, (43)

where the unit vector

�w = x̂ sin i sin � − ŷ sin i cos � + ẑ cos i

is the unit normal to the instantaneous plane of orbit, while the unit vectors x̂, ŷ , ẑ
denote the basis of the co-precessing coordinate system x, y, z . (The axes x and y
belong to the planet’s equatorial plane, and the longitude of the node, � , is measured
from x .)

The quantity µ̇⊥ is defined as

µ̇⊥ ≡ �̇µ · �w, (44)

but not as d( �µ · �w)/dt—a subtlety important to our further developments.
Insertion of these expressions into Eqs. (20)–(21) will give:

da
dt

= − 2 a
µ̇⊥
n

√
1 − e2 = − 2 a5/2

√
G m

µ̇⊥
√

1 − e2, (45)
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de
dt

= 5
2

µ̇⊥
n

e
√

1 − e2 = 5
2

a3/2 e√
G m

µ̇⊥
√

1 − e2. (46)

For small eccentricities, the approximate solution is:

a = ao exp

[
− 2

no

(
µ⊥ − µ⊥o

)]−2/3
+ O(e2) ≈ ao

[
1 + 4

3no

(
µ⊥ − µ⊥o

)]
, (47)

e = eo exp

[
− 2

no

(
µ⊥ − µ⊥o

) ]−5/4
+ O(e2) ≈ eo

[
1 + 5

2no

(
µ⊥ − µ⊥o

)]
, (48)

where no ≡ (G m)1/2 a−3/2
o . We see that variations in the primary’s precession exert

almost no influence upon the satellite’s semimajor axis and eccentricity.
It should, nevertheless, be kept in mind that the satellite orbital elements evolve

not only under the influence of the primary’s precession but also under the action of
tides. Within the truncated model developed in this paper, we shall neglect the tides,
but shall introduce them on a subsequent stage of the project.

3.2 The periapse, the inclination, and the node—in the leading order of e

Under the assumption of a and e remaining virtually unchanged, Eqs. (22)–(24) will
make a closed system, provided we omit the 〈 �µ · ( . . . ) 〉 (for the reasons explained

above) and also substitute the orbital averages of the
.
�µ-dependent terms with their

approximations in the leading order of the eccentricity. This level of approximation
would be consistent with the approximation used in (47) and (48). As shown in the
Appendix to Efroimsky (2006),

〈
.
�µ ·

(
− �f × ∂�f

∂e

) 〉
= 0, (49)

〈
.
�µ ·

(
− �f × ∂�f

∂ω

) 〉
= − a2 ( µ̇1 sin i sin � − µ̇2 sin i cos �

+ µ̇3 cos i ) + O(e2), (50)

〈
.
�µ ·
(

−�f × ∂�f
∂�

)〉
= a2

2

[
− µ̇1 sin i sin � cos i + µ̇2 sin i cos � cos i

−µ̇3

(
2 − sin2 i

) ]
+ O(e2), (51)

〈
.
�µ ·
(

− �f × ∂�f
∂i

) 〉
= − a2

2
( µ̇1 cos � + µ̇2 sin � ) + O(e2). (52)

Substitution of (19) and of the above expressions for the
.
�µ-terms into (22)–(24) will

give us:

dω

dt
= 3 n J2

4

(ρe

a

)2 (
5 cos2 i − 1

)
+ µn cot i − µ⊥

+ 1
2

(
µ̇1

n
cos � + µ̇2

n
sin �

)
+ O(e2), (53)
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di
dt

= −µ1 cos � − µ2 sin � − µ̇⊥
n

cot i − µ̇n

2n
+ 1

sin i
µ̇3

n
+ O(e2), (54)

d�

dt
= − 3

2
n J2

(ρe

a

)2
cos i − µn

sin i

+ 1
2 sin i

[
−
(

µ̇1

n
cos � + µ̇2

n
sin �

)]
+ O(e2), (55)

where µ⊥ and µ̇⊥ are given by (43) and (44). The quantity

µn ≡ − µ1 sin � cos i + µ2 cos � cos i + µ3 sin i (56)

is the component of �µ, pointing from the gravitating centre towards the ascending
node of the orbit, while

µ̇n = − µ̇1 sin � cos i + µ̇2 cos � cos i + µ̇3 sin i (57)

is its time derivative taken in the frame co-precessing with the satellite orbit plane.
(Taking the derivative in this frame, we differentiate only the components of �µ, but
not the angles.)

Under the assumption of constant a and small e, Eqs. (54) and (55) make a closed
system.

3.3 Goldreich’s approximation

It would now be tempting to introduce an even stronger assumption that both

|
.
�µ |/ (n2 J2 sin i

)
and | �µ|/ ( n J2 sin i ) are much less than unity, and to derive

therefrom the system

d�

dt
≈ − 3

2
n J2

(ρe

a

)2 cos i(
1 − e2

)2 , (58)

di
dt

≈ − µ1 cos � − µ2 sin �, (59)

whose solution,

i = − µ1

χ
cos [ −χ (t − to) + �o] + µ2

χ
sin [ −χ (t − to) + �o] + io,

� = −χ (t − to) + �o where χ ≡ 3
2

n J2

(ρe

a

)2 cos i(
1 − e2

)2 ,
(60)

seems to indicate that, in the course of planet precession (the term “precession” includ-
ing, as agreed above, also nutations and the Chandler wobble and polar wander), the
satellite inclination oscillates about io. Approximation (60) has already appeared in
the literature. Goldreich (1965) derived such equations for the orbital averages of
some nonosculating elements (which later were termed, by Brumberg (1992), “con-
tact elements”). In our case, however, the approximation (60) was derived for the
secular parts of osculating elements. We see that, in neglect of �µ 2-terms and under
the assumption of constant �µ, the equations for the secular parts of osculating ele-
ments coincide with those for the secular parts of the contact ones (for a detailed
explanation of this fact see Efroimsky 2005a).
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The evident flaw of approximation (58)–(60) is its invalidity in the closest vicinity

of the equator. In this vicinity, the parameters |
.
�µ |/ ( n2 J2 sin i

)
and | �µ|/ ( n J2 sin i )

are no longer small; so the entire approximation falls apart and gives no immediate
indication on whether the inclination will go through zero and alter its sign or will
“bounce off” the equator. At the first glance, this technical subtlety does not affect this
approximation’s main physical outcome, one that the inclination remains limited and
shows no secular increase. In reality, though, the matter needs further exploration.
For example, if the orbit keeps bouncing off the equator and the sign of i stays unal-
tered for long, then the term µ̇n/(2n) in (54) may, potentially, keep accumulating
through aeons, creating a drift of the inclination. Whether this is so or not can be
learned numerically through a more accurate approximation based on Eqs. (53)–(55).
A more definite thing is that the Goldreich approximation is intended only for low
inclinations: as can be seen from Eq. (55), at high inclinations it will fail, because the
term µ⊥/ sin i will dominate over the J2 cos i term. All these issues will be addressed
in our subsequent paper (Lainey et al. 2007, submitted).

3.4 Can precession cause secular changes of the inclination?

Above we saw that the Goldreich approximation reveals no secular terms in the
expression for the inclination relative to the moving equator. While a reliable quest
into this matter will demand numerical integration of the entire system of the planetary
equations, we shall try to work out a qualitative estimate based on the approximation
less crude than that of Goldreich. To this end we shall plug (44) and (56) into (54), and
shall omit all the long-period terms. Thus we shall be left with the following estimate
for the secular part of i :

di
(sec)

dt
= µ̇3

2 n
sin i + O(e2) + long-period terms. (61)

3.4.1 Small initial inclinations

For small inclinations, the above equation will look:

di
(sec)

dt
≈ A i

(sec)
, (62)

where

A ≡ µ̇3

2 n
≈ ḧp cos Ip

2 n
≈ ḧp

2 n
, (63)

hp and Ip being the longitude of the node and the inclination of the equator of date
on that of epoch (see Appendix A8). From here we see that the osculating component
of i will, approximately, obey

i
(sec) ≈ io eAt. (64)

The exponential dependence evidences of the presence of chaos in the system. It
should be mentioned, though that the chaos will be weak, because A is extremely
small. Besides, the second derivative of the precessing equator’s node, ḧp , which
enters the expression for A , does not keep the same sign through aeons. The rate,
at which node hp and the inclination Ip evolve, can be computed, via the Colombo
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equation, from the rate of precession of the planet’s orbit about the Sun (for details
on the Colombo model see Appendix A). Qualitatively, one may expect the spectrum
of hp and Ip to resemble the frequency content of the planet’s orbital precession
(see the table in Appendix A). On all these grounds, the time dependence of i is
constituted by the high-frequency oscillations (60) superimposed on a much slower
evolution (64). We expect this slow evolution to look as a saw-tooth plot, because the
sign of ḧp (and therefore of A ) alters from time to time for the reason explained
above. Due to this saw-tooth nature of the long-term evolution of i(sec), no consider-
able secular increase of the satellite’s inclination should be expected, at least in the
case of a small initial io. Numerical calculations performed in the e3 order confirm
this conclusion. Moreover, it turns out that even at not too small initial inclinations
no secular changes in i accumulate over time scales of order billion years.

The said numerical results and plots are presented in our subsequent paper Lainey
et al. (2007), devoted to a numerical implementation of our semianalytical model in
the e3 order.

3.4.2 Large initial inclinations

For near-polar orbits, Eq. (61) will read:

di
(sec)

dt
≈ A, (65)

whence

i
(sec) ≈ A t. (66)

Once again, due to the undulatory sign alterations of A , we shall get a “saw-tooth”
behaviour, though this time the teeth will be less steep than in the small-inclination
case governed by the exponent (64). The teeth will be expected to cross the polar
orbit once in a while. This kind of time dependence (so-called “crankshaft”) is indeed
what results from the numerical computations (Ibid.).

All in all, unless we begin very close to the pole, the variable equinoctial precession
is not expected to entail secular changes in the satellite inclination relative to the
equator of date. Exceptional is the case of near-polar orbits: in that case, leaps across
the pole are possible (see Ibid. for details and plots).

4 Preparation for computation in the e3 order

Insertion of (19) into Eqs.7 (20)–(24) will lead us to the following system:

da
dt

= − 2
µ̇⊥
n

a
(

1 − e2
)1/2

, (67)

de
dt

= 5
2

µ̇⊥
n

e
(

1 − e2
)1/2

, (68)

7 As within this model both the Hamiltonian perturbation and the
.
�µ-dependent terms are substituted

with their orbital averages, Mo becomes a nuisance parameter, so the planetary equation for dMo/dt
is omitted.
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dω

dt
= 3

2
n J2(

1 − e2
)2
(ρe

a

)2
(

5
2

cos2 i − 1
2

)

−µ⊥ + µn cot i − cos i

na2(1 − e2)1/2 sin i

〈
.
�µ
(

−�f × ∂�f
∂i

)〉
, (69)

di
dt

= −µ1 cos � − µ2 sin �

+ cos i

na2(1 − e2)1/2 sin i

〈
.
�µ
(

− �f × ∂�f
∂ω

)〉

− 1
na2 (1 − e2)1/2 sin i

〈
.
�µ
(

− �f × ∂�f
∂�

) 〉
, (70)

d�

dt
= − 3

2
n J2

( ρe

a

)2 cos i(
1 − e2

)2 − µn

sin i

+ 1
n a2 (1 − e2)1/2 sin i

〈
.
�µ
(

− �f × ∂�f
∂i

)〉
, (71)

where, according to Appendix A,
〈

.
�µ ·
(

− �f × ∂�f
∂i

) 〉

= a2

4

{
µ̇1

[
−
(

2 + 3 e2
)

cos � + 5 e2 (cos � cos 2ω − sin � sin 2ω cos i)
]

+ µ̇2

[
−
(

2 + 3 e2
)

sin � + 5 e2 (sin � cos 2ω + cos � sin 2ω cos i)
]

+ µ̇3

[
5 e2 sin 2ω sin i

] }
(72)

〈
.
�µ ·

(
− �f × ∂�f

∂ω

) 〉
= − a2

2

(
2 + 3 e2

)

× ( µ̇1 sin i sin � − µ̇2 sin i cos � + µ̇3 cos i ) , (73)

〈
.
�µ ·
(

− �f × ∂�f
∂�

)〉

= a2

4

{
µ̇1 sin i

[
−
(

2 + 3 e2
)

sin � cos i + 5 e2 ( cos � sin 2ω

+ sin � cos 2ω cos i )
]

+µ̇2 sin i
[ (

2 + 3 e2
)

cos � cos i

+ 5 e2 (sin � sin 2ω − cos � cos 2ω cos i)
]

− µ̇3

[ (
2 + 3 e2

) (
2 − sin2 i

)
+ 5 e2 sin2 i cos 2ω

] }
(74)
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5 Conclusions

In this article, we continued our analytical investigation of the behaviour of orbits
about a precessing oblate planet. We built up a reasonably simplified model that takes
into account both the long-term variability of the planetary precession (variability
caused by the planet’s orbit precession) and the short-term variability (polar wonder,
etc.).

We have written down equations (67)–(71) that describe evolution of the satellite
orbit at long time scales. The equations include known functions of time, µ1 , µ2 , µ3,
µ⊥ , µn , µ̇1 , µ̇2 , µ̇3 , µ̇⊥ , µ̇n , which are various projections of the planet axis’
precession rate and of this rate’s time derivative. An algorithm for computation of
these functions of time is presented in Appendix A. These functions vary in time as a
result of precession of the primary’s orbit about the Sun. This way, we have analytically
established connection between the precession of the planet’s orbit and the evolution
of its satellites. Physically, this connection comes into being through the following
concatenation of circumstances: precession of the planetary orbit leads to variations
in the Solar torque acting on the planet; the torque variations cause changes in the
planet axis’ precession; these changes, in their turn, entail variations of orbits of the
planet’s satellite. This effect is extremely weak and accumulates over very long time
scales. Our preliminary analytical estimates have shown that no considerable secular
alterations of the inclination should be expected, except in the case of near-polar
orbits.

All in all, we have fully prepared a launching pad for computation of the evolution
of near-equatorial circummartian orbits at long time scales. The methods and results
of this integration, and their physical interpretation will be presented in our next pub-
lication (Lainey et al. 2007). Briefly speaking, those results are to be threefold. First,
it turns out that our semianalytical model is robust beyond expectations. Despite the
averaging and the neglect of �µ 2-terms, it works very well over timescales up to, at least,
20 Myr. Second, it turns out that precession by itself (i.e., in the absence of the other
physical factors like the tides, the pull of the Sun, etc.) cannot cause accumulating sec-
ular changes in the satellite inclination, provided the initial inclination is not too large.
This means that, for orbits not too close to the polar one, the main prediction of the
Goldreich model stays valid, even though the model cannot adequately describe the
entire dynamics (which becomes weakly chaotic). Third, it turns out that in the vicinity
of the polar orbit precession of the primary can cause major alteration of the satellite
orbits, including unusual features in the behaviour of the inclination. See Ibid. for more
details. Further work along this line of research will be aimed at including more factors
into the model—the tidal forces, the pull of the Sun, the triaxiality of the planet, etc.

Acknowledgements I am indebted to Pini Gurfil, George Kaplan and Valery Lainey for our fruitful
discussions on the topic addressed in this article. My profoundest gratitude goes to Victor Slabinski
who kindly read the manuscript and made comments critical for its quality. This research was supported
by NASA grant W-19948.

Appendix A

Here we calculate, in neglect of nutation-caused resonances, the secular parts of the
�µ-dependent terms emerging in the planetary equations (19)–(25). We also explain
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how to compute the time dependence of various projections of the planetary preces-
sion rate �µ and of its time derivatives.

A.1 The averaging rule

The mean values are to be calculated via the averaging rule:

〈· · · 〉 ≡
(
1 − e2)3/2

2 π

π∫

−π

. . .
dν

(1 + e cos ν)2 . (75)

Since the averaging is carried out over the true anomaly, it will be convenient to
express the precession rate not as a function of time, �µ(t), but as a function of the
true anomaly:

�µ(ν) =
∫ ∞

0

[
�µ(s)

(W) sin(Wν) + �µ(c)
(W) cos(Wν)

]
dW, (76)

where W being the circular “frequency” related to the true anomaly ν .
In what follows, we shall need the average of the projection of �µ(t) onto the

instantaneous normal to the orbit. This projection, µ⊥ , will be expressed by

µ⊥ ≡ �µ · �w = µ1 sin i sin � − µ2 sin i cos � + µ3 cos i, (77)

where the unit vector

�w = x̂ sin i sin � − ŷ sin i cos � + ẑ cos i, (78)

stands for the normal to the instantaneous osculating ellipse, and the unit vectors
x̂ , ŷ , ẑ are the basis of the co-precessing coordinate system x, y, z. (The axes x
and y belong to the planet’s equatorial plane, and the longitude of the node, � , is
measured from x .) Expressions of µj via the longitude of the node and inclination
of the equator of date relative to that of epoch are given in Sect. A.3.

A.2 Calculation of the secular and long-period parts of
.
�µ ·
(

− �f × ∂�f
∂�

)

As an example, here we shall present calculation of the secular and long-term parts

of the expression
.
�µ ·

(
− (�f × ∂�f /∂�)

)
. Calculation of the secular and long-term

components of
.
�µ ·
(

− (�f × ∂�f /∂Ci)
)

, with Ci = a, e, i, ω, Mo , are performed in a

similar manner. They can be found in the extended version of this paper, which is
available on-line (Efroimsky 2006).

For the purpose of this calculation we shall need the following auxiliary integrals:

ϒ0 ≡
π∫

−π

1

(1 + e cos ν)4 dν = π
2 + 3 e2

(
1 − e2

)7/2 , (79)
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ϒ1 ≡
π∫

−π

sin(ω + ν) cos(ω + ν)

(1 + e cos ν)4 dν = 5
2

π e2 sin(2ω)(
1 − e2

)7/2 , (80)

ϒ2 ≡
π∫

−π

sin2(ω + ν)

(1 + e cos ν)4 dν = 1
2

π
2 + 3 e2 − 5 e2 cos(2ω)(

1 − e2
)7/2 . (81)

The first component:

〈
µ̇1

(
∂�f
∂�

× �f
)

1

〉

=
〈

µ̇1 a2

(
1 − e2)2

(1 + e cos ν)2

× [ cos � cos(ω + ν) − sin � sin(ω + ν) cos i ] sin(ω + ν) sin i
〉

= µ̇1 a2
(

1 − e2
)2

(
1 − e2)3/2

2 π
{ ϒ1 cos � sin i − ϒ2 sin � cos i sin i }

= µ̇1
a2

4
sin i

{
−
(

2 + 3e2
)

sin � cos i + 5e2 [cos � sin(2ω) + sin � cos(2ω) cos i]
}

.

(82)

The second component:

〈
µ̇2

(
∂�f
∂�

× �f
)

2

〉

=
〈

µ̇2 a2

(
1 − e2)2

(1 + e cos ν)2

× [ sin � cos(ω + ν) + cos � sin(ω + ν) cos i ] sin(ω + ν) sin i
〉

= µ̇2 a2
(

1 − e2
)2

(
1 − e2)3/2

2 π
{ ϒ1 sin � sin i + ϒ2 cos � sin i cos i }

= µ̇2 a2

(
1 − e2)7/2

2 π

{ [
5
2

π e2 sin(2ω)(
1 − e2

)7/2

]
sin �

+
[

1
2

π e2 2 + 3 e2 − 5 e2 cos(2ω)(
1 − e2

)7/2

]
cos �

}
sin i

= µ̇2
a2

4
sin i

{(
2 + 3 e2

)
cos � cos i

+ 5e2 [sin � sin(2ω) − cos � cos(2ω) cos i]
}

. (83)
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The third component:
〈

µ̇3

(
∂�f
∂�

× �f
)

3

〉

=
〈

− µ̇3 a2

(
1 − e2)2

(1 + e cos ν)2

[
cos2(ω + ν) + sin2(ω + ν) cos2 i

] 〉

= −µ̇3 a2

(
1 − e2)7/2

2 π

(
ϒ0 − ϒ2 sin2 i

)

= −µ̇3 a2

(
1 − e2)7/2

2 π

{
π

2 + 3e2

(
1 − e2

)7/2 − π
2 + 3e2 − 5e2 cos(2ω)

2
(
1 − e2

)7/2 sin2 i

}

= − µ̇3
a2

4

{ (
2 + 3 e2

) [
2 − sin2 i

]
+ 5 e2 sin2 i cos(2ω)

}
(84)

Total:
〈

.
�µ ·
(

− �f × ∂�f
∂�

) 〉

= a2

4

{
µ̇1 sin i

[
−
(

2 + 3e2
)

sin � cos i + 5e2 (cos � sin 2ω + sin � cos 2ω cos i)
]

+ µ̇2 sin i
[(

2 + 3e2
)

cos � cos i + 5e2 (sin � sin 2ω − cos � cos 2ω cos i)
]

− µ̇3

[ (
2 + 3 e2

) (
2 − sin2 i

)
+ 5 e2 sin2 i cos 2ω

] }
. (85)

Interestingly, even in the limit of vanishing eccentricity this sum survives and becomes

a2

2

{
− µ̇1 sin i sin � cos i + µ̇2 sin i cos � cos i − µ̇3

(
2 − sin2 i

) }

= a2

2
µ̇n sin i − a2 µ̇3. (86)

Moreover, even when both the eccentricity and inclination are nil, this sum still
remains non-zero.

A.3 The planetary precession rate �µ and its projection µ⊥
onto the satellite’s orbital momentum

Let the inertial axes ( X, Y, Z ) and the corresponding unit vectors ( X̂ , Ŷ , Ẑ ) be
fixed in space so that X and Y belong to the equator of epoch. A rotation within the
equator-of-epoch plane by longitude hp, from axis X, will define the line of nodes,
x. A rotation about this line by an inclination angle Ip will give us the planetary
equator of date. The line of nodes x, along with axis y naturally chosen within the
equator-of-date plane, and with axis z orthogonal to this plane, will constitute the
precessing coordinate system, with the appropriate basis denoted by ( x̂, ŷ, ẑ ).

In the inertial basis ( X̂, Ŷ, Ẑ ), the direction to the North Pole of date is given by

ẑ = (
sin Ip sin hp, − sin Ip cos hp and cos Ip

)T
, (87)
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while the total angular velocity reads:

�ω(inertial)
total = ẑ s + �µ(inertial) (88)

the first term denoting the rotation about the precessing axis ẑ, the second term being
the precession rate of ẑ relative to the inertial frame ( X̂ , Ŷ, , Ẑ ), and s standing
for the angular velocity of rotation about the axis ẑ . This precession rate is given by

�µ(inertial) =
(

İp cos hp, İp sin hp, ḣp

)T

, (89)

because this expression satisfies �µ(inertial) × ẑ = ˙̂z .
In a frame precessing with the equator, the precession rate will be represented by

vector

�µ = R̂i→p �µ(inertial), (90)

where the matrix of rotation from the equator of epoch to that of date (i.e., from the
inertial frame to the precessing one) is given by

R̂i→p =



cos hp sin hp 0
− cos Ip sin hp cos Ip cos hp sin Ip

sin Ip sin hp − sin Ip cos hp cos Ip


 . (91)

From here we get the components of the precession rate, as seen in the co-precessing
coordinate frame (x , y , z):

�µ = ( µ1, µ2, µ3 )
T =

(
İp, ḣp sin Ip, ḣp cos Ip

)T

. (92)

In our paper we also need the components of
.
�µ, dot standing for derivatives calculated

in the frame co-precessing with the equator:

.
�µ = (µ̇1 , µ̇2 , µ̇3)

T =
(

Ïp , ḧp sin Ip + ḣpİp cos Ip , ḧp cos Ip − ḣpİp sin Ip

)T

.

(93)

The matrix of rotation from the precessing frame of the equator of date to the frame
associated with the satellite’s orbital plane will look:

R̂p→o =



cos � sin � 0
− cos i sin � cos i cos � sin i

sin i sin � − sin i cos � cos i


 . (94)

This will give us the precession rate as seen in the instantaneous orbit frame:

�µ(orb) = R̂p→o �µ. (95)

This vector’s component pointing towards the ascending node of the satellite orbit
relative to the equator of date) is what we need in our formulae (52) and (54):

µn = − µ1 sin � cos i + µ2 cos � cos i + µ3 sin i

= − İp sin � cos i + ḣp sin Ip cos � cos i + ḣp cos Ip sin i. (96)
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Its time derivative (taken in the frame of reference precessing with the equator of
date) is:

µ̇n = − µ̇1 sin � cos i + µ̇2 cos � cos i + µ̇3 sin i

= − Ïp sin � cos i +
(

ḧp sin Ip + ḣp İp cos Ip

)
cos � cos i

+
(

ḧp cos Ip − ḣp İp sin Ip

)
sin i. (97)

The third component of �µ(orb) (i.e., the component orthogonal to the instantaneous
plane of the orbit) is exactly what we need in (27) and (33):

µ⊥ = µ1 sin i sin � − µ2 sin i cos � + µ3 cos i

= İp sin i sin � − ḣp sin Ip sin i cos � + ḣp cos Ip cos i. (98)

Its time derivative µ̇⊥ defined in the axes co-precessing with the equator (and
therefore equal to �̇µ · �w , not to d( �µ · �w)/dt) will now be expressed by

µ̇⊥ ≡ µ̇1 sin i sin � − µ̇2 sin i cos � + µ̇3 cos i

= Ïp sin i sin � −
(

ḧp sin Ip + ḣp İp cos Ip

)
sin i cos �

+
(

ḧp cos Ip − ḣp İp sin Ip

)
cos i (99)

≈ ḧp
(− sin Ip sin i cos � + cos Ip cos i

)
, (100)

Ip and hp being the inclination and the longitude of the node of the equator of date
relative to the one of epoch.

The expression for µ̇⊥ permitted approximations shown above because, for
Mars’ equator, the speed of the nodes’ motion, |ḣp| ≈ 360◦/(1.75 × 105 year)
≈ 2 × 10−3 year−1, much exceeds the rate of its inclination change, |İp| ≈ 5◦/(0.5 ×
106 year) ≈ 10−5 year−1 (Ward 1974).

A.4 Calculation of hp and Ip

The question now becomes as to how to calculate the time dependence of hp and
Ip . As very well known, these two angles evolve in time because a non-spherical
planet behaves itself as an unsupported top whose precession is instigated by the
solar torque. The torques produced by the satellites are irrelevant (Laskar 2004), the
cases of the Moon and Charon being exceptional. When the moments of inertia of
the planet relate as C > B = A , the solar torque is

�T = 3 G M
R3 (C − A)

(
r̂ · k̂

) (
r̂ × k̂

)
, (101)

while in the general case of C ≥ B ≥ A it is equal to

�T = 3 G M
R3

(
C − A + B

2

) (
r̂ · k̂

) (
r̂ × k̂

)
, (102)

provided that the spin mode is not too deviant from the principal one, and that this
spin is much faster than the planet’s orbital revolution about the Sun.

In the above two formulae, M is the solar mass, R denotes the distance between
the centres of masses of the planet and the Sun, the unit vector r̂ points from
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the planet towards the Sun, and the unit vector k̂ points in the direction of the
major-inertia axis of the planet.

The precession of the angular momentum �L of the planetary spin obeys

d�L
dt

= �T. (103)

Colombo (1966) averaged this equation over the planet’s year, under the assumption
that the perturbing torque causes only very small variations of spin. This averaging
yields the Colombo equation valid at timescales much exceeding 1 year:

d�L
dt

= 3 n2
p

2
(

1 − e2
p

)3/2

(
C − A + B

2

) (
k̂ · n̂

) (
k̂ × n̂

)
, (104)

np and ep being the mean motion and the eccentricity of the planet’s orbit about
the Sun, and n̂ being the unit vector normal to the planetary orbit; while d�L/dt
should be understood as a change of �L over a year, divided by the length of the year:
��L/P . The angular velocity of the planet about its axis being denoted with letter s,
the Colombo equation may be rewritten as

1
s C

d�L
dt

= α
(

k̂ · n̂
) (

k̂ × n̂
)

(105)

the factor α being defined as

α ≡ 3 n2
p

2 s
(

1 − e2
p

)3/2

C − A + B
2

C

= 2 π

P
D
P

1(
1 − e2

p

)3/2


 3

2

C − A + B
2

C


 , (106)

where P = 2 π/np is the duration of the planet’s year, and D = 2 π/s is that
of its day. The relative difference between the moments of inertia may be expressed
through the parameter J2 emerging in the expression for potential via the planeto-
centric latitude φ

V = − G m
r

[
1 −

∞∑
n=2

Jn

(ρe

r

)n
Pn(sin φ)

]

+
∞∑

n=2

n∑
j=1

Jnj

( ρe

r

)n
Pnj (sin φ) cos j

(
λ − λnj

)
(107)

(where ρe stands for the mean equatorial radius of the planet):

J2 = C − A + B
2

M ρ2
e

= C − A + B
2

C
C

M ρ2
e

. (108)

It is also interconnected with the nonsphericity parameter J:

J ≡ 3
2

(
ρe

ρ

)2

J2 = 3
2

C − A + B
2

C
C

M ρ2 = 3
2

C − A + B
2

C
K, (109)



284 M. Efroimsky

where ρ is simply the mean (not the mean equatorial) radius of the planet, while the
quantity

K ≡ C
m ρ2 (110)

is the squared ratio of the gyration radius
√

C/m of the planet to its mean radius ρ.
We thus see that

3
2

C − A + B
2

C
= J

K
= 3

2
J2

m ρ2
e

C
, (111)

whence

α = 2 π

P
D
P

1(
1 − e2

p

)3/2

J
K

= 2 π

P
D
P

1(
1 − e2

p

)3/2

3
2

J2
m ρ2

e

C
. (112)

Ward (1974) used, for Mars, K = 0.359 and J = 2.95 × 10−3, which gave him the
value:8 αMars = 1.26 × 10−12 rad/s = 8.19 arc sec/year.

To further simplify the above expression (105), Colombo (1966) assumed that the
spin angular momentum �L is parallel to the spin angular velocity �s :

�L ≈ C �s ≈ C s k̂. (113)

While investigating the dynamics of the Moon at less than cosmic time scales, Co-
lombo certainly could afford this approximation. Compare the latter with the exact
expression for �L through �s and through the moments of inertia C ≥ B ≥ A:

�L = î s1 A + ĵ s2 B + k̂ s3 C = î s1 (A − C) + ĵ s2 (B − C)

+C s
(

p̂ − k̂
)

+ C s k̂, (114)

ŝ ≡
(

î s1 + ĵ s2 + k̂ s3

)
s−1 being the instantaneous direction of the angular veloc-

ity of the planet’s spin. We see that Colombo’s approximation stems from the frivolous
assertion that the planet always remains in a principal spin state. Indeed, insofar as
ŝ coincides with �k the components s1 and s2 are nil, and (113) becomes exact.
Under such an assertion, the equation for unit vector aimed in the direction of the
major-inertia axis, �k , assumes the form9

dk̂
dt

= α
(

n̂ · k̂
) (

k̂ × n̂
)

(115)

8 In his formulae, Ward (1973) missed or deliberately neglected the factor
(

1 − e2
p

)−3/2
. In the

case of Mars, this may look legitimate because nowadays this factor amounts to 1.013 . However, the
Martian eccentricity is wont to have varied through aeons within the interval of e = 0.01 − 0.14

(Murray et al. 1973). This means that the said factor
(

1 − e2
p

)−3/2
, might have varied from almost

unity through 1.03 . This 3 % increase will look less than innocent if we recall that several authors
(Ward 1974; Laskar and Robutel 1993; Touma and Wisdom 1994) insist on the stochastic nature of
Mars’ obliquity variations.
9 By basing his research on the approximation (115), Ward (1974) implicitly made the strong assump-
tion of Mars always remaining in the principal spin state, polar wander and nutations and the Chandler
wobble being neglected. By employing a Hamiltonian, that generates equation (115), Laskar and
Robutel (1993) and Touma and Wisdom (1994), too, rested their study on the same assumption.
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the unit normal to the planet’s orbit, �n, being subject to variations described by the
formulae and tables worked out by Brouwer and van Woerkom (1950).10 The quanti-
ties hp, Ip and their time derivatives can be calculated from integration of the above
equation for k̂. To this end, let us recall that our unit vector k̂ coincides with the
afore discussed unit vector ẑ (see formula (87) above). Therefore, in the frame of
the equator of epoch (which we assume, for convenience, to coincide with the ecliptic
of 1950), k̂ and dk̂/dt will read:

k̂ = (
sin Ip sin hp , − sin Ip cos hp , cos Ip

)T
, (116)

dk̂
dt

=
(

İp cos Ip sin hp + ḣp sin Ip cos hp , − İp cos Ip cos hp

+ ḣp sin Ip sin hp , − İp sin Ip

)T

, (117)

while the components of n̂,

n̂ = (sin Iorb sin �orb , − sin Iorb cos �orb , cos Iorb)
T

, (118)

may be expressed through the auxiliary variables

q = sin Iorb sin �orb, p = sin Iorb cos �orb, (119)

whose evolution will be found from

q =
∞∑

j=1

Nj sin
(

s′
jt + δj

)
, (120)

p =
∞∑

j=1

Nj cos
(

s′
jt + δj

)
. (121)

Under the assumption that the orbital elements are defined relative to the ecliptic
plane of 1950, Brouwer and van Woerkom (1950) calculated the values of the ampli-
tudes, frequencies, and phases used in the above formulae. Below follow the triples
of numbers:

j Nj s′
j (arc sec/year) δ′

j(
◦)

1 0.0084889 −5.201537 19.43255
2 0.0080958 −6.570802 318.05685
3 0.0244823 −18.743586 255.03057
4 0.0045254 −17.633305 296.54103
5 0.0275703 +0.000004 107.10201
6 0.0028112 −25.733549 127.36669
7 −0.0017308 −2.902663 315.06348
8 −0.0012969 − 0.677522 202.29272

10 Brouwer and van Woerkom (1950) chose the ecliptic of 1950 as the reference plane. Since our
eventual goal is to simply estimate the range of variations of i and � over large time scales, we can
accept, without loss of generality, that at some distant epoch the Martian equator coincided with that
plane.
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Technically, the computation of time evolution of Ip and hp can be implemented
through a set of differential equations obtained by substitution of

n̂ = ( q , − p , u )
T

, q ≡ sin Iorb sin �orb ,

p ≡ sin Iorb cos �orb , u ≡ cos Iorb , (122)

k̂ = ( Q , − P , U )
T

, Q = sin Ip sin hp, P = sin Ip cos hp, U ≡ cos Ip, (123)

into the Colombo equation (115). Here follow these equations:

dQ(t)
dt

= − α
[

q(t) Q(t) + p(t) P(t) + u(t) U(t)
] [ − p(t) U(t) + u(t) P(t)

]
,

(124)

dP(t)
dt

= α
[

q(t) Q(t) + p(t) P(t) + u(t) U(t)
] [

u(t) Q(t) − q(t) U(t)
]

,

(125)

dU(t)
dt

= − α
[

q(t) Q(t) + p(t) P(t) + u(t) U(t)
] [−q(t) P(t) + p(t) Q(t)

]
,

(126)

where, at each time step, the following values of q(t) , p(t) and u(t) are to be used:

q(t) = ∑∞
j=1 Nj sin

(
s′

jt + δj

)
, (127)

p(t) = ∑∞
j=1 Nj cos

(
s′

jt + δj

)
, (128)

u(t) = ± √
1 − q(t)2 − p(t)2. (129)

The resulting values of Q, P, U, obtained through this integration, will, at each
time step, give us the angles Ip and hp via formulae that follow from (122) and
(123):

hp = arctan
Q
P

Ip = arccos U, (130)

It is evident from (123) that the variables Q(t) , P(t) and U(t) obey the constraint

Q(t)2 + P(t)2 + U(t)2 = 1 (131)

and therefore fulfilment of this constraint should be checked during integration. Devi-
ation from it will indicate accumulation of errors. At each step, some attention will be
needed also when the current value of u(t) is evaluated (we mean the choice of sign
in (129)).

It is straightforward from (123) that

İp = − U̇
1

sin Ip
= α u cos Ip

( − q cos hp + p sin hp
) + O(sin2 Iorb)

= α cos Ip sin Iorb sin(hp − �orb) + O(sin2 Iorb) (132)
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and

ḣp = Q̇ cos hp − Ṗ sin hp

sin hp sin Ip
= αu

[
cos2 Ip

sin Ip

(
q sin hp + p cos hp

)− u cos Ip

]

= −α cos Ip + O(sin2 Iorb). (133)

Differentiation of the latter, with the subsequent insertion of the former will result in:

ḧp = α2 sin Iorb sin Ip cos Ip sin(hp − �orb). (134)

Finally, it should be stressed that the development by Brouwer and van Woerkom
(1950) is limited in terms of precision and, therefore, in terms of the time span over
which it remains valid. A more accurate and comprehensive development, with a
validity span of tens of millions of years, was recently offered by Laskar (1988). At
the future stages of our project, when developing a detailed physical model of the
satellite motion, we shall employ Laskar’s results.
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