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Abstract VLBI-based offsets of the Celestial Pole positions, as well as the variations
of UT (series of Goddard Space Flight Center, 1984–2005) are processed applying
the Earth’s rotation theory (ERA) 2005 constructed by the numerical integration of
the differential equations of rotation of the deformable Earth. The equations were
published earlier (Krasinsky 2006) as the first part of the work. The resulting weighted
root mean square (WRMS) errors of the residuals dθ , sin θdφ for the angles of nuta-
tion θ and precession φ are 0.136 and 0.129 mas, respectively. They are significantly less
than the corresponding values 0.172 and 0.165 mas for the IAU 2000 model adopted
as the international standard. In ERA 2005, the angles θ , φ are related to the iner-
tial ecliptical frame J2000, the angle φ including the precessional secular motion. As
the published observational data are theory-dependent being related to IAU 2000,
a procedure to confront the numerical theory to the observed Celestial Pole offsets
and UT variations is developed. Processing the VLBI data has shown that beside the
well known 435-day FCN mode of the free core nutation, there exits a second mode,
FICN, caused by the inner part of the fluid core, with the period of 420 day close
to that of the FCN mode. Beatings between the two modes are responsible for the
apparent damping and excitation of the free oscillations, and are implicitly modeled
by ERA 2005. The nutational and precessional motions in ERA 2005 are proved to be
mutually consistent but only in case the relativistic correction for the geodetic preces-
sion is applied. Otherwise, the overall WRMS error of the residuals would increase
by 35%. Thus, the effect of the geodetic precession in the Earth rotation is confirmed
experimentally. The other finding is the reliable estimation δc = 3.844 ± 0.028◦ of the
phase lag δc of the tides in the fluid core. When processing the UT variations, a simple
model of the elastic interaction between the mantle and fluid core at their common
boundary made it possible to satisfactory describe the largest observed oscillations of
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UT with the period of 18.6 year, reducing the WRMS error of the UT residuals to the
value 0.18 ms (after removing the secular, annual and semi-annual terms).

Keywords Earth’s rotation · Nutation · Precession · Universal time ·
General relativity · VLBI

1 Dynamical model and VLBI data

Differential equations of the deformable Earth given in Sect. 5.1 of paper (Krasinsky
2006), thereafter referred to as Paper 1, have been integrated numerically compar-
ing the results with the series of the Earth Orientation Parameters (EOP) provided
by Goddard Space Flight Center (GSFC). These data are accessible via anonymous
FTP (ftp: //cddis.gsfc.nasa.gov/ivsproducts/eops). They are regularly updated in GSFC
by global processing all VLBI observations, which could contribute to the study of
the Earth’s rotation and are available at the current date. In the present paper, we
describe the results of fitting the constructed numerical theory of the Earth rotation
to these data.

To facilitate reading, it seems useful to give a brief account of the main features
of the dynamical model of the Earth’s rotation realized by the numerical integration,
referring to Paper 1 for detailed descriptions. It proves that in spite of the complex
structure of the non-rigid Earth interior, the Earth’s rotation may be modeled accu-
rately enough by a dynamical system with finite freedom degrees. It is commonly
assumed that the Earth consists of the anelastic mantle, the viscous fluid and solid
inner cores. In the static approximation, rotation of the fluid core may be modeled
after Poincaré by a system of ordinary differential equations coupled with the equa-
tions for the mantle. A simple generalization of the Poincaré’s method makes it
possible to develop the analogous theory for the two-layer fluid core. A preliminary
analysis of the VLBI-based offsets of the Celestial Pole has shown that the two-layer
model of the core provides better fitting of the numerical theory to these data than
the one-layer model (and much better fitting then that of the IAU 2000 theory of the
precession-nutational motion adopted as a standard). In this analysis no signs have
been found of the prograde free oscillations predicted as the effect of the solid inner
core by the MBH model (Mathews et al. 2002), which makes the dynamical basis of
IAU 2000. That is why action of the solid inner core is ignored in the present ver-
sion of the dynamical theory. Broadly speaking, the perturbations taken into account
may be described in the following way. The perturbing effects are caused by both the
direct and indirect action of the Moon, Sun, and the nearest planets; moreover, for the
deformable Earth it is necessary to consider a large number of tidal effects many of
which are ignored in IAU 2000. The tides affect the Earth’s rotation in two ways. First,
they distort three matrices of inertia: I of the Earth as a whole, Ic of the fluid core as a
whole and Ii of the inner part of the fluid core. These deformations are proportional to
the well-known static Love number k2, to the dynamical Love number kd

2 (that scales
the deformations of I due to the differential rotation of the core, and, vice versa, the
deformations of Ic caused by the tidal deformations in I), and to the Love number kc

2
that scales the deformations of Ic caused by the differential rotation of the core. The
effective (normalized) Love numbers that actually enter the differential equations,
are defined as σ=k2/ks, ν=kd

2/kx, and σv=kc
2/ks, where ks ≈ 1 is the so called secular

Love number. The analogous parameters may be introduced for the inner part of the
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fluid core, in particular, the dynamical Love number νuv scaling the perturbations of
matrices of inertia of the core and its inner part due to their differential rotations. Not
only do the tidally redistributed masses within the Earth lead to the distortions of the
matrices of inertia, but they give rise to additional torques caused by the interaction of
the perturbing bodies with these masses. It appears that these torques are proportional
to the same effective Love numbers. The non-elasticity of the Earth’s matter means
that both the tidally induced torques and the tidal contributions to the moments of
inertia depend on positions of the perturbing bodies (or on the angular velocities of
the differently rotating layers of the Earth) delayed by some time intervals. In this
way, the two phase lags δ and δc, defined as products of the time delays and the angular
velocity ω of the Earth’s axial rotation enter the differential equations.

When dealing with the dissipative systems like the rotating non-rigid Earth, the
backwards in time integration meets insuperable obstacles because in such integra-
tion amplitudes of the excited free oscillations would exponentially increase. Hence,
the integration can only be carried out onwards in time, and that is why, we cannot
use J2000 as the natural initial date T0 for the integration. Instead, the calendar date
December 27 1983 (JD = 2445695.5) is taken for T0, deliberately ignoring all VLBI
observations before this date due to their low accuracy. The last observation is that
for the date October 10 2005 (the total number is 3588 points). We integrate the set
of the 18 variables that determine: (a) the absolute rotation of the Earth as a whole,
(b) the differential rotation of its external fluid core relative to the mantle, and (c)
the differential rotation of the inner part of the fluid core relative to its external part
(effects of the solid inner core are not considered due to the above reasons). The vari-
ables θ , φ, ψ are the three Euler’s angles (of nutation, precession, and axial rotation)
referred to the inertial ecliptical coordinate frame J2000. The conjugate impulse-type
variables are m1 = θ̇ , m2 = φ̇ sin θ , m = φ̇ + φ̇ cos θ . The variables n1, n2 are the
equatorial projections of the vectorial angular velocity of the differential rotation of
the fluid core relative to the mantle (in the inertial frame), n is the polar projection.
Similarly, the variables q1, q2 are the equatorial projections of the angular velocity of
the inner part of the fluid core relative to its outer part, q is the polar projection. The
variable χ is the librational angle introduced in Paper 1 to model the coupling of the
axial rotations of the mantle and the core due to their interaction in the vicinity of
the common boundary. The polar projection n is the conjugate impulse-like variable
connected with χ by the differential relation n = χ̇ . The analogous variables for the
inner core are χi and q (χ̇i = q). In the present work, no observational evidences of the
coupling between the axial rotations of the external and inner fluid cores are found,
and the variables χi, q only are introduced here formally, to facilitate future studies.
They have no influence on other integrated variables and, so, on the observables.

If desirable, Chebyshev polynomials presenting the integrated variables can be
constructed simultaneously with the process of the numerical integration. The pro-
gram complex ERA (Ephemerides for Research in Astronomy) (see Krasinsky and
Vasilyev 1997) used in all the calculations, provides the polynomials not for variables,
but for their time derivatives, restoring the variables from these derivatives when
the polynomials are to be evaluated. That is why we consider n1, n2 and q1, q2, as
impulses defining the auxiliary angular conjugate variables θe, φe and θi, φi by the
differential relations θ̇e = n1, φ̇e = n2 and θ̇i = q1, φ̇i = q2. These variables are the
cyclic ones (i.e. they do not enter the perturbing potential and so do not affect the
Euler’s angles) unless the interaction between the core and mantle, as well as between
the external and inner cores near corresponding boundaries are accounted for. They
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mean differences of the corresponding Euler’s angles of nutation and precession for
the mantle and core, or for the external and internal parts of the fluid core. In Version
A of the precession-nutational model, the elastic mantle-core interaction is ignored
while for the extended model of Version B a simple mathematical description of
such an interaction has been applied, in which the arising torques are proportional
to θe, the coupling parameter being estimated from the observations. In Version B,
the variable θe is no more a cyclic one and enters the differential equations explicitly.
Version A has been used for testing the relativistic effects of geodetic precession (see
Sect. 3.4). In both versions the dissipative effect of friction between the mantle and
the core at their boundary is accounted for. Components of the arising torques are
proportional to the differential angular velocities n1, n2 and do not depend explicitly
on the differences of the Euler’s angles.

For studies of the Earth’s rotation, only the variables θ , φ, ψ are needed, but in
a number of other fields of geodynamics, the values of the variables n1, n2 may also
be used for accurate calculation of the diurnal tidal terms in the site positions and
in the harmonics c21, s21 of the geopotential. These terms are commonly referred
to as those caused by the frequency-dependence of the Love number h2, l2 and k2,
respectively (see McCarthy and Petit 2004; Krasinsky 2002b), and Paper 1 (Sect. 3.2).
That is why the polynomial presentation of all the integrated variables may be useful
for applications.

As influence of the variability of the axial angular velocity on the angles of nuta-
tion and precession is ignorable, the differential equations of the axial rotations of
the mantle and cores might be integrated separately. Nonetheless, for convenience,
all the differential equations are integrated simultaneously. In such an approach, the
model of UT variations is always consistent with that of the precession-nutational
motion. While integrating, we have accounted for the perturbations from the Moon,
Sun, and the major planets from Venus to Saturn, coordinates of these bodies being
taken from the DE/LE405 ephemerides. After a number of trials, the integration
step was taken equal to 0.1 days (making use of the Everhart’s method of the 11th
order). The small value of the step is necessitated by the diurnal effects in θ , φ,
which are the Chandler’s oscillations transformed to the inertial frame. After fitting
θ , φ to the observed Celestial Pole offsets (which are free from such oscillations due
to the adopted IERS conventions) the amplitudes of the remaining diurnal oscilla-
tions proved to be about 0.01 mas which value is less than the errors of the VLBI
data. Although more rigorous usage of the numerical theory requires re-processing
of the raw VLBI time-delays, the theoretical inconsistency between the theory and
the observed Celestial Pole offsets leads to negligible effects as the remaining diurnal
terms are so small.

The computer time required for integration of the differential equations on the
25 year time span is about 15 min for an ordinary PC. However, because the partials
for the parameters under estimation are obtained by the analogous integration, one
step of iterations takes several hours to fit the theory to the observations.

Fitting the constructed dynamical theories to VLBI data has been carried out in
two steps: first, the observed offsets of the Celestial Poles are processed estimating
relevant geophysical parameters and initial coordinates, and after that there are pro-
cessed the observed UT corrections. The resulting numerical theory is named ERA
2005 to mark the software used and the upper time limit of the VLBI data processed,
and to imply that the theory provides the earth rotation angles.
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2 Observables

The numerical theory, because obtained in the fixed coordinate frame J2000, cannot
be directly fitted to the observed Celestial Pole offsets and to the UT variations, as
they are published in the form of corrections to a nominal theory referred to the mean
ecliptic and equator of the current date. To overcome this difficulty, we construct the
transformation of the Terrestrial Reference System (TRS) to the Celestial Reference
System (CRS) in terms of the variables θ , φ, ψ given by the numerical integration.
Then, the numerical theory may be fitted to the VLBI data conditioning that this trans-
formation, being applied to any vector defined in TRS, provides the same results as
the conventional transformation of TRS–CRS consistent with the published Celestial
Pole offsets and UT variations. As the result, we will derive the theory-independent
observables θobs, φobs,ψobs referred to the inertial frame J2000 properly incorporating
the published theory-dependent Celestial Pole offsets as well as the UT variations. (In
these two forms of the transformation, the polar wobble is accounted for in the same
manner, and so here there is no need to dwell on this reduction.). In more details, the
integrated angles θ , φ, ψ have been fitted to the VLBI-based offsets of Celestial Pole
positions and to the UT corrections in the following way.

1. First, making use of the observed offsets, we derive the observables θobs, φobs,
which are the observed angles of nutation and precession referred to the ecliptical
inertial frame J2000. This procedure practically is not affected by the variations of
UT. Actually, in order to calculate θobs, φobs, the unit vector ρp directed along the
polar axis of inertia has been transformed into the equatorial CRS in accordance
with IERS Conventions (making use of the observed offsets of the Celestial Pole).
Coordinates of the vector ρp in TRS are given by the triplet (0, 0, 1). Applying the
conventional transformation of TRS into CRS to this vector, we obtain the vector
ρp(CRS) which has to be transformed into the ecliptical frame of J2000 by the
rotation

ρobs
p = P1(θ0)ρp(CRS) (1)

(θ0 is the mean obliquity for the epoch J2000) thus obtaining the ‘observed’ vector
ρobs

p . Now the spherical latitude θobs and longitude φobs of the vector ρobs
p properly

account for the observed offsets and so may be considered as observables to be
directly compared with the theoretical values of the Euler’s angles θ , φ provided
by the numerical integration. Note, that the value φobs is the sum of the observed
secular precessional trend and the periodic nutation in the longitude; there is no
necessity to separate these components when fitting the theory to observations
because the theoretical value of φ is given by the numerical integration in the same
form. As the observed angle φobs is clockwise counted (the astronomical defini-
tion) while the calculated angle φ is counter-clockwise counted (as it is commonly
assumed in mathematics), the residuals δθ , δφ are to be calculated as follows

δθ = θobs − θ , δφ = −φobs − φ.

Evaluating the residuals for the precessional angle φ, we have also added the
correction φGRT predicted by General Relativity Theory (GRT) (the so called geo-
detic precession and nutation). Its numerical value is calculated making use of the
analytical expression from the work (Fukushima 1991)

φGRT = 1.9194 (t − J2000)/36525.0 + 0.153 sin l′
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in which the coefficients are given in mas, and l′ is the solar mean anomaly. The
sign of the right part is reversed to be in accordance with our definition of φ. In
more consistent approach, this correction could be obtained in the process of the
numerical integration, along with the other variables. Such a procedure is supposed
to be realized in the next version of the theory.

2. Second, the observable ψobs is formed to be used for fitting the rotational angle ψ
to ψobs (and so to the variations of UT). To obtain ψobs, the equatorial unit vector
ρe directed along the largest equatorial axis of the matrix of inertia, and presented
in TRS as the triplet ρe = (1, 0, 0), has to be transformed into the ecliptical inertial
frame J2000. As in step 1, this vector is firstly transformed into the equatorial
inertial frame of CRS, following the algorithms of IERS Conventions and applying
this time also the observed corrections to UT, on which the CRS coordinates of the
vector ρe strongly depend. Then, the resulted vector is transformed into the eclipti-
cal frame of J2000 with the help of transformation (1), thus deriving the ‘observed’
vector ρobs

e . Having obtained this vector, we can present it also in terms of the
observed Euler’s angles θobs, φobs, ψobs referred to ecliptic J2000. As θobs, φobs
have been already determined in step 1, the observed value of the rotational angle
ψobs may be easily derived. In more detail, the ecliptical vector ρobs

e is connected
with the vector ρe by the transformation

ρobs
e = P3(−φobs)P1(−θobs)P3(−ψobs)ρe,

which may be written in the coordinate form as it follows (using the projections
ξobs, ηobs, ζobs of the vector ρobs

e ):

ξobs = cosψobs cosφobs − sinψobs sin φobs cos θobs,

ηobs = − cosψobs sin φobs − sinψobs cosφobs cos θobs,

ζobs = sinψobs sin θobs.

From these relations the observed values of the combinations sin θobs cosψobs and
sin θobs sinψobs is expressed in the form:

sin θobs cosψobs = ξobs sin θobs cosφobs + ηobs sin θobs sin φobs,

sin θobs sinψobs = ζobs,

from which the value ψobs may be easily obtained.

The observable ψobs, derived in this way, has been compared with the rotational
angle ψ provided by the numerical integration.

3 Fitting the theory to observed Celestial Pole offsets

3.1 Residuals and their weighted root mean square errors

The WRMS errors σ(dθ), σ(sin θdφ) for the Versions A and B of the numerical theory
are given in Table 1 (lines 1, 2). They have resulted from several iterations of the least
squares method, weighting the condition equations in accordance with a priori errors
taken from the GSFC dataset. The analogous statistics for IAU 2000 are given in the
last line. In the iterative process there are used 3546 points for dθ and 3545 points for
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Table 1 Statistics σdθ , and σdφ
of the residuals (mas)

Theories σ(dθ) σ (sin θ dφ)

ERA 2005 A 0.141 0.135
ERA 2005 B 0.136 0.129
IAU 2000 0.172 0.165

dφ, rejecting 42 and 43 outliers, respectively. The statistics for IAU 2000 are calculated
excluding the same outliers.

It is important that neither the angle of precession φ or nutation θ in ERA 2005
includes any empirical secular corrections, while in IAU 2000 they do, and such cor-
rections are rather large (for instance, θ̇ = −24 mas/cy). Quality of the fitting may be
characterized by the parameter ς calculated as the ratio of the overall WRMS error of
the residuals to the WRMS value of a priori errors. In the ideal case ς = 1, while, we
have obtained ς = 1.76 and ς = 1.70 for Versions A and B of the ERA 2005, respec-
tively, and ς = 2.15 for IAU 2005. The larger value of ς for IAU 2000 is mainly (but
not completely) due to the unmodeled amplitudes of the FCN oscillations. Assuming
that the a priori accuracies are realistic, the value ς > 1 indicates that there are still
unmodeled effects in ERA 2005.

Residuals dθ , sin θdφ for the Euler’s angles of nutation and precession are pre-
sented in Figs. 1 and 2 by the plots at the bottom of the figures (marked as ERA 2005).
Drawing the plots, the outliers have not been excluded. For comparing, the analogous
plots of the IAU 2000 model are presented at the top of Figs. 1 and 2, being marked
as IAU 2000.

In the next sections, more details on the estimated parameters are given. The
parameters may be separated into three groups: the initial values of the integrated
variables, the geophysical parameters, and several empirical parameters without which
the satisfactory fitting to the observations still is not possible.

The needful partial derivatives (relatively to any parameter under estimation) of
the integrated Euler’s angles are obtained by the similar numerical integration of the
differential equations, in which this parameter has been slightly varied. The resulting

Fig. 1 Residuals sin θdφ



226 G. A. Krasinsky, M. V. Vasilyev

Fig. 2 Residuals dθ

values of the Euler’s angles have been subtracted from those for the nominal the-
ory, the calculated differences being divided by the assumed value of the variation
to obtain the partials needed. For achieving the required accuracy of the partials,
the adequate value of the variation has to be taken (neither too big nor small) for
each of the estimated parameters. The available polynomial approximation of the
integrated Euler’s angles could not be used in this method, because the errors of such
approximation might seriously affect the differences of the observables, calculated
for the nominal and varied values of the estimated parameter. Instead, the numerical
integration was carried out starting from the current date of VLBI data and ending
up at the date of the next observation, when the needed values of the Euler’s angles
become known without the loss of accuracy. In this way, the partials were calculated
for each date of the observational series. Trying a series of tests, the optimal size of
the variation of the each estimated parameter was found. These tests have also shown
that at least two digits in the calculated partials are correct. Fast convergence of the
iterative process of estimation proves that the partials indeed have been calculated
accurately enough.

3.2 Initial values of the integrated variables

To facilitate independent studies, in Table 2 there are given values of the integrated
variables for the three epoch: 0h December 27 1983 (JD = 2445695.5, the initial date),
for J2000 (JD = 2451545.0) and for 12h January 1 2005 (JD = 2453372.0). The variable
dθ in the table means the correction to the value θ0 = 0.4090648 of the mean obliquity
at J2000.0. Applying this correction, the current apparent obliquity in the reference
frame J2000 may be obtained. The variable dm means a correction to the nominal
sidereal frequency of the axial rotation m = 1299548.204236′′/day (more exact, m is
the polar projection of the vector ω but here we may safely assume m = ω). For
the initial date, we set dm = 0. The variable dψ is the corrections to the Earth’s
rotation angle ψ . The value ψ0 = 340930.346340388′′ is taken for ψ at the initial
epoch JD = 2445695.5. After integrating, the rotational angle ψ has to be calculated
as ψ0 + dψ plus the constant correction to and the additional linear trend in the side-
real time derived by processing the VLBI data; see Sect. 4. These corrections absorb
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Table 2 Values of the
integrated variables for three
epochs

JD 2445695.5 2451545.0 2453372.0
dθ 2.0394750 ± 2 E-05 −5.7765883 7.6156152
φ 822.1964033 ± 8 E-05 13.6477528 −244.6463784
dψ 1.5736086 735.4414795 964.9670911
χ 32.3422193 ± 9 E-02 14.4908302 −23.1243157
θ̇ 0.0091258 ± 2 E-05 −0.0204880 0.0384537
φ̇ −0.0778984 ± 4E-05 −0.1452179 −0.0961538
dm 0.0000000 0.0002762 −0.0110223
n1/ω 0.3893798 ± 3 E-04 0.3586278 0.2978042
n2/ω −1.8371891 ± 2E-05 −1.6838292 −1.9671607
n/ω −0.0002949 ± 2E-05 −0.0061374 −0.0003544
q1/ω 0.8147153 ± 1 E-02 0.4790182 0.3497698
q2/ω −3.8011575 ± 7E-03 −3.4410948 −3.8415620

the errors in the assumed initial values of the integrated variables dψ and dm, and
without any loss of accuracy these initial values may be fixed. In the equations of
the precession-nutational motion, the variability of m (or ω) is ignored. The units are
arc seconds for non-dimensional variables (angles and normalized projections of the
angular velocities of the cores), and arc seconds per day for the time derivatives θ̇ , φ̇
and dm. The estimated random errors are given (except for the variables dψ and dm,
due to the above reasons) but only for the initial date.

3.3 Geophysical parameters

The geophysical parameters, that might be estimated in this analysis, are the follow-
ing ones: the ratio α of the main moment of inertia of the core to that of the Earth
as a whole, the ellipticities e of the Earth and ec of the core, tidal phase delay δ of
the Earth and that δc of the core, the static Love numbers k2, the dynamic Love
number ku

2 , the Love number kc
2 of the core, the ratio αic of the main moment of

inertia of the inner core to that of the core as a whole, the period TFICN of the
free oscillation of the inner core, two parameters k(1)2 , k(2)2 of the ocean tide model,
the dissipative parameter κdis of the model of friction at the mantle-core boundary,
and (only for Version B) the coupling parameter κel of the elastic interaction of the
mantle and core at their boundary. Because it appears impossible to separate the
correction to α from that to ku

2 , we have fixed the effective parameter ν = ku
2/ks

to its theoretical value, estimating only α. Due to uncertainty of a priori values of
the parameters characterizing the inner fluid core, we did not use any theoretical
prediction for TFICN but instead have carried out a search trying its various values
and estimating the parameter αic (which is the scaling factor of the perturbations
caused by the inner fluid core). It appears that the residuals significantly reduce
for the value TFICN ≈ 420. After that, a correction to this preliminary value was
included into the general list of the variables under estimating. It is interesting that the
Fourier analysis of the IAU 2000 residuals (Malkin 2004) has implicitly demonstrated
the splitting up of the well-known frequency of the FCN oscillations into two close
frequencies (see Fig. 2 of the cited paper). The corresponding periods are equal to
433 and 420 days (Malkin 2005, private communication). Our results confirm this
finding by fitting the numerical theory to the observational data. Comparing the plots
of the residuals calculated with ERA 2005 and IAU 2000 (Figs. 1; 2), one can see,
first, that the amplitudes of the free oscillations for the former are considerably less
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than those for the latter, and second, that the apparent damping of the oscillations
by year 1998 and their excitation after this epoch only is noticeable in the residuals
of IAU 2000. It is clear that this peculiarity is the result of the beatings between
the two modes of the free oscillations with the close periods. Implicit accounting
for these beatings by the numerical integration is the main cause why the WRMS
errors for ERA 2005 are less than those for IAU 2000. To illustrate this fact, in
Fig. 3 the differences in the Euler’s angles θ , φ for the both theories are presented
(in the sense ERA 2005 minus IAU 2000). One can see that the differences fol-
low the pattern of the free mode oscillations in IAU 2000 shown in Figs. 1 and 2.
As IAU 2000 is the sum of the periodic nutational harmonics, the free oscillations
in the differences are to be attributed to ERA 2005. Because the numerical theory
does not include any model of excitation of the free oscillations, it is clear that the
decrease of the FCN amplitudes at 1998 and the increase of them after this epoch
is indeed a result of beatings between the two close modes of the free oscillations.
There are also other systematic differences between two theories. For instance, cal-
culating the secular trends in the differences we have got θ̇ = (−0.3 ± 0.09)mas/cy,
and φ = (−0.82 ± 0.22)mas/cy. We believe that these trends are to be attributed to
IAU 2000.

Estimates of the geophysical parameters under study are given in Table 3. The
following comments are to be done:

1. The derived value of the tidal phase lag δ = (6.502 ± 0.066) degree is too large
in comparison with the reliable LLR estimate δ = 2.5 deg (Dickey et al. 1994;
Aleshkina et al. 1997). However, it is interesting that in the work (Shirai and Fuku-
shima 2001) even larger value δ = (7.13 ± 0.23) degree has been obtained from the
analysis of the analogous VLBI data but applying the standard SOS model.

2. The estimated value of the tidal lag δc of the fluid core seems to be reliable as it
proves stable in the numerous versions of the analysis. This estimate is obtained for
the first time and cannot be compared with any other results. Note that δc enters
the differential equations being multiplied by either the normalized Love number
σv of the core or the normalized dynamical Love number ν (the latter effect is

Fig. 3 Differences of the Euler’s angles (ERA 2005 minus IAU 2000)
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Table 3 Estimates of
geophysical parameters

Parameter Value (σ ) Units

e 3.2834102 (58) ×10−3

ec 3.3761 (23) ×10−3

k2 0.27272 (36) –
kc

2 0.02130 (21) –
α 0.109412 (16) –
kv

2 0.058325 –
δ 6.502 (66) deg
δc 3.430 (47) deg

k(1)2 1.084 (43) ×10−3

k(2)2 0.890 (46) ×10−3

νuv 4.96 (40) ×10−5

TFICN 420.31 (94) days
κdis 0.362 (24) ×10−7

κel 0.826 (38) ×10−9

small). Thus, the derived estimates of δc depends on the assumed values of these
parameters. Corrections to ν = kv

2/ks, as well as to σv = kc
2/ks strongly correlate (on

the level 99%) with corrections to some other parameters, and that is why we did
not include them in the analysis, though the WRMS errors of the post-fit residuals
could be diminished.

3. The combination σvδc is of a special importance because it characterizes the damp-
ing rate of FCN. From the differential equations of Paper 1 (see Appendix 1) it is
easy to see that the quality factor QFCN of the FCN oscillations may be given by
the expression

QFCN = fFCN

ω

(
α

eσvδc

)
≈ 61.

Roughly, that means that the FCN damping effects become large after 60 peri-
ods of the FCN oscillations. (Note that actually, we estimate the combination σvδc
and so the above conclusion does not depend on the assumed value of the Love
number σv). The non-tidal dissipation due to the mantle-core friction only slightly
diminishes the damping time. Indeed, due to this type dissipation the quality factor
QFCN is as follows (in absence of the tidal damping):

QFCN = fFCN

ω
κ−1

dis ≈ 790

and so the effect is by order less then the tidal one.
Unfortunately, we did not succeed in obtaining a reasonable estimate for the phase
lag δi of the inner fluid core (due to strong correlations with other parameters).

4. Commonly, the estimated parameter is not the ellipticity ec of the core but rather
the FCN frequency fFCN connected with ec and other geophysical parameters by
theoretical relation (147) of Paper 1. Substituting the values of the parameters
from Table 3 to this relation, we obtain fFCN = 415 days which value disagrees
with the well established value fFCN = 431. Probably, that may be explained by
approximations made when deriving relation (147) because its right part is very
sensitive to values of the Love numbers, on which it depends. That is an example
of difficulties in interpretation of results provided by analytical theories.
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Table 4 Corrections to the
annual terms (µas)

sin l′ cos l′

dθ 507 (27) −64 (92)
sin θdφ 53 (94) 236 (18)

3.4 Empirical parameters and geodetic precession

The empirical parameters are four corrections to the amplitudes of the annual terms,
the parameter E1 correcting 18.6-year terms (more exact, it rules the ratio of their
prograde and retrograde amplitudes), and the parameter E2 to correct out-phase nu-
tations. In order to check the theoretical precessional rate (which is implicitly defined
by the numerical model) all calculations have been repeated ignoring the relativistic
reduction for the geodetic precession, and assuming the zero value of the parameter
κel of the elastic coupling. In this case, the factor ς that characterizes the quality of
fitting, exceeds its value for Version A by about 35%. However, if the empirical trend
φ̇ also is estimated then ς will return to the previous value, while the derived cor-
rection to the precessional rate is (2.068 ± 0.029)′′/cy and only slightly disagrees with
the GRT prediction 1.919′′/cy. The small discrepancy ≈ 0.15′′/cy with the theoretical
precessional rate is compensated by corrections to other parameters (mainly to the
ellipticity e) when processing the VLBI data, and so practically does not deteriorate
the fitting. Such verification of the relativistic effect could not be carried out with
Version B (in which the parameter κel of the elastic coupling is also estimated) due to
very strong correlation of this parameter with the precessional secular trend. How-
ever, Version B provides noticeably better fitting than Version A, even if in the latter
the precessional secular trend is estimated as an empirical parameter, and that is why
Version B is taken as the base of ERA 2005. It could be used for testing the relativistic
effect only after some a priori value of κel becomes known. Anyway, at present the
relativistic effect of the geodetic precession seems to be confirmed with the accuracy
better 10%. To our knowledge, it is the first successful detecting of this effect in the
Earth’s rotation.

Corrections to the amplitudes of the annual terms are very sensitive to the frequen-
cies of the two modes of the free nutations, and thus they are strongly influenced by
deficiencies of modeling. The empirical corrections to the annual terms are given in
Table 4, the solar mean anomaly l′ being taken as the argument of the annual terms. It
is interesting that corrections to the in-phase amplitudes (dθ)cos, sin θ(dφ)sin are small
being within their statistical errors. Significant corrections to the out-phase amplitudes
probably mean that there still exist some deficiencies in the dynamical modeling of
the dissipative effects.

The empirical parameter E1 is introduced formally as the factor 1 + E1 at the com-

ponent of the rigid body torque R
el

in the differential equation for the obliquity θ (see
Sect. 5.1 of Paper 1). It does not contribute to the secular rates either in the longitude
or the obliquity but corrects the ratio of the prograde and retrograde amplitudes of
the 18.6-year nutations. The second empirical parameter E2 is introduced in the form
of the factor 1 + E2 at the perturbing component Sδ proportional to the delay δ in
equations for the equatorial projections n1, n2 of the angular velocity of the external
fluid core. This term also does not change the secular rates. For E1 and E2 the esti-
mates E1 = 0.770(89) × 10−4, E2 = −0.07889(78) have been obtained. At present,
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the physical meaning of these empirical parameters is not clear. Supposedly, the solid
inner core could be responsible at least for a part of these effects.

4 Analysis of the observed variations of UT

The most salient features of the observed UT variations are large secular trend, sig-
nificant quadratic term and 18.6-year harmonic oscillations with the amplitudes that
greatly exceed those predicted by the tidal theory given in the work (Yoder et al. 1981).
As a starting point, we have studied raw variations of UT without any tidal model
applied (apart from the contribution from the integrated perturbing term φ̇ sin θ ,
which is calculated accurately enough for the aim of modeling UT). Thus, the purely
empirical model is taken in the form

UT-TAI =
3∑

i=0

Ai(T − t0)i +
5∑

i=1

(
As

i sin fi + Ac
i cos fi

)
, (2)

where fi are the arguments of the main terms of the tidal theory (of the 18.6-year,
annual, semi-annual, monthly, and fortnightly periods).

Post-fit residuals for this model are shown in Fig. 3 (the upper plot) by the curve
marked as IAU 2000. We have the following estimates for the linear, quadratic and
cubic terms:

A1 = −79.6 ± 0.7 s/cy, A2 = 190 ± 7 s/cy2, A3 = −340 ± 20 s/cy3. (3)

The estimated in-phase and out-phase amplitudes of the periodic terms are given
in columns 3 and 4 of Table 5. The corresponding theoretical values of the in-phase
(sine) amplitudes in ms are −172.0, 9.3, −1.6, −5.1, and −0.9, respectively (Yoder et al.
1981). Arguments of these harmonics are given in the second column as the linear
combinations of the standard fundamental arguments l, l′, F, D, �. Note that, the
amplitude of the in-phase 18.6-year oscillation of the empirical model is three times
larger than the value 172 ms, predicted by the tidal theory. The observed out-phase
amplitude of this harmonics exceeds by orders its theoretical value calculated with
the LLR-based estimate of the tidal lag δ (Krasinsky 2002a).

The residuals for the empirical model shown in Fig. 4 by the upper plot demon-
strate rather irregular time behavior and a large fluctuation on the interval 1985–1989.
Somewhat better results are obtained making use of the dynamical model of Paper 1,
which accounts for the interaction of the mantle and external core near their boundary.

Table 5 Estimated amplitudes of periodic terms in the residuals UT-TAI (ms)

Period Empirical model ERA 2005
days Arguments sin cos sin cos

6790.36 0 0 0 0 1 −540.3 ± 5.7 799.0 ± 2.6 – –
365.26 0 1 0 0 0 10.9 ± 0.5 −20.0 ± 0.5 10.1 ± 0.5 −20.8 ± 0.5
182.62 0 0 2 − 2 2 −6.6 ± 0.5 8.7 ± 0.5 −2.2 ± 0.5 8.8 ± 0.5
27.56 1 0 0 0 0 0.2 ± 0.6 0.2 ± 0.6 1.0 ± 0.5 1.0 ± 0.5
13.66 0 0 2 0 1 1.9 ± 0.6 0.0 ± 0.6 1.9 ± 0.5 1.9 ± 0.5
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Fig. 4 UT residuals

In this model, the period Tme of the free oscillations is one of the parameters under
estimating. If the period Tme. is close enough to that of the 18.6-year forced oscilla-
tions, then a strong increase of the amplitudes of this harmonics could be expected.
For this model, the amplitudes of the annual, semi-annual, monthly, and fortnightly
harmonics (but not of those with the 18.6-year period) also have been included into
the analysis. Initial values of the axial angular velocity n of the differential rotation of
the core relative to the mantle, and that of the librational angle χ have been estimated
as well. The derived estimate Tme = (5983 ± 35) days indeed is close enough to the
period 6790 days of revolution of the lunar nodes. The corresponding frequency fc
of the torsional free oscillations is related to the factor κχel of the potential of the

mantle-core elastic interaction by the relation fc = ω

√
κ
χ

el; see Sect. 5.2 of Paper 1.

Thus, the coupling factor κχel may be calculated from the estimated value of the period
Tme. Geophysical interpretation of κχel is a problem beyond the scope of the present
paper.

The obtained amplitudes of the harmonics are presented in columns 5 and 6 of
Table 5, and one can see that they still are large and comparable with those for the
purely empirical model. It might be supposed that the large values of the annual ampli-
tudes is the result of interaction of the external and inner cores near their boundary,
because these amplitudes would considerably increase if the period of the correspond-
ing free oscillations were close enough to the one year value. The large value of the
out-phase amplitude of the annual harmonics could be expected to be a result of the
dissipation. However, a preliminary analysis has shown that this conjecture probably
is wrong because the small value of αic makes such effect negligible unless the period
of the free oscillations is unlikely close to one year.

The residuals for ERA 2005 are shown on the lower plot of Fig. 3 by the curve
marked as ERA 2005. One can see that all the tidal periodic oscillations described
by relation (2) are removed from the residuals, in which irregular fluctuations only
are noticeable (the error bars are too small to be visualized in this scale). Comparing
the two plots in Fig. 3, we see that the large fluctuation at years 1985–1989 takes
place only for the purely empirical model. Thus, ERA 2005 describes the large UT



Numerical theory of rotation of the deformable Earth with the two-layer fluid core 233

oscillations of the period 18.6 year better than the empirical model IAU 2000, though
also fails to model the large observed amplitudes of the annual and semi-annual
harmonics.

The well-known effect of the tidal deceleration of the Earth axial rotation was
expected to manifest itself as a negative quadratic term in UT. The theoretical value
of the corresponding coefficient may be derived making use of the analytical formula
for the coefficient dψδ of the quadratic trend in the rotational angle ψ (see Appendix
in Paper 1). With the adopted value of the tidal lag δ, this tidal contribution is obtained
as follows

dψδ = −83.2 s/cy2,

which is the expected value for the coefficient A2 in expression (3) for UT variations.
The value of the deceleration of the Earth axial rotation, predicted by the tidal

theory, has been reliably confirmed by astrometric observations of the Moon and
planets of 18–20 centuries (Krasinsky et al. 1985) and by paleontological data for
LOD (Krasinsky 2002a). However, the VLBI data of 1984–2005 unambiguously evi-
dence that the coefficient A2 of the quadratic term is positive (see estimates (3)),
which means that on the time interval under study the axial rotation of the Earth does
not decelerate but, contrary, accelerates. It is interesting that the similar effect was
noticed for the time interval 1870–1890 by investigations of the lunar orbital motion.
At first this effect was attributed to some perturbations of unknown origin in the lunar
longitude (the so called great lunar inequality) but after detecting analogous pertur-
bations in the longitudes of all inner planets it became clear that the effect is caused by
the large variation of the Earth’s axial rotation. The following simple considerations
concerning the long-term UT variations seem plausible. The residuals presented in
Fig. 3 demonstrate that the Earth’s angular velocity ω (the time derivative of UT)
undergoes fast random fluctuations separated by the time intervals of several years,
probably due to some geophysical processes in the Earth’s interior. To give a typical
example of such jumps in more details, in Fig. 5 we present the residuals of UT for the
time interval August 15 2004–May 30 2005. One can see the steep slope in the residuals
started at January 2005. (It is interesting that the beginning of this process coincides

Fig. 5 Example: a jump of the angular velocity ω in residuals UT
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with the catastrophic earthquake of December 26 2004, though probably there is no
cause-effect relation between the two events). Analyzing this slope, the corresponding
jump dT in the LOD is estimated as dT = 0.36±0.07 ms. If σ is a typical amplitude of
such jumps, and dt is the mean time interval between the successive jumps, then the
expected dispersion dω of the variations of ω for the elapsed time T is of the order
σ(T/dt)1/2 (as the sum of T/dt random numbers). The amplitudes of UT variations
would be of the order σ(T/dt)3/2, as the integral of dω. It means that however large
a constant be taken, after some time elapses, the UT variations would reach its value.
On the other hand, the tidal deceleration of ω and that of UT are proportional to
T and T2, respectively, the both values being negative. So, on large time intervals
the tidal deceleration of the axial rotation prevails in comparison with the accumu-
lating effect of the random fluctuations. The astronomical observations of the Moon
and planets show that the minimal time interval needed to detect such prevalence is
about few centuries. At present, however accurate VLBI observations might be, they
cannot detect the tidal deceleration of the Earth’s axial rotation, because their time
span still is too short. From these considerations it also follows that the long-term UT
variations are caused not by some geophysical processes, but arose just as the effect
of accumulation of the short-term random fluctuations of ω.

We do not give here the complete expression for the rotational angle ψ of ERA
2005, which is the sum of the theoretical component dψ obtained by the numerical
integrations (that includes, in particular, the precession-nutational effects) with the
corrections derived from the described above analysis of the VLBI data. These empir-
ical coefficients, as well as the Chebyshev polynomials that present the theory ERA
2005 of the Earth’s rotation may be obtained at request.

5 Prospects and conclusions

We consider the theory of rotation of the deformable Earth described above as a step
in constructing a modern numerical theory, which could replace somewhat archaic,
non-technological and hardly reproducible analytical theories still in use. Noteworthy,
that the Earth rotation practically is the last field of applications of analytical theo-
ries for processing observations of the highest accuracy. In the recent past, whenever
contemporary precise positional observations arrived as a result of a technological
advance, usage of a more accurate numerical theory became indispensable to achieve
adequate accuracy of modeling. The most relevant example is the LLR observations
which cannot be processed successfully without numerical theories of the Moon’s rota-
tion, like DE/LE-405. It seems that at present there is a strong need in an analogous
Earth rotation theory. Indeed, the recent VLBI data demonstrate fast deterioration
of the adopted analytical model IAU 2000. For the illustration, in Fig. 6, we present
the residuals of this model for the dates after J2000. In the both angles θ and φ, one
can see significant systematic errors. The solid curves show the calculated differences
ERA 2005 minus IAU 2000. They are in accordance with the all available VLBI data,
though the theoretical amplitudes of the free oscillations are somewhat smaller than
the observed ones. Probably, that can be explained by damping of the free oscillations,
a model of which is built-in into ERA 2005 by the numerical integration. Hopefully,
more refined processing of the VLBI data, estimating the initial values of the fluid core
angular velocities independently for two time intervals, could lead to further improve-
ment of the fitting. After 2006, the solid curves in Fig. 6 show the IAU 2000 errors
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Fig. 6 Observed and predicted corrections to IAU 2000, GSFC series

continued to the future by comparison with ERA 2005. At present the divergence of
IAU 2000 from the observations already has reached −1 mas in dφ, and it is expected
to exceed −2 mas by 2009. Moreover, after 2007 the residuals in dφ are predicted to be
always negative. For comparison, the analogous residuals for ERA 2005 are presented
in Fig. 7. Because they do not show noticeable degradation, we believe that the large
discrepancies between the two models after 2007 have to be attributed to errors of
IAU 2000, but not of ERA 2005. The next 3–5 years will be crucial for validating the
existing theories of the Earth rotation.

Advantages of the constructed numerical theory of the Earth’s rotation ERA 2005
are as it follows.

1. At present the theory provides the best fitting of the VLBI based Celestial Pole
offsets (see Table 1).

2. The theory not only gives nutational oscillations of the Celestial Pole but also its
precessional motion consistent with the nutations. The consistency has made it pos-
sible to confirm the relativistic effect of the geodetic precession for the first time.
With this theory there is no more necessity in a special procedure of the Lieske’s
type to calculate the precessional motion.

3. The theory is referred to the well defined reference system J2000, avoiding the
moving mean equator and ecliptic. Thus, making use of the theory, there is no need
to introduce any intermediate reference system with a non-rotating origin, like that
recommended by the resolution of General Assembly IAU 2000.

4. The theory includes a semi-empirical model of the UT variations consistent with
the precession-nutational model, which describes the observed variations of UT
(1984–2005) with the WRMS error 18 ms. Although no significant improvements
of this accuracy probably can be achieved due to the unpredictable random fluctu-
ations of the Earth’s angular velocity, the theory makes it possible to monitor such
fluctuations to study them.

Unfortunately, the force interplay in the dynamics of the Earth’s rotation is not yet
understood well enough and ERA 2005, as well as any other published theory, includes
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Fig. 7 Observed corrections to ERA 2005, GSFC series

some empirical terms to describe satisfactorily the time behavior of the Celestial Pole.
In the present version, four of the estimated parameters are empirical (two of them
are reconciling parameters in the expressions for the perturbing torques, and two oth-
ers are the out-phase amplitudes of the annual harmonics). The other 18 estimated
parameters have clear physical meaning. For a comparison, in the work (Shirai and
Fukushima 2001) there are 26 estimated parameters, 16 of which are empirical. It is
difficult to judge what part of parameters (except the two secular trends) are empirical
in IAU 2000 model based on the work (Mathews et al. 2002).

As any numerical theory, ERA 2005 is easy to handle improving its dynamical
model and re-estimating parameters of the model along with accumulation of the
VLBI data. We are planning to rebuild the theory once a year. The software to carry
out such work independently may be obtained at request.
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