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Abstract We study the dynamics of 3:1 resonant motion for planetary systems with two
planets, based on the model of the general planar three body problem. The exact mean motion
resonance corresponds to periodic motion (in a rotating frame) and the basic families of sym-
metric and asymmetric periodic orbits are computed. Four symmetric families bifurcate from
the family of circular orbits of the two planets. Asymmetric families bifurcate from the sym-
metric families, at the critical points, where the stability character changes. There exist also
asymmetric families that are independent of the above mentioned families. Bounded libra-
tions exist close to the stable periodic orbits. Therefore, such periodic orbits (symmetric or
asymmetric) determine the possible stable configurations of a 3:1 resonant planetary system,
even if the orbits of the two planets intersect. For the masses of the system 55Cnc most of the
periodic orbits are unstable and they are associated with chaotic motion. There exist however
stable symmetric and asymmetric orbits, corresponding to regular trajectories along which
the critical angles librate. The 55Cnc extra-solar system is located in a stable domain of the
phase space, centered at an asymmetric periodic orbit.

Keywords Extra-solar planetary systems · Resonances · Periodic orbits

1 Introduction

The general three body problem can be considered as a good model for studying the dynamics
of two-planet extra-solar planetary systems. To date, about 12% of the observed extra-solar
systems have two or more planets (e.g., see Schneider 2005). In many cases (but few con-
firmed) the two planets are in mean motion resonance, with relatively large eccentricity
values.
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An efficient way for studying the resonant dynamics of a planetary system and detecting
stable and unstable regions in phase space is to determine the periodic configurations of the
system, i.e. the periodic orbits in an appropriate rotating frame of reference, and the cor-
responding stability (e.g. Hadjidemetriou 2002; Psychoyos and Hadjidemetriou 2005a). In
this way, we obtain a chart of the phase space indicating where a resonant planetary system
could exist. These are the stable configurations to which a planetary system could be trapped
under a migration process (Lee and Peale 2002; Ferraz-Mello et al., 2003, Beauge et al.
2006). Such stable configurations are associated with stable apsidal corotations and stable
asymmetric librations as has been shown first by Beaugé et al. (2003).

There are three topologically different resonances: (1) The first order resonances (n+1) : n,
i.e. 2:1, 3:2, …,(2) The resonances (2n + 1) : (2n − 1), i.e. 3:1, 5:3, …and (3) all other res-
onances, i.e. 5:2, 7:3, 8:3,. . .. In the first-order resonances the unperturbed circular periodic
orbits (zero planetary masses) are not continued to m1, m2 > 0, and we have a gap on
the family of circular periodic orbits, from which two resonant families of elliptic periodic
orbits are generated. At the 5:2 resonance (and all similar resonances, i.e. 7:3, 8:3, etc.) the
continuation of the family of circular orbits, from zero to nonzero masses, is possible. The
stability is preserved and we have two points on the perturbed circular family from which
there bifurcate families of resonant 5:2 elliptic periodic orbits. Voyatzis and Hadjidemetriou
(2005) studied the periodic orbits and examined the dynamics of the 2:1 resonant motion.
Psychoyos and Hadjidemetriou (2005b) studied the 5:2 mean motion resonance. The 3:1
resonant planetary dynamics is different from the above two types of resonant motion. The
continuation is possible, but now an unstable region appears on the perturbed circular family
of periodic orbits close to the 3:1 resonance. At this region we have a bifurcation of four 3:1
resonant families of elliptic periodic orbits, as we shall show in the following.

In the present paper, we study the 3:1 resonant dynamics by considering the approach
of determining bifurcations and periodic orbits as mentioned above. We mainly use in our
computations the values for the planetary masses that correspond to the companions B and
C of the extra-solar system 55Cnc (Marcy et al., 2002; McArthur et al., 2004), which is
at the 3:1 resonance. Numerical simulations that indicate the 3:1 resonant dynamics of the
system can be found in Ji et al. (2003), Zhou et al. (2004) and Marzari et al. (2005). Stable
symmetric and asymmetric configurations have been calculated by Beaugé et al. (2003) and
possible resonance capture is shown in Ferraz-Mello et al. (2003). In the next section we dis-
cuss briefly the model and the possible periodic configurations. In Section 3, we present the
families of periodic orbits and discuss the dynamics of the phase space at the 3:1 resonance,
for the masses that correspond to the 55Cnc planetary system. We also study how the 3:1
resonant stable periodic configurations are affected when the planetary masses are changed.
Finally, in Section 4, we study the stability of the 55Cnc system.

2 The model and the periodicity conditions

The dynamical model that we use is the general planar three-body problem of planetary type.
The system consists of a star of mass m0 and two planets, denoted as P1 and P2, of masses
m1 � m0 and m2 � m0, respectively. The short-term evolution of the system is described
by nearly Keplerian motion of the two planets, with semimajor axes ai , eccentricities ei ,
mean anomalies Mi , longitudes of pericenter �i and periods Ti (the index i = 1, 2 refers
to the planet Pi ). The P1 is the “inner” planet and P2 is the “outer” planet in the sense that
T1 < T2, although the planetary orbits may intersect.
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The center of mass of the planetary system is considered as fixed in an inertial frame, and
the study is made in a nonuniformly rotating frame of reference x Oy, whose x-axis is the
line defined by the star and the inner planet P1. The origin O is the center of mass of these
two bodies and the y-axis is perpendicular to the x-axis. In this rotating frame P1 moves on
the x-axis and P2 in the x Oy plane. The system can be studied as a system of three degrees
of freedom (Hadjidemetriou, 1975) and possesses the fundamental symmetry �:

x → x, y → −y, t → −t.

We fix the units of mass, length and time by considering normalized values of the masses
such that m0 + m1 + m2 = 1, the gravitational constant, G, is equal to unity and also by
keeping a fixed value of the angular momentum of the system.

Our study contributes to the dynamics of the 3:1 mean motion resonance. In this case it
is T2/T1 ≈ 3 and the corresponding resonant or critical angles are defined as

θ1 = λ1 − 3λ2 + 2�1, θ2 = λ1 − 3λ2 + 2�2,

where λi is the mean longitude of the planet Pi . Since the motion is studied in a rotating
frame, it is useful to consider the half of the difference of the critical angles, i.e. the angle
�� = 1

2 (θ1 − θ2) = �1 − �2, which provides directly the angle between the apsidal lines
of the two planets.

The periodic orbits, which are studied, are periodic with respect to the rotating frame
defined above. Such a periodic orbit corresponds to a motion in the inertial plane where the
relative configuration of the planets is periodically repeated. The system is not, in general,
periodic in the inertial frame.

The periodic orbits that are invariant under the symmetry � are called symmetric. In a
symmetric periodic orbit the planet P2 starts from the x-axis perpendicularly and at that time
ẋ1 = 0, and after some time t = T/2, T being the period, the planet P2 crosses again the
x-axis perpendicularly and at that time it is ẋ1 = 0. The symmetry implies that �� = 0◦
or 180◦, i.e. the lines of apsides are either aligned or antialigned, respectively. Additionally,
there exists a moment that when one planet is at perihelion (or aphelion) the other planet is
also at perihelion or aphelion, i.e. is θi = 0◦ or 180◦, i = 1, 2.

An asymmetric periodic orbit is not invariant under �. It is mapped by � to another peri-
odic orbit, called mirror image, which has the same elements ai and ei as the original one but
opposite values in Mi and �i . The periodicity conditions can be defined in two different, but
equivalent, options. In the first option the planet P2 starts from the x-axis (nonperpendicular-
ly) and the planet P1 is not at rest on the x-axis. After a time t = T , when P2 crosses again the
x-axis, the planets P1,P2 have the same initial position and velocity as at t = 0. In the second
option we start, at t = 0, at the moment when P1 has zero velocity on the x-axis, which means
that P1 is either at perihelion or at aphelion (P2 is not on the x-axis), and after a time t = T ,
when P1 has again zero velocity on the x-axis, the planets P1,P2 have the same initial position
and velocity as at t = 0. In both of the above cases the critical arguments θ1 and θ2, cannot take
the value 0◦ or 180◦ at the same moment, i.e. the lines of apsides of the planets do not coincide
and/or the planets do not pass from the pericenter or apocenter position simultaneously.

3 Families of 3:1 resonant periodic orbits

In our study, we shall consider the 55Cnc planetary system for the star and the companion
planets B and C. We use the following normalized values for the masses (Schneider 2005):

m0 = 0.99903, m1 = 0.00078, m2 = 0.00019.
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The periods of the two companions were estimated to be 14.7 and 43.9 days, respectively,
i.e. they are in a 3:1 mean motion resonance. The above values are slightly different from
those given by McArthur et al. (2004) in the sense that they do not cause structural changes
in the dynamics of the system.

Our study starts with the computation of the family of circular periodic orbits of the system
and the determination of the critical periodic orbits with respect to the linear stability. These
critical periodic orbits are the bifurcation points for the families of resonant elliptic periodic
orbits.

3.1 The family of circular orbits

The unperturbed motion with zero masses and zero eccentricities of both planets is periodic
in the rotating frame for any value of the radii. Thus by fixing the radius of the inner planet
we can form a family of periodic orbits with parameter the radius of the outer planet. The
ratio n2/n1 of the mean motion of the two planets varies along the family. If we switch on
the masses, these periodic orbits are continued as periodic orbits in the rotating frame, which
correspond to almost circular orbits in the inertial frame and form the family C. The contin-
uation is not possible at the resonances 2:1, 3:2, . . . , where a gap appears. In the particular
study, we focus in the part of the family C where n2/n1 ≈ 3. This is presented in Figure 1.

It can be proved (Hadjidemetriou 1982), that a region of instability appears on the fam-
ily of circular orbits, close to the 3:1 resonance. We remark that, we have three degrees of
freedom (in the rotating frame) and consequently, we have three pairs of eigenvalues. The
orbit is stable only in the case where all the eigenvalues are on the unit circle, in the complex
plane. One pair of eigenvalues is always on the unit circle, at +1, due to the existence of the
energy (Jacobi) integral. The other two pairs are free to move on the unit circle, preserving the
stability, or to move outside the unit circle and generate instability. The section of the family
C cloce to the 3:1 resonance starts as stable, as we see in Figure 1. As we proceed along
the family, from n1/n2 = 3.008 to n1/n2 = 3.024, one pair of eigenvalues goes outside
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Fig. 1 The family C of circular periodic orbits near the 3:1 mean motion resonance. It is presented in the
projection plane where the horizontal and vertical axis correspond to the ratio of mean motions and the ratio
of semimajor axes of the planets, respectively. The type of linear stability is denoted by the symbols “S” for
stable orbits, “U” for simply unstable orbits and “UU” for doubly unstable orbits. The four critical orbits (or
bifurcation points) are denoted by B1, . . . , B4
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the unit circle at the point B4, thus generating instability, while the other pair is still on the
unit circle. As we proceed further along the family, the second pair of eigenvalues goes also
outside the unit circle, starting from point B1, and ending at the point B3, where again in
goes back on the unit circle. The first pair is still outside, up to the point B2, where it goes
back on the unit circle, thus restoring the stability. Conclusively, the region B1 B3 is doubly
unstable (two pairs of eigenvalues outside the unit circle) and the regions B4 B1 and B2 B3

are simply unstable (only one pair of eigenvalues outside the unit circle). The points B1, B2,
B3, and B4 are the critical points, where the stability changes character, and it is from each
of these points that we have bifurcation of a family of elliptic periodic orbits. All these orbits
are symmetric.

3.2 The families of symmetric periodic orbits

There are four families of resonant elliptic periodic orbits, that bifurcate from the critical
points B1, B2, B3, and B4, called families Si , i = 1, . . . , 4, where i denotes the correspond-
ing bifurcation point Bi of the family C. The configuration of each of these families at t = 0
and at t = T/2 is given in Table 1. The characteristic curves of these families are presented
in the space of the “signed eccentricities” e∗

1 = e1 sin �� and e∗
2 = e2 sin θ1 (note that ��

and θ1 are either 0◦ or 180◦). In this presentation, shown in Figure 2, each one of the four
families is placed in a particular quarter of the plane e∗

1 −e∗
2.

The family S1 is unstable. It starts with simply unstable orbits. The orbits become doubly
unstable in the segment between the points B12 and B13, which denote critical orbits. Starting
with initial conditions close to an orbit of the family S1 we have chaotic evolution and the
critical angles �� and θ1 rotate. Chaos becomes more obvious as the planetary eccentricities
increase.

The family S2 starts from the circular family and consists initially of simply unstable
orbits. The particular configuration permits the planets to come very close to each other and
we have a collision orbit. After the collision the family is continued with stable periodic
orbits, where the corresponding planetary orbits intersect.

The family S3 starts with unstable orbits. The type of stability changes at the
high-eccentricity value e1 = 0.74 (and e2 = 0.59) and the periodic orbits of the family
become stable after this point. Around these stable orbits regular librating motion, with
respect to the critical angles, is obtained. The point B31 where the stability changes is a
bifurcation point for a family of stable asymmetric orbits (see paragraph 3.3).

The family S4 is the only family that starts with stable orbits. The stable segment extends
up to the point B41, at e1 = 0.085 and e2 = 0.110. For higher eccentricities the orbits become
unstable. The phase space region around the low-eccentricity stable periodic orbits consists
of invariant tori, the orbits are regular and the critical angles �� and θ1 librate around the
value of 180◦.

Table 1 Configurations at t = 0 and t = T/2 obeyed by the 3:1 resonant symmetric periodic orbits of the
families S1–S4

S1: P2(per) – Star – P1(apo) → P1(per) – Star – P2(apo)
S2: Star – P1(per) – P2(apo) → P2(per) – P1(apo) – Star
S3: Star – P1(apo) – P2(apo) → P2(per) – P1(per) – Star
S4: P1(per) – Star – P2(per) → P2(apo) – Star – P1(apo)
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Fig. 2 The four families of symmetric periodic orbits presented in the plane of the “signed” eccentricities
e∗

1 −e∗
2. All families start from circular orbits at (0,0). The value of the critical angles �� and θ1 along each

family is indicated. The bold line segments indicate stable orbits while the thin ones correspond to unstable
orbits. The orbits between the critical orbits B11 and B12 are doubly unstable. The symbol × denotes a collision
orbit

3.3 The families of asymmetric periodic orbits

The critical orbits B11, B12, B31, and B41 on the symmetric families Si , shown in Figure 2,
are bifurcation points for new families. We found that all families that bifurcate from the
above critical orbits consist of asymmetric periodic orbits. The corresponding characteristic
curves are presented in the plane of eccentricities e1–e2 shown in Figure 3.

The asymmetric family A1 starts from the critical point B11 of the symmetric family S1

and terminates at the critical point B12 of the same family (Figure 3a). All orbits of the family
A1 are doubly unstable and the orbits close to the asymmetric periodic orbits are chaotic.
The critical angle �� corresponds to the value 0◦ at the critical points while it varies along
the family increasing up to 35◦. The critical angle θ1 is 180◦ at the edges of the family and
along the family reaches the maximum value of 222◦ (Figure 4a).

The second family of asymmetric orbits, the family A3, bifurcates from the critical point
B31 of the family S3 (Figure 3b). This family starts as stable and is directed towards to lower
values of the eccentricity e1. At e1 ≈ 0.13 the family turns towards to higher eccentricity val-
ues e1 and e2. The stable character of the asymmetric orbits holds up to the critical orbit B32.
At this point the orbits become unstable and a new family of asymmetric orbits, the family
A′

31 bifurcates from this critical point. All orbits of A′
31 are unstable. The critical angles
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(a) (b)

(c) (d)

Fig. 3 The families of asymmetric periodic orbits (solid curves) presented in the plane of eccentricities
e1−e2. The associated symmetric families are indicated by dashed curves. The bold phase segments indicate
stable orbits while the thin ones correspond to unstable orbits. The star in (c) indicates the position of the
55Cnc planetary system

�� and θ1 that correspond to the bifurcation point B31 are equal to 0◦, while at about the
bifurcation point B32 they take their maximum value, 93◦ and 121◦, respectively (Figure 4b).
We found that a relatively large region of phase space extended around the stable asymmetric
periodic orbits shows regular motion. Along these orbits the critical angles librate around
values different than 0◦ or 180◦.

The asymmetric family A4 starts from the critical orbit B41 of the family S4. Initially and
up to e1 ≈ 0.5, it is e2 ≈ const. (see Figure 3c). The apsidal difference �� is almost con-
stant (∼250◦) along this part of the family A4. This is shown in Figure 4c, which presents the
variation of the critical angles along the family. The major part of the family consist of stable
orbits and the phase space consist of regular librating resonant motion. The family becomes
unstable for high eccentricity values (e1 ≈ 0.5 and e1 ≈ 0.8) but we have not succeed in
calculating the family that bifurcates from this critical point.

Finally, we present the family A0 of asymmetric periodic orbits in Figure 3d. This family
does not bifurcate from a symmetric family. It consists of one segment of unstable orbits and
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(a) (b)

(c) (d)

Fig. 4 The variation of the critical angles �� (solid curves) and θ1 (dashed curves) along the families of
asymmetric periodic orbits presented in Figure 3. It is convenient to use as family parameter the value e1 for
the cases (a) and (b) and the value e2 for the cases (c) and (d). Thin and bold lines indicate unstable and stable
periodic orbits, respectively. The star in panel (c) indicates the position of the 55Cnc planetary system

one segment of stable orbits. It is remarkable that there exist stable orbits for e2 > 0.9. Such a
kind of family has been also found in the 2:1 resonant motion (Voyatzis and Hadjidemetriou
2005).

3.4 The families S4 and A4 for various mass values

The S4 and A4 are the only families of periodic orbits associated with stable resonant
librations for low and moderate values of the planetary eccentricities. Also, as it is dis-
cussed in the next section, these families are associated with the dynamics of 55Cnc system.
Our computations showed that these families exist for a large range of planetary masses. In
the following, we present two numerical experiments in order to clarify the dependence of
the families on the planetary masses.

In the first numerical experiment we multiply the planetary mass values, given in the begin-
ning of Section 2, by a factor a and we recalculate the families. As it is shown in Figure 5a,
when the planetary masses decrease, the families are not affected significantly with respect
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Fig. 5 Characteristic curves of the symmetric family S4 and the asymmetric one A4 for various values of
planetary masses. (a) constant mass ratio, m1 = a×8×10−4, m2 = a×2×10−4. (b) m1 = 8×10−4 = const.
and m2 = µ × 10−4, where the value of µ is indicated beside each curve

to their location in the plane of eccentricities and their stability. When the planetary masses
increase, the bifurcation point for the asymmetric family shifts only slightly to a lower value
for the eccentricity e1 and to a higher value for the eccentricity e2. The most important con-
sequence is that the unstable part of the family A4 (see Figure 3c) increases and extends
towards to lower eccentricity values as the masses increase. Thus, by increasing the masses
by a factor of 10, the asymmetric orbits of the family A4 become unstable for e2 >0.5.

In the second numerical experiment we fix the mass of the inner planet to the value
m1 = 8 × 10−4 and we set m2 = µ × 10−4, where we let µ to vary. The computed families
for various values of µ are shown in Figure 5b. When the mass of the outer planet decreases,
the family A4 starts from lower e1 values. The opposite case holds if m2 increases. Note that
the asymmetric family A4 still exists for m2 > m1. These results are in a good qualitative
agreement with those obtained from the averaged model and the migration scenario proposed
by Beaugé et al. (2003) and Ferraz-Mello et al. (2003), respectively. It should be noted that
the bifurcation point for the asymmetric family is located to e2 ≈ 0.11 for any value of µ or,
equivalently, any planetary mass ratio. This characteristic feature for the 3:1 resonance has
been indicated first by Ferraz-Mello et al. (2003).

4 Dynamical aspects and stability of the 55Cnc system

The observed position of the 55Cnc planetary system (Schneider 2005) is indicated by a star
in Figures 3c and 4a and corresponds to e1 = 0.02, e2 = 0.44, �� = 245◦, and θ1 = 200◦.
These elements are close to those given by McArthur et al. (2004). It is evident that this
position is associated with the asymmetric periodic orbits of the family A4 and, in particular,
it seems to be located near the asymmetric orbit at e1 = 0.1, e2 = 0.44. The family A4

is linearly stable at the particular domain, suggesting that a six-dimensional region of the
phase space nearby the orbits of the family A4 corresponds mainly to quasiperiodic motion
or, equivalently, to regular trajectories for longterm evolution.

The width of the stable region can be determined numerically by examining a large num-
ber of trajectories. Particularly, for the initial conditions of the 55Cnc system, mentioned
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(a)
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Fig. 6 The variation of the eccentricity values e1 and e2 (panel (a)) and the critical angles �� and θ1
(panels (b),(c)) along the trajectory associated with the 55Cnc planetary system. The initial conditions are
e1(0) = 0.02, e2(0) = 0.44, ��(0) = 245◦ and θ1(0) = 200◦

above, and in the framework of the three body problem, we obtain regular evolution. The
variation of the planetary eccentricities and the critical angles are presented in Figure 6. The
semimajor axes of the planets are almost constant during the trajectory evolution but, as it
is shown in Figure 6a, the eccentricities oscillate with relatively large amplitude. The large
amplitude oscillations of the eccentricities have been also obtained and discussed by Zhou
et al. (2004) and Beaugé et al. (2006). The critical angles �� and θ1 librate around the values
250 and 200◦, respectively (Figure 6b, c). The period of libration is about 125 years for the
particular case. Such stable librations have been also observed in the numerical simulations
by Ji et al. (2003) and correspond to the stable motion of type ‘a’ found by Zhou et al. (2004).

By examining a large number of trajectories, using Poincaré sections, we found that regu-
lar motion exists in a wide region of initial conditions around the stable asymmetric orbits of
family A4. In Figure 7, we present Poincaré maps on the surface of section y2 = 0, ẏ2 > 0,
projected on the plane x2 − ẋ2. The panel (a) corresponds to the initial conditions of the
55Cnc system, mentioned above. The motion is regular on a torus presented in the section
by two “islands”. The corresponding periodic orbit close to this quasiperiodic orbit is of
multiplicity two, i.e. intersects the plane of section twice per period and these fixed points
are the centers of the “islands” in the four-dimensional space of the Poincaré map. In the
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Fig. 7 Projection planes x2− ẋ2 of the Poincare section y2 = 0, ẏ2 > 0 of the trajectory with initial conditions
e1(0) = 0.02, e2(0) = 0.44 and (a) ��(0) = 245◦, θ1(0) = 200◦, (b) ��(0) = 230◦, (c) ��(0) = 220◦,
θ1(0) = 200◦ and (d) ��(0) = 0◦, θ1(0) = 0◦

panels (b) and (c), we present the trajectories corresponding to the same initial conditions as
in panel (a), but we change the initial apsidal angle �� . For �� = 230◦ (i.e. 15◦ devia-
tion from the value of the corresponding periodic orbit) we observe still regular islands and
librations of the critical angles. For larger deviations (�� < 225◦) the trajectories show
stickiness. Namely, the planetary orbits seem to evolve regularly in the resonant region for
a long time interval. After this interval, the trajectory enters a wide chaotic region and the
semimajor axis and the eccentricity of the outer planet increase rapidly. Such a trajectory is
shown in Figure 7c and corresponds to �� = 220◦. The points of the Poincaré map spread
irregularly in a wide domain after about 15 K years. The evolution of the semimajor axes
and eccentricities along this trajectory is shown in Figure 8a and illustrates the stickiness of
the trajectory and the escape of the outer planet P2. The stickiness time decreases as ��

decreases and for �� < 200◦ the chaotic motion becomes apparent after few iterations of
the Poincaré map.

From the above results, we can see that the asymmetry, which is imposed by the periodic
orbits of the family A4, stabilizes the planetary system. Sufficient deviations from such an
asymmetric configuration result to strongly chaotic motion. In the particular case the sym-
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Fig. 8 (a) The evolution of the semimajor axes and eccentricities of the planetary orbits that corresponds to
the sticky trajectory shown in Figure 7(c). (b) The same as in (a) for the chaotic trajectory of Figure 7(d),
which corresponds to the symmetric initial configuration ��(0) = θ1(0) = 0◦.

metric configurations are also unstable. All the trajectories with initial elements e1 = 0.02,
e2 = 0.44, ��(0) = 0 or 180◦ and θ1(0) = 0 or 180◦, correspond to chaotic motion. An
example is presented in Figure 7(d) and 8(b) for ��(0) = θ1(0) = 0◦.
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