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Abstract. In a previous paper (The Rotation of Europa, Henrard, Celest. Mech. Dyn.
Astr., 91, 131–149, 2005) we have developed a semi-analytical theory of Europa, one
of the Galilean satellites of Jupiter. It is based on a synthetic theory of the orbit of
Europa and is developed in the framework of Hamiltonian formalism. It was assumed
that Europa is a rigid body and Jupiter a point mass. Several additional effects should
be investigated in order to complete the theory. The present contribution considers the
effect of the shape of Jupiter and of the gravitational pull of Io. The sensitivity of the
main theory to a change in the values of the moments of inertia of Europa is also
considered.

Key words: Europa, natural satellite, oblateness of the planet, synchronous rotation, third
body perturbations

1. Introduction

Like the Moon, the Galilean satellites present the same face to their planet.
Cassini (1730) showed, for the Moon, how this peculiar feature corre-
sponds to an equilibrium, a Cassini’s state, of a simplified model of the
rotation and how perturbations from this model lead not to the destabili-
zation of this equilibrium but to the excitation of librations around it. The
fact that so many satellites are found in this special state is due to inter-
nal dissipation of energy in the satellites which drives them to it (Goldreich
and Peale, 1966).

The case of Europa is particularly interesting as the quasi-certitude of the
existence of an ocean below its icy crust raises many questions. In order to
answer them, it is necessary to obtain a good knowledge of its rotation state.

In a previous paper (Henrard, 2005 – which we will call Paper I) we
have developed an analytical theory of the rotation of a rigid Europa per-
turbed by a Jupiter considered as a point mass. We were able to use the
synthetic theory of Lainey (2002); Lainey et al. (2004a,b) to represent the
orbit of Europa around Jupiter. This theory is based on a numerical inte-
gration of the orbits of the Galilean satellites and a frequency analysis of
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the result. It presents itself as Fourier series in the angular variables, λi the
mean longitudes of the four Galilean satellites, �i the longitudes of their
pericenters, �i , the longitudes of their nodes plus λSun, the mean longi-
tude of the Sun and � the Laplacian libration. The frequencies and phases
of these angular variables are given by the theory. The equator of Jupi-
ter is taken as an inertial plane and the epoch of the theory is the Julian
day 2433282.5 (01/01/1950 at 0h00). The accuracy is somewhat better than
100 km for Europa.

We ended paper I by stating that several additions to our analytical rep-
resentation of the rotation of Europa should be worked out. The fact that
Jupiter is not a point mass, the direct effect of the other Galilean satel-
lites on the rotation (the indirect effect has already be included by taking a
perturbed orbit for Europa) should be taken into account. Due to the fact
that the values of the moments of Inertia are not known with high preci-
sion, we mentioned also that the sensibility of the theory to a change in
these parameters should be evaluated. These additions are the subject of
this contribution.

We believe that no other source of perturbation on a rigid Europa
should reach the value of 10−7 radian (0.02′′) which is the truncation level
of our theory; but of course the existence of a core, the presence of the
ocean, the non-rigidity of the body are expected to have an important
influence on the rotation. We hope to be able to address these questions
in the future.

2. Sensitivity of the Theory to the Parameters δ1 and δ2

The values of the moments of inertia of Europa, which are of prime impor-
tance in the analysis of the rotation, are embedded in the parameters δ1

and δ2:

δ1 =−3
2

n∗2

n2
2

2C −A−B

2C
, δ2 =−3

2
n∗2

n2
2

B −A

2C
, (1)

where n∗ =
√

GMJ /d3
0 , where d0 is the mean distance between Europa and

Jupiter. The value 0.9997 of the ratio n∗/n2, where n2 is the frequency of
λ2, is obtained from (Lainey, 2002). The solution given in paper I is based
on values of δ1 and δ2 corresponding to J2 = 4.35 × 10−4, C2

2 = 1.31 × 10−4

and C/MR2 =0.346:

δ1 =−1.885×10−3, δ2 =−1.135×10−3. (2)
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We have evaluated the sensitivity of the theory of paper I to a change
in these parameters by recomputing it for four other sets of values:
[δm

1 = 0.95δ1, δ2], [δp

1 = 1.05δ1, δ2], [δ1, δ
m
2 = 0.95δ2], and [δ1, δ

p

2 = 1.05δ2]. For
each sets of parameters, we evaluate the corresponding series solutions,
Sm

1 , S
p

1 , Sm
2 , and S

p

2 . For both parameters, we compute the series

�1
i = (S

p

i −Sm
i )/2, �2

i = (S
p

i −2S0 +Sm
i )/2, (3)

where S0 is the nominal solution of paper I. �1
i /0.05 is an approximation

of the derivative of the series of paper I with respect to δi . �2
i is an indi-

cation of the accuracy by which �1
i approximates the derivative.

Table I shows the sensitivity of the Fourier series of the first two compo-
nents (P1 and P2) of the unit vector perpendicular to the equator of Jupi-
ter, Table II the sensitivity of the last two components (X2 and X3) of the
unit vector pointing towards Jupiter and Table III the sensitivity of the first
two components (Q1 and Q2) of the unit vector along the angular momen-
tum. Each of these vectors are expressed in the body frame of Europa; the
first axis is in the direction of the principal axis of least inertia, the last
one in the direction of the principal axis of greatest inertia.

TABLE I

Sensitivity of the first two components of the unit vector perpendicular to the equator
of Jupiter. (s) (resp. (c)) indicates that the sine (resp. the cosine) of the angular variable
should be taken.

5% Change in δ1 104�1
1 onP1 104�2

1 onP1 104�1
1 onP2 104�2

1 onP2

λ2 −�2 (s) 0.3366 −0.0118 (c) 0.3366 −0.0118
λ1 −2λ2 +�2 (s) 0.0146 0.0007 (c) −0.0601 −0.0013
λ2 −�3 (s) 0.0035 −0.0001 (c) 0.0035 −0.0001
λ1 −2λ2 (s) 0.0012 −0.0006 (c) −0.0021 −0.0001
λ1 −2λ2 +�3 (s) 0.0006 0.0008 (c) −0.0014 −0.0001
λl −�2 (s) −0.0009 0.0010
2λ1 −3λ2 +�2 (s) 0.0009 −0.0005 (c) 0.0009 −0.0005

5% Change in δ2 104�1
2 onP1 104�2

2 onP1 104�1
2 onP2 104�2

2 onP2

λ2 −�2 (s) 0.2026 −0.0043 (c) 0.2025 −0.0042
λ1 −2λ2 +�2 (s) −0.0043 −0.0002 (c) −0.0212 0.0003
λ2 −�2 (s) 0.0021 −0.0001 (c) 0.0021 0.0000
λ1 −λ2 +�3 −�3 (c) −0.0015 −0.0015 (s) 0.0015 0.0015
λl −�2 (s) −0.0010 0.0009
λ1 −2λ2 +�3 (c) −0.0028 −0.0002
�3 −�3 (s) 0.0011 −0.0003
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TABLE II

Sensitivity of the last two components of the unit vector pointing towards Jupiter.

5% Change in δ1 104�1
1 onX2 104�2

1 onX2 104�1
1 onX3 104�2

1 onX3

sin(λ2 −�2) −0.3371 0.0119
sin(λ1 −2λ2 +�2) −0.0115 −0.0008
sin(λ1 −�2) 0.0044 −0.0014
sin(λ2 −�3) −0.0035 0.0002
sin(2λ1 −3λ2 +�2) −0.0015 0.0005
sin(λ1 −2λ2) −0.0011 0.0006
sin(2λ1 −2λ2 +�3) −0.0006 −0.0008

5% Change in δ2 104�1
2 onX2 104�2

2 onX2 104�1
2 onX3 104�2

2 onX3

sin(λ1 −λ2) −0.0417 0.0002
cos(λ1 −2λ2 +�3) 0.0049 −0.0006
cos(λ1 −2λ2 +�4) 0.0027 −0.0001
cos(λ1 −2λ2 +�2) 0.0021 −0.0001
cos(λ2 −�3) −0.0020 −0.0010
sin(λ2 −λ3) −0.0019 0.0000
cos(2λ1 −3λ2 +�3) −0.0010 −0.0011
sin(λ2 −�2) −0.2028 0.0042
sin(λ1 −2λ2 +�2) 0.0060 0.0001
sin(λ1 −�2) 0.0032 −0.0013
sin(λ2 −�3) −0.0021 0.0000
cos(λ1 −λ2 +�3 −�3) 0.0005 0.0005
sin(λ1 −2λ2 +�3) −0.0007 −0.0005

TABLE III

Sensitivity of the first two components of the unit vector along the angular momentum. (s)
(resp. (c)) indicates that the sine (resp. the cosine) of the angular variable should be taken.

5% Change in δ1 104�1
1 onQ1 104�2

1 onQ1 104�1
1 onQ2 104�2

1 onQ2

λ1 −2λ2 +�2 (s) 0.0149 0.0007 (c) −0.0601 −0.0013
λ1 −2λ2 (s) 0.0011 −0.0006 (c) −0.0021 −0.0001
λ1 −2λ2 +�3 (s) 0.0006 0.0008 (c) −0.0014 −0.0001

5% Change in δ2 104�1
2 onQ1 104�2

2 onQ1 104�1
2 onQ2 104�2

2 onQ2

λ1 −2λ2 +�2 (s) −0.0040 −0.0002 (c) −0.0214 0.0003
λ1 −2λ2 +�3 (s) 0.0008 0.0005 (c) −0.0028 −0.0002
�3 −�3 (s) 0.0011 −0.0003
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3. Shape of Jupiter

The oblateness of Jupiter contributes to the perturbation of the rotation of
Europa. The additional potential of the effect on the second-order harmon-
ics of Europa is computed in Appendix A and can be written as

Vs = δsCn2
2

[
d0

d

]5

[δ1(x
2 +y2)+ δ2(x

2 −y2)], (4)

where (x, y, z) are the coordinates in the body frame of the unit vector
pointing to Jupiter and, where d is the distance between the centers of
mass of Jupiter and Europa. The coefficient δs is given by

δs = 5
2

(C ′ −A′)
MJR

2
J

[
RJ

d0

]2

=4.1872×10−4, (5)

where RJ is the mean radius of Jupiter. We have taken (RJ/d0)=0.106561,
and J2 = (C ′ −A′)/MJR

2
J =0.01475.

The Fourier series of this expression is computed by means of Lainey’s
expressions for longitude, latitude and distance of Europa as seen from
Jupiter, taking into account the rotations needed to go from the inertial
frame to the body frame of Europa. Furthermore the normal modes of
vibration around the main Cassini’s state are introduced as in Section 6 of
paper I. Finally the Lie transformation defined in Section 7 of paper I is
applied in order to express the additional perturbing potential in the final
variables of the previous theory. The main terms of this additional poten-
tial are:

Vs =
√

2U [−6.83×10−8 cos(λ1 −λ2 +u)+6.83×10−8 cos(λ1 −λ2 −u)]

+(2U)[7.06×10−6 −7.06×10−6 cos 2u]

+(2V )[6.31×10−7 −6.31×10−7 cos(2λ2 −2�2 +2v)]

+
√

4V W [−6.27×10−7 cos(λ2 −�2 +v +w)

+6.27×10−7 cos(λ2 −�2 +v −w)]. (6)

A Lie transformation, up to order 3, is then computed in order to trans-
form this function into a function which does not depend upon the angu-
lar variables. This transformation is conducted to the third-order. The main
terms in the generating function W J are given in Table IV.

The transformation generated by W J is then applied to the functions
defining the nominal solution described in paper I to yield the corrections
shown in Table V.
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TABLE IV

The largest terms in the various components of the generating function.

Degree 1 Degree 2 Degree 3

W J
1 4.52×10−7

√
2v sin v −5.24×10−5(2U) sin 2u 2.43×10−5(2W)

√
2U sin(u−2w)

W J
2 2.19×10−8(2U) sin 2u

1
2 W J

3

TABLE V

Corrections (truncated at 10−7) due to the fact that Jupiter is not a point mass. (s) (resp.
(c)) indicates that the sine (resp. the cosine) of the angular variable should be taken. The
corrections to the unit vector along the angular momentum are below our truncation level
of 10−8.

Unit vector perpendicular to
the equator of Jupiter 104P1 104P2 Frequency

λ2 −�2 (s) 0.0045 (c) 0.0045 1.00032171
λ2 −�3 (s) 0.0019 (c) 0.0019 1.00007060
λ2 (s)−0.0014 (c) −0.0014 1.00000000

Unit vector pointing frequency
towards Jupiter 104X2 104X3 Frequency

λ2 −�2 (s) −0.0045 1.00032171
λ2 −�3 (s) −0.0019 1.00007060
λ2 (s) 0.0014 1.00000000

4. Direct Effect of Io on the Rotation of Europa

The additional potential due to Io, and acting on the rotation of Europa,
is given by:

V Io =Cn2
2

[
mIo

MJ

][
d0

dIo

]3

[δ1(x
2
Io +y2

Io)+ δ2(x
2
Io −y2

Io)], (7)

where x2
Io and y2

Io are the first two coordinates of the unit vector in the
direction of Io as seen from Europa, and dIo is the distance between the
two satellites.

In order to evaluate the size of this additional potential on the rotation
of Europa, we assume that Io is on a circular orbit in the equatorial plane
of Jupiter. As in Section 3, the Fourier series of this expression is computed
and transformed in the angles-actions variables of paper I. The principal
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terms of this expansions are:

VIo =10−7
√

2U cos u

× [5.068 sin(λ1 −λ2)+4.684 sin(2λ1 −2λ2)

+ 1.965 sin(3λ1 −3λ2)+1.547 sin(4λ1 −4λ2)

+ 1.166 sin(5λ1 −5λ2)+0.856 sin(6λ1 −6λ2)

+ 0.613 sin(7λ1 −7λ2)+0.433 sin(8λ1 −8λ2)

+ 0.302 sin(9λ1 −9λ2)+0.207 sin(10λ1 −10λ2)

+ · · · ]. (8)

As it can be seen the convergence of the Fourier series in the difference
in longitude is very poor. Fortunately, the higher the harmonic, the higher
the frequency and the integration brings them down. In any case the addi-
tional potential is so small that its effect upon the rotation will be smaller
than our level of truncation. The main terms for the components of the
unit vector perpendicular to the equator of Jupiter are:

P1 =−6.20×10−10 sin(λ1 −2λ2 +�2)−5.57×10−10 sin(λ1 −�2), (9)

P2 =6.20×10−10 cos(λ1 −2λ2 +�2)−5.57×10−10 cos(λ1 −�2).

The main term for the component of the unit vector pointing towards Jupi-
ter are:

X2 = 10−7[ −1.302 sin(λ1 −λ2)−0.300 sin(2λ1 −2λ2)

−0.112 sin(3λ1 −3λ2)−0.049 sin(4λ1 −4λ2)

−0.024 sin(5λ1 −5λ2)−0.012 sin(6λ1 −6λ2)

−0.006 sin(7λ1 −7λ2)+· · · ], (10)

X3 <10−10.

At the level of truncature of our computations (10−10), Io has no effect
upon the direction of the angular momentum. The other Galilean satellites
should have a smaller effect.

The above estimates of the effect of Io are done under the assump-
tion that the free librations have zero amplitudes, i.e. that the momenta,
(U,V,W ) vanish. If this assumption were not correct, the effect of Io could
be much larger. Indeed the solution for the effects of Io includes the fol-
lowing terms:

P1 =10−5
√

2W [3.092 sin(λ1 −λ2 −w)−1.350 sin(λ1 −λ2 +w)]

+10−5
√

2V [1.575 sin(2λ1 −3λ2 +�2 −v)

+0.822 sin(λ1 −2λ2 +�2 −v)]+· · · ,
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P2 =10−5
√

2W [3.082 cos(λ1 −λ2 −w)−1.339 cos(λ1 −λ2 +w)]

+10−5
√

2V [1.561 cos(2λ1 −3λ2 +�2 −v)

−8.944 cos(λ1 −2λ2 +�2 −v)]+· · · ,

X2 = 4.294×10−5
√

U sin u+· · · ,

X3 =−10−5
√

2W [3.079 sin(λ1 −λ2 −w)−1.363 sin(λ1 −λ2 +w)]

−10−5
√

2V [1.660 sin(2λ1 −3λ2 +�2 −v)

+0.842 sin(λ1 −2λ2 +�2 −v)]+· · · (11)

Even a small amplitude of the free librations (a small value of
√

U,
√

V or
√

W )
would amplify considerably the effect of Io upon the rotation of Europa.

5. Conclusion

The sensitivity of the theory of the rotation of Europa to a change in the
values of its moments of inertia has been evaluated. The non-linear effect of
the oblateness of Jupiter has been analyzed and the additions to the theory
have been computed. The effects of the other Galilean satellites and of the
fourth harmonic (term in J4) of the gravitational potential of Jupiter have
been considered and found to be negligible at the order of 10−7 radian.
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Appendix A

The potential, dV, describing the gravitational effect of a volume element
dW of density ρ inside Jupiter on the rotation of Europa, is given by
Henrard (2005)

dV =Cn2
2

[
d0

r

]3 [
δ1

(X2
1 +X2

2)

r2
+ δ2

(X2
1 −X2

2)

r2

]
ρdW

MJ
, (A1)

where (X1,X2,X3) are the components in the body frame of Europa of the vec-
tor �X pointing from the center of mass of Europa toward the volume element
dW, and r is its norm. The vector �X is the sum �X = �d +�s, where �d points from
the center of mass of Europa toward the center of mass of Jupiter and �s from
the center of mass of Jupiter toward the volume element dW.
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Considering that:

X2
1 = ( �X| �f1)

2 = ( �d| �f1)
2 +2( �d| �f1)(�s| �f1)+ (�s| �f1)

2, (A2)

X2
2 = ( �X| �f2)

2 = ( �d| �f2)
2 +2( �d| �f2)(�s| �f2)+ (�s| �f2)

2, (A3)

r−5 =d−5

[
1−5

( �d|�s)
d2

− 5
2

(�s|�s)
d2

+ 35
2

( �d|�s)2

d4
+· · ·

]
, (A4)

where �fi (for i =1,2,3) are the vectors forming the body frame of Europa,
where d is the norm of the vector �d, and · · · stands for terms of degree
higher than 2 in the components of the vector �s. We shall argue that it
is enough to truncate the expansion of the potential field of Jupiter to the
second harmonic and thus that terms of degree higher than 2 in the com-
ponents of the vector �s can be neglected.

In order to compute the potential V =∫
W

dV on the rotation of Europa,
due to the finite size of Jupiter, we ought to integrate over the volume of
Jupiter the expressions (for i =1,2):

d5 ( �X| �fi)
2

r5
= ( �d| �fi)

2

[
1−5

( �d|�s)
d2

]
+2( �d| �fi)(�s| �fi)

+( �d| �fi)
2

[
35
2

( �d|�s)2

d4
− 5

2
(�s|�s)
d2

]

+(�s| �fi)
2 −10

( �d| �fi)( �d|�s)(�s| �fi)

d2
. (A5)

Because the origin of the vector �s is at the center of mass of Jupiter, the
integration of the first line reduces to the term MJ( �d| �fi)

2. This is the term
entering in the expression of the potential due to a point mass Jupiter.
It will be neglected in what follows, as we are interested in the additional
potential due to the finite size of Jupiter. In order to integrate the second
and third line we need to evaluate:

∫

W

(�s|�s)ρ dW =
∫

W

(ξ 2
1 + ξ 2

2 + ξ 2
3 )ρ dW = 1

2
(A′ +B ′ +C ′), (A6)

where (ξ1, ξ2, ξ3) are the coordinates of the volume element dW in the
frame of the principal axes of inertia of Jupiter, and (A′,B ′,C ′) the princi-
pal moments of inertia of the planet. We have also:
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2
∫

W

( �d|�s)2ρ dW=2
∫

W

(Z1ξ1 +Z2ξ2 +Z3ξ3)
2ρ dW

=Z2
1[B ′ +C ′ −A′]+Z2

2[A′ +C ′ −B ′]+Z2
3[A′ +B ′ −C ′]

=A′[Z2
2 +Z2

3 −Z2
1]+B ′[Z2

1 +Z2
3 −Z2

2]+C ′[Z2
1 +Z2

2 −Z2
3]

= (A′ +B ′ +C ′)d2 −2(A′Z2
1 +B ′Z2

2 +C ′Z2
3),

(A7)

where (Z1,Z2,Z3) are the coordinates of the vector �d in the frame of the
principal axes of inertia of Jupiter. Similarly we have:

2
∫

W

( �fi |�s)2ρ dW = (A′ +B ′ +C ′)−2(A′a2
i +B ′b2

i +C ′c2
i ), (A8)

where (ai, bi, ci) are the coordinates of the vector �fi in the frame of the
principal axes of inertia of Jupiter. We have also:

2
∫

W

( �d|�s)( �fi |�s)ρ dW=2
∫

W

(aiZ1ξ
2
1 +biZ2ξ

2
2 + ciZ3ξ

2
3 )ρ dW

=A′(biZ2 + ciZ3 −aiZ1)

+B ′(aiZ1 + ciZ3 −biZ2)+C ′(aiZ1 +biZ2 − ciZ3)

= (A′ +B ′ +C ′)( �d| �fi)−2(A′aiZ1 +B ′biZ2 +C ′ciZ3). (A9)

Collecting the results and assuming that Jupiter is axisymmetric (i.e. A′ =
B ′), we obtain:

d5
∫

W

X2
i

r5
ρ dW = ( �d| �fi)

2

d2

{
− 5

4
(2A′ +C ′)+ 35

4
(2A′ +C ′)

−35
2

A′ − 35
2

(C ′ −A′)
Z2

3

d2

}

+1
2
(2A′ +C ′)−A′ − (C ′ −A′)c2

i

−5
( �d| �fi)

2

d2
C ′ +10(C ′ −A′)

( �d| �fi)(�e3| �fi)(�e3| �d)

d2
, (A10)

d5
∫

W

X2
i

r5
ρ dW = ( �d| �fi)

2

d2
(C ′ −A′)

[
5
2

− 35
2

( �d|�e3)
2

d2

]

+C ′

2
−(C ′−A′)(�e3| �fi)

{
(�e3| �fi)]−10

( �d| �fi)(�e3| �d)

d2

}
. (A11)

In the case of Europa, (�e3| �d)/d, the sine of the angle between the orbi-
tal plane and the equator of Jupiter, is smaller than 10−2. Hence the ratio
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between the last term of the first line and the first term is smaller than
10−3. As we shall see, the principal effect of the size of Jupiter is of the
order of 10−6, so that the effect of the last terms is well below our trun-
cation level of 10−7. The second line of (A11) can also be neglected; the
first term because it is a constant and the second term because it is pro-
portional to the square of the sine of the angle between the equators of
Jupiter and of Europa. The effect of J4 ≈ 10−3J2 is also negligible. Hence
we can assume that (for i =1,2):

d5
∫

W

X2
i

r5
ρ dW = 5

2
(C ′ −A′)

( �d| �fi)
2

d2
. (A12)

The additional potential due to the finite size of Jupiter is thus

V = 5
2

n2
2C

MJ d2
0

(C ′ −A′)
[
d0

d

]5

[δ1(x
2 +y2)+ δ2(x

2 −y2)], (A13)

where (x, y, z) are the coordinates, in the body frame of Europa, of the
unit vector pointing to the center of mass of Jupiter.
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toire de Paris.
Lainey, V., Arlot, J. E. and Vienne, A.: 2004a, ‘New accurate ephemerides for the Galilean

satellites of Jupiter: I Numerical integration of elaborated equation of motion’, A&A 420,
1171–1183.



112 JACQUES HENRARD

Lainey, V., Arlot, J. E. and Vienne, A.: 2004b, ‘New accurate ephemerides for the Galilean
satellites of Jupiter: II Fitting the observations’, A&A 427, 371–376.

Peale, S. J.: 1969, ‘Generalized Cassini’s laws’, Astron. J. 74, 483–489.
Schubert, G., Limonadi, D., Anderson, J. D., Campbell, J. K. and Giampieri, G.: 1994,

‘Gravitational coefficients and internal structures of the icy Galilean satellites: An assess-
ment of the Galileo orbiter mission’ Icarus 111, 433–440.

Sohl, F., Spohn, T., Breuer, D. and Nagel, K.: 2002, ‘Implication from Galileo observations
on the interior structure and chemistry of the Galilean satellites’ Icarus 157, 104–119.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


