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Abstract. Equilibrium conditions for a mutually attracting general mass distribution and
point mass are derived and their stability computed. The equilibrium conditions can be
reduced to six equations in six unknowns, plus the existence of four integrals of motion
consisting of the total angular momentum and energy of the system. The equilibrium con-
ditions are further reduced to two independent equations, and their theoretical proper-
ties are studied. We derive three distinct conditions for a relative equilibrium which can
be used to derive robust algorithms for solving these problems for non-symmetric gravity
fields: a set of necessary conditions, a set of sufficient conditions, and a set of necessary
and sufficient conditions. Each of these conditions is well suited for the computation of
certain classes of equilibria. These equations are solved for non-symmetric gravity fields
of interest, using a real asteroid shape model for the general gravity fields. Explicit con-
ditions for the spectral and energetic stability of the resulting equilibria are also derived
and computed for the shape of interest.

1. Introduction

The study of relative equilibria between massive bodies has received much
interest over the years as many solar system bodies have been found to
lie in or close to relative equilibria. Examples include the moon relative
to the Earth, the Galilean satellites relative to Jupiter, and more recently
asteroid binary secondaries with respect to their primaries. The study of
this problem requires one to solve for and analyze the mutual gravitational
attractions and torques between two non-spherical bodies. Usually, one of
the bodies (generally the larger) is not in a synchronous rotation state, giv-
ing rise to periodic perturbations to the system. The study of these gen-
eral systems in a quasi-equilibrium, where one of the bodies is synchronous
but the other is not, is quite complex and is taxing to current analytical
and numerical methods. A detailed discussion of this problem is given in a
number of papers (Simo et al., 1991; Wang et al., 1991; Maciejewski, 1995;
Fahnestock et al., 2005).
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In this paper we do not consider that most general problem, what we
have termed the Full 2-Body Problem (Scheeres, 2002b), but instead study
a one-stage simplification of it, the Sphere-Restricted Full 2-Body Problem
(SRF2BP), which arises when one of the bodies is a sphere (i.e., a point
mass). Even for such a system, however, there are only limited dynam-
ical results, mostly specialized to particular systems. In order to motivi-
ate future studies of the more complete system we perform a study of the
SRF2BP that goes beyond previous work in that a set of practical algo-
rithms for the computation of relative equilibria and their stability are
found, analyzed and implemented. One key assumption of nearly all pre-
vious studies is that the gravity field of the non-spherical body can be
approximated with its 2nd degree and order gravity field. Exceptions that
exist generally only describe the process of determining the equilibrium
configurations of a more general system without specific results for spe-
cific bodies (Wang et al., 1991). In this paper we address this limitation by
deriving conditions that can be used to compute relative equilibrium in the
SRF2BP for general gravity fields, and show its applicability by computing
a range of relative equilibria for a complex asteroid shape.

The motivation for this work comes from a desire to understand and
study the dynamics of binary asteroid systems during their formation pro-
cess. Specifically, we suspect that most relative equilibria between two general
asteroids will be unstable when the distance is close, and only become sta-
ble as their distance increases, consistent with ellipsoidal models (Scheeres,
2004). These questions are of interest for understanding the dynamics and
initial evolution of binary asteroid systems after their formation. The work
reported here will also enable the study and analysis of real asteroid shapes,
as determined from in situ and ground-based observations. Current meth-
odologies are not easily generalized to such non-symmetric bodies. As an
additional result of our study we also shed light on previous results derived
under a symmetric gravity field assumption.

In this paper we specifically derive equilibrium conditions for a mutually
attracting general mass distribution and point mass. The full dimensionality
of this system has 9 degrees of freedom and hence 18 seperate differential
equations. The equilibrium conditions can be easily reduced to 6 equations
in six unknowns, plus the existence of four integrals of motion consist-
ing of the total angular momentum and energy of the system. We further
reduce the equilibrium conditions to two independent equations and study
their theoretical properties. We solve these equations for a non-symmetric
gravity field of interest and determine their spectral and energetic stability.

There has been much previous work in this area (Kinoshita, 1972;
Simo et al., 1991; Wang et al., 1991; Maciejewski, 1995; Scheeres, 2004).
Our contribution is to perform an in-depth analysis of the equilibrium
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equations themselves and reduce them to a minimal set of two equations.
We find three different forms of these equations, a set that defines the nec-
essary conditions for equilibrium, a set that defines sufficient conditions
for equilibrium, and a set that defines necessary and sufficient conditions.
Using these equations we study theoretical properties of these solutions
and compute relative equilibria for a general mass distribution. A second-
ary contribution is the derivation of explicit formula for the computation
of the spectral and energetic stability of such relative equilibria.

2. Fundamentals

We skip a complete derivation of the equations of motion and only state
them in an appropriate form. For in-depth derivations of this problem
see (Wang et al., 1991; Maciejewski, 1995; Koon et al., 2004; Scheeres,
2004). In the following we are concerned with stating the equations of
motion for a general mass distribution and a sphere. These equations can
be reduced to the relative motion between the bodies and the rotational
dynamics of the general body. In fact, the equations of motion for the
body’s spin vector can be decoupled from its orientation, which is then
solved after the fact. Our problem is analyzed most simply if we trans-
form to a coordinate frame fixed to the rotating, general body. The main
advantage of stating the equations of motion in this frame is that they
remove the attitude of the body from consideration and allow for a set
of “internal” variables decoupled from the inertial attitude of the system
(Figure 1).

R
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Ω

Figure 1. Representation of a SRF2BP.
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2.1. EQUATIONS OF MOTION IN A ROTATING FRAME

The general equations of motion for our system are stated as:

R̈ +2�× Ṙ + �̇×R +�× (�×R)=G (Mc +Ms)
∂U

∂R
, (1)

I · �̇+�× I ·�=−GMcMsR × ∂U

∂R
, (2)

where R is the relative position vector between the bodies and is centered
at the non-spherical body, � is the angular velocity vector of the non-
spherical body, Mc is the mass of the non-spherical body, Ms is the mass
of the sphere, and G is the gravitational constant. The unit mass gravity
potential is U and the inertia dyad is I, defined as:

U(R)= 1
Mc

∫
βc

dm(ρ)

|R +ρ| , (3)

I =−
∫

βc

ρ̃ · ρ̃dm(ρ), (4)

where ρ is the position vector of the mass element dm in the general body,
βc represents the mass distribution of this body, and ρ̃ denotes the cross-
product dyad (see the Appendix A for a brief definition and discussion of
dyads). This study uses dyad notation as it allows all analytical derivations
to be performed independent of coordinate frame. Thus, the choice of ref-
erence frame can be delayed until the resultant formulae are implemented
numerically.

The relative vector R can be expressed in terms of the two body’s iner-
tial centers of mass:

R =AT · rI , (5)

=AT · (rs − rc) , (6)

where A is the attitude matrix of the general body (i.e., the transformation
matrix that takes the general body frame to the inertial frame), AT is the
transformation matrix that goes from the inertial frame to the general body
frame, rI is the relative vector between the bodies in inertial space, and rs

and rc are the inertial position vectors of the two bodies.
The evolution of the attitude matrix follows a simple equation:

Ȧ =A ×�. (7)

However, we find it convenient to use the more fundamental definition of
attitude from the axis-angle coordinates, which describe the attitude of a
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rigid body by a rotation of angle φ about an axis â, where the hat nota-
tion denotes a unit vector. In these coordinates, the attitude matrix can be
specified as:

A = cosφU + (1− cosφ)ââ − sin φ ˜̂a, (8)

where U is the identity dyad. In a body-fixed frame, the axis-angle coordi-
nates follow their own equations of motion:

˙̂a = 1
2

[
˜̂a − cot

(
φ

2

)
˜̂a · ˜̂a

]
·�, (9)

φ̇ = â ·�. (10)

This system, as stated above, has four integrals of motion defined for it,
the total energy and the total angular momentum. In the body-fixed frame
these are specifically give as (Scheeres, 2004b):

E = 1
2

MsMc

Ms +Mc

(
Ṙ +�×R

) · (Ṙ +�×R
)

+1
2
� · I ·�−GMsMcU(R), (11)

K =A ·
[

I ·�+ McMs

Mc +Ms

(
R × Ṙ +R × (�×R)

)]
. (12)

2.2. EQUATIONS OF MOTION IN A NORMALIZED FRAME

The equations can be simplified by introducing three normalizations: a length
scale, a time scale, and normalizing the inertia I by the total mass of the
non-spherical body, Mc, as well as the length scale squared. For the length
scale we take an arbitrary radius (often the maximum radius of the non-
spherical body), denoted as α. To define the time scale we take the mean
motion of the total system at this radius: n=

√
G(Mc +Ms)/α3, and define

the normalized position vectors as r = R/α and the normalized rotational
velocity vectors as ω=�/n. Finally, we rescale the inertia matrix by divid-
ing it by Mcα

2. In the following, we define the new time derivatives by ()′.
This yields the following set of equations:

r′′ +2ω× r′ +ω′ × r +ω× (ω× r)= ∂U
∂r

, (13)

I ·ω′ +ω×I ·ω=−νr × ∂U
∂r

, (14)

where the normalized inertia matrix and gravitational force potential are,
respectively,
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I =− 1
Mcα

∫
βc

ρ̃ · ρ̃dm, (15)

U = α

Mc

∫
βc

dm

|r +ρ| . (16)

The equations for the axis-angle variables are:

â′ = 1
2

[
˜̂a − cot

(
φ

2

)
˜̂a · ˜̂a

]
·ω, (17)

φ′ = â ·ω (18)

and the transformed integrals of motion are

k =A · [I ·ω+νr × (
r′ +ω× r

)]
, (19)

E = ν

2

(
r′ +ω× r

) · (r′ +ω× r
)+ 1

2
ω ·I ·ω−νU . (20)

We note that the “internal” variables of the system, the relative position
r, the velocity r′, and the angular velocity of the system ω, are decoupled
from the attitude of the system. We also note that the energy is only a
function of these internal variables, while the angular momentum is a func-
tion of both the internal variables and the attitude of the system. One
important observation, however, is that the angular momentum magnitude
does not depend on the attitude and only depends on the internal variables.
On the other hand, the unit vector along the angular momentum, k̂, is a
function of the internal variables and the attitude dyad A. Thus, if we only
consider the internal variables of the system and their stability, we should
only concern ourselves with the energy and angular momentum magnitude
integrals.

One of the free parameters is the system’s mass fraction between the
spherical and non-spherical bodies:

ν = Ms

Ms +Mc

, (21)

which is the same parameter as is found in the restricted three body prob-
lem. The case ν → 0 corresponds to the motion of a material point in the
gravity field of the non-spherical body, with main application to orbital
dynamics of a particle about a general gravity field. In this case, we see that
the energy and angular momentum integrals are dominated by the rota-
tional dynamics of the non-spherical body, and that the contribution of the
spherical body’s motion decouples from these integrals. The case ν →1 cor-
responds to the motion of a massless non-spherical body about a point-
mass, with an application to a large satellite in orbit about a planet. It is
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important to note that the angular momentum and energy integrals still
apply to this problem. There is no singularity as Mc →0 as the inertia dyad
and gravity field of the non-spherical body are defined relative to the geom-
etry of their mass distribution only. This indicates that analysis of gravity
gradient satellites should not neglect translational motion, as it is coupled
at this fundamental level to the rotational motion. To simplify our later
computations of equilibria for a real asteroid model we leave the length
unit unchanged (i.e., α = 1) but apply the time normalization to eliminate
the total mass from the problem.

2.3. ENERGY AT A CONSTANT ANGULAR MOMENTUM

Of specific interest later in this paper is the form of the energy when a con-
stant angular momentum vector is imposed. We first note that the angular
momentum integral can be rewritten in the form:

k =A ·{[I −ν r̃ · r̃] ·ω+ν r̃ · r′} (22)

and that ω can be solved for as:

ω=J −1 · [AT ·k −ν r̃ · r′] , (23)

J =I −ν r̃ · r̃. (24)

We note that the dyad J is never singular (assuming that I is not singu-
lar) and will play an important role later in our analysis. Physically, J is
just the normalized inertia tensor of the entire binary system relative to the
non-spherical body center of mass, and is also known as the “locked iner-
tia” (Simo et al., 1991).

Taking this result, we can eliminate ω from explicitly appearing in the
energy equation to find:

E = ν

2
r′ · [U + r̃ ·J −1 · r̃

] · r′ + 1
2
k ·A ·J −1 ·AT ·k −νU . (25)

Even though the explicit dependence of ω is removed, we note that this
occurs at the cost of introducing the attitude matrix A into the energy.

3. Equilibrium Conditions

In the following, starting from the equations of motion, we derive a num-
ber of different versions of the equilibrium conditions. Our main focus is
to reduce the conditions to the minimum number possible, which is two.
Such a reduction makes it feasible to solve for the equilibrium conditions
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numerically for a specified gravity field. We find, however, that different
versions of the conditions are more suited to finding particular types of
equilibria.

3.1. FUNDAMENTAL EQUATIONS

In the above form, the analysis of equilibrium solutions is relatively easy.
The conditions for equilibrium (i.e., that all time derivatives be zero) are:

â = ω̂, (26)

ω̃ · ω̃ · r = ∂U
∂r

, (27)

ω̃ ·I ·ω+ν r̃ · ∂U
∂r

=0. (28)

The first equation just places constraints on the axis of rotation. Equations
(27) and (28) constitute a set of six equations for six unknowns, the rela-
tive position r and the angular velocity ω. The solution of these equations
is non-trivial, especially for a non-symmetric mass distribution for the grav-
itational potential. It is important to note that for ν = 0 the solution for
Equation (28) reduces to the classic rigid body rotation results, equilibria
are rotations about the principal axes of inertia. Given this, solutions to
Equation (27) are then equilibrium points of a particle in the field of the
uniformly rotating body, a subject studied previously for irregular mass dis-
tributions (Scheeres et al., 1996).

By definition, a system in equilibrium will have a constant uniform rota-
tion vector ω defined by its rotation rate ω=|ω| and its unit vector ω̂, and
thus the transformation matrix A will have the specific form:

A = cos(ωt)I + (1− cos(ωt)) ω̂ω̂+ ˜̂ω sin(ωt). (29)

The presence of a uniformly increasing angle, ωt , signifies that this is a rel-
ative equilibrium. We also note that the spin axis is a unity eigenvector of
this transformation matrix, or A ·ω=ω.

At an equilibrium the integrals of motion reduce to:

k =A ·J ·ω, (30)

E = 1
2
ω ·J ·ω−νU . (31)

3.2. IMPLICATIONS OF THE EQUILIBRIA

There are a number of fundamental observations that we can make about
the relative geometry of the system and conditions on the system when



RELATIVE EQUILIBRIA FOR GENERAL GRAVITY FIELDS 325

it satisfies the equilibrium solutions. These observations are not new, and
many were noted previously in Wang et al. (1991) and Maciejewski (1995).
We restate them here as we can establish these results in a very simple man-
ner, and to allow us to use them in our later discussion concerning the
reduction of the equilibrium conditions.

PROPOSITION 1. The spin axis is perpendicular to the gravitational
acceleration.

Consider Equation (27). Taking the dot product of ω and Ur we find: ω ·
Ur =ω · ω̃ · ω̃ · r ≡0.

PROPOSITION 2. The spin axis is an eigenvector of [I −νrr].

Insert Equation (27) for the gravitational acceleration into Equation (28)
and simplify to find:

ω×I ·ω+ν(r ·ω)r ×ω=0, (32)

which can be re-written as:

ω× [I −νrr] ·ω=0, (33)

where rr is a dyad. Assuming that |ω| �= 0, this will be true if and only if
[I −νrr] ·ω is parallel to ω, or:

[I −νrr] ·ω=σω, (34)

where σ is an eigenvalue of the dyadic I −νrr and ω is its eigenvector.

COROLLARY 3. The spin axis is an eigenvector of J = [I −ν r̃ · r̃].

Note that −r̃ · r̃= r2U − rr. Thus this is rewritten as [I −νrr]+νr2U. From
Proposition 2 the spin axis is an eigenvector of the first term, and every
vector is an eigenvector of the identity dyad.

COROLLARY 4. The angular momentum vector is parallel to the spin axis.

Note that the angular momentum equation can be written as: k =A ·J ·ω.
The spin vector is an eigenvector of both dyads, and thus k must be par-
allel to it, and will be an eigenvector to these dyads as well.
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COROLLARY 5. The eigenvalue of the J dyad along the angular velocity
is the ratio of the angular momentum magnitude over the angular velocity
magnitude.

Note that k = kk̂ = A ·J ·ω =λA ·ω =λω =λωω̂. But k̂ = ω̂ from Corollary
4, leading to λ=k/ω.

PROPOSITION 6. The relative position vector lies in the plane defined by
the gravitational acceleration and the spin axis.

This can be directly shown by rearranging Equation (27) into the form:

r = 1
ω2

(ω · r)ω− 1
ω2

Ur. (35)

PROPOSITION 7. Stationary values of the energy at a constant value of
angular momentum are a necessary condition for equilibrium.

To establish this, we assume that the system is in relative equilibrium and
then show that the energy is at a stationary point. When we take the variation
of energy, we note that the angular momentum must be held constant. We
can explicitly do this by taking the variation of the energy given in Equation
(25), where the angular momentum appears explicitly. Starting from Equa-
tion (25), we take a first variation of the energy and then substitute the
equilibrium conditions. In the following we note that the only requirements
we use are that r′ =0, Equations (26) and (27) and Corollaries 3–5.

Note that the first variation of the first term of E will be identically
zero, given the equilibrium condition r′ =0. Carrying out the variations for
the remaining terms we find:

δE = 1
2
k · [δA ·J −1 ·AT +A · δJ −1 ·AT +A ·J −1 · δAT

] ·k −νδU . (36)

The variations δA, δJ −1, and δU will be considered in a moment, but first
we make the following observations. From Corollaries 4 and 5 we know
that k is an eigenvector of J −1 with an eigenvalue equal to 1/λ. Also, from
Equation (26) we know that k is an eigenvector of A with unity eigenvalue.
Thus we make the following simplifications: J −1 · AT · k = k · A ·J −1 = k/λ

and k ·A =AT ·k =k. This reduces the equation to

δE = 1
2ν

[
1
λ
k · δA ·k +k · δJ −1 ·k + 1

λ
k · δAT ·k

]
− δU . (37)



RELATIVE EQUILIBRIA FOR GENERAL GRAVITY FIELDS 327

First consider k · δA ·k. The general form of A, prior to evaluating it at
the equilibrium conditions, is A=cosφU + (1−cosφ)ââ− sin φ ˜̂a. Since k is
kept constant we can rewrite this as k · δA · k = δ(k · A · k). The expression
becomes k · A · k = cosφ|k|2 + (1 − cosφ)(â · k)2 − sin φk · ˜̂a · k and the last
term is identically zero. Taking variations of this expression then gives us:

δ(k ·A ·k)= sin φ
[
(â ·k)2 −|k|2] δφ +2(1− cosφ)(â ·k)(k · δâ). (38)

Now apply Corollary 4 and Equation (26) to note that â and k are paral-
lel to each other. This immediately zeros out the δφ variation term. Next
note that the variation δâ must be perpendicular to itself, and hence must
be perpendicular to k, making the second variation term zero as well.

Now consider the term k · δJ −1 · k. First note the identity: δJ −1 =
−J −1 ·δJ ·J −1. This, along with Corollary 4, tells us that k ·δJ −1 ·k=−k ·
δJ · k/λ2. Again, since the angular momentum is a constant, this reduces
to −δ(k ·J ·k)/λ2. Consider the quantity k ·J ·k =k ·I ·k −νk · r̃ · r̃ ·k. The
first term is identically constant and will disappear under the variation,
the second term can be rewritten using the following identity: k · r̃ · r̃ · k =
r · k̃ · k̃ · r. Thus we find that k · δJ −1 ·k =2 ν

λ2 r · k̃ · k̃ · δr.
Finally, consider the term δU . Since U is only a function of position,

when expressed in the body-fixed frame, we have the simple result: δU =
Ur ·δr, where Ur signifies the gradient of U with respect to the position vec-
tor r. Putting all of these elements together, we find a simplified expression
for the energy variation:

δE =
[

1
λ2

r · k̃ · k̃ −Ur

]
· δr. (39)

Now we can apply Corollaries 4 and 5 to make the substitution k/λ = ω

when at the equilibrium conditions.

δE = [r · ω̃ · ω̃−Ur] · δr. (40)

The term multiplied by the variation δr is precisely Equation (27), which is
satisfied under the equilibrium hypothesis, and thus we establish that δE =0
to first order, i.e., the energy is stationary at an equilibrium point.

PROPOSITION 8. A necessary and sufficient condition for a relative equilib-
rium is that the energy is at a stationary value and the angular momentum
vector is an eigenvector of the dyad J =I −ν r̃ · r̃.

That it is necessary arises from Corollary 4 and Proposition 7. To prove
sufficiency, we first need to note that we can derive Equation (39) just using
the fact that k is an eigenvector of J and a unity eigenvector of A (the
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latter can be enforced trivially by choosing A =U initially). Then, the con-
dition that the energy is at a stationary value is reduced to a condition on
the eigenvalue λ. If this is true, we can identify the angular rate ω with k/λ

causing the equilibrium conditions to be identically satisfied.

3.3. LOCALLY CENTRAL GRAVITY FIELDS

Before we consider the general case of relative equilibria, we first discuss
a special case that has been analyzed extensively in the past, albeit in a
less general way. If the relative position vector r and the local gravitational
acceleration Ur are parallel to each other, we consider this to be a “locally
central” point in the gravity field. For a spherical mass distribution, we
note that all points are locally central, hence these gravity fields are often
called central gravity fields. For a symmetric mass distribution such as an
ellipsoid, we note that there are only isolated points at which the gravity
field is locally central, at the six semi-axes of the body. For the ellipsoid we
note that these regions of locally central gravity coincide with the principal
axes of inertia, a situation that allows for the easy identification of equilib-
rium configurations, which indeed most past research has focused on. Sim-
ilarly, for any gravity field only consisting of even degrees and orders we
will find a similar result. For the more general cases, however, we find that
locally central points in the gravity field do not coincide with the princi-
pal axes of the inertia ellipsoid. This has important consequences for the
existence of relative equilibria which we formalize as follows:

PROPOSITION 9. A locally central point in a gravity field for a SRF2BP
is a relative equilibrium if and only if the position vector is perpendicular to
a principal axis.

To show this, let

g =Ur. (41)

Thus, at a locally central point we have g =−gr̂ (we note that the vectors
are anti-parallel in general). Now we can rewrite Equations (27) and (28)
and evaluate Proposition 1 to find:

(g −ω2r)r̂ =0, (42)

ω×I ·ω=0, (43)

ω · r̂ =0. (44)

All of these equations, taken together, place constraints on the angu-
lar velocity vector. From Equation (43) we see that ω must lie along a
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principal axis of the inertia ellipsoid. From Equation (44) we see that ω

must also be perpendicular to the position vector. Equation (42) just pro-
vides us with the necessary magnitude of the rotation rate once the other
equations are satisfied. Then, if the position vector is not perpendicular to
a principal axis Equation (43) cannot be satisfied, as ω �= 0 in general and
the gravity (and position vector in this case) must be perpendicular to the
spin axis from Proposition 1. To establish the neccessary conditions it is
trivial to note that if the position is perpendicular to a principal axis, a rel-
ative equilibrium may be found.

We see that for ellipsoids, where the locally central points are aligned
with the principal axes, there are four distinct rotation directions that are
equilibria at each locally central point, two associated with each of the
other principal axes. For a general mass distribution, however, we find that
this situation is not true. In fact, for any body with non-zero coefficients
in the odd degrees or orders of their harmonic gravity fields this situation
will not occur generically.

3.4. REDUCTION OF THE EQUILIBRIUM CONDITIONS FOR NON-LOCALLY

CENTRAL POINTS

To determine an equilibrium condition, we must solve six equations, Equa-
tions (27) and (28), for six unknowns r and ω. We note, however, that we
expect there to be 4-fold degeneracies in these solutions due to the exis-
tence of four integrals of motion, stated in Equations (30) and (31). Thus,
we expect to be able to reduce these six conditions to just two independent
conditions for an equilibrium. Formally, we could perform these reductions
directly from the integrals, but this is somewhat tedious and does not take
advantage of certain symmetries that are present in the physical problem we
are considering. In the following we make the tacit assumption that r and g
are not collinear, i.e., are non-locally central, as that case is analyzed above.

The equilibrium conditions we find below provide two equations for the
three components of the relative position r. In practice, we can specify one
element of the position vector as a free parameter, and solve for the two
other components as functions of this. A natural parameter to choose for
the free parameter is the radius of the position vector, as we expect solu-
tions to exist at all values of radius. Thus, we will represent these equilib-
rium conditions as a function of r̂, which can also be represented as the
two angles that define the relative position in the body-fixed frame. Then
these two equations are solved for the angular location of the relative posi-
tion vector for a given value of radius. For each value of radius there will
be multiple solutions.
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In our work we have also found three different forms of the equilibrium
conditions that provide necessary, sufficient, and necessary and sufficient
conditions for an equilibrium. These are all described in detail in the cur-
rent analysis. We state all three conditions as the necessary and sufficient
condition suffers from some disadvantages as an algorithm that cause us
to not use it to completely replace the other two conditions. Specifically,
we have found poor convergence in solving for relative equilibria where the
system spins in the vicinity of a non-maximum moment of inertia. In this
situation, we find that the sufficient condition works well. The necessary
condition is given as its derivation provides a useful introduction to a der-
ivation of the sufficient condition.

3.4.1. A necessary condition for equilibrium

We first note that it is possible to completely eliminate the angular velocity
ω from the equilibrium conditions, in essence solving for ω as a function of
the relative position.

We first derive a formula for the spin rate as a function of r and ω̂.
Note that Equation (27) can be rewritten as:

(ω · r)ω−ω2r =Ur. (45)

Taking the dot product of r with this equation and solving for ω2 yields:

ω2 = −r ·Ur

r2
[
1− (

ω̂ · r̂
)2

] . (46)

Next we note that the direction of the angular velocity, ω̂, can be deter-
mined once a position vector r is specified. To do this we note from Prop-
ositions 1 and 6 that ω is perpendicular to Ur and lies in the plane defined
by Ur =g and r. Define the dyadic:

Ugg = (g ·g)U −gg, (47)

which extracts the component of a vector orthogonal to g. Thus, we can
state that

u =Ugg · r, (48)

ω̂= û. (49)

Note that this is not well defined if we are at a locally central point, as
then Ugg · r =0, and the unit vector û is undefined. Under our assumption
of a non-locally central point, however, we are guaranteed that Ugg · r �= 0.
The vector u plays an important role in the following discussion, so we will
give an explicit formula for it and its magnitude:
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u =g2r − (r ·g)g, (50)

u=g

√
g2r2 − (r ·g)2. (51)

We note that this condition is independent of the magnitude of ω, which
can be solved for after the fact from Equation (46). Thus, without loss of
generality we can substitute u into Equation (33) to find the function:

F(r)= ũ · [I −νrr] ·u (52)

and the equilibrium condition:

F(r)=0, (53)

where we recall that u is an explicit function of r. In general, we note that
this is only a necessary condition for a position r to be an equilibrium, as
u =0 will also satisfy this equation and may not be an equilibrium.

Although F is a general 3-dimensional vector, there are only two inde-
pendent directions defined for it, implying that this represents only two inde-
pendent conditions. This is expected as it represents the culmination of the
elimination of the four integrals of motion from the six initial conditions
for equilibrium. A general discussion of these two independent directions is
simple to carry out. First, we recall that the vectors û and ĝ are orthogonal
to each other. Thus, we can use them to define a mutually orthogonal vector
n̂ = ĝ × û = ˜̂g · û = ĝ · ˜̂u. Then we can establish the following:

PROPOSITION 10. Necessary conditions for the system to be in relative
equilibrium are that

0=gg · r̃ ·I ·u, (54)

0= u

g

[
ν(r ·g)

u2

g2
−g ·I ·u

]
. (55)

To establish this, first consider the projection of F along û. Writing this out
yields û ·F= û · ũ · [I −νrr] ·u≡0, as û · ũ≡0. Thus we see that the condition
is trivially satisfied along this direction, and that the vector F must lie in
the plane defined by ĝ and n̂. The condition that F equal zero along these
two directions defines our necessary condition.

Next consider the projection of F along ĝ, or ĝ · F. We first note that
ĝ · ũ =g2ĝ · r̃. Thus, the term multiplied by ν is eliminated from this projec-
tion. Expanding the remaining terms we find:

ĝ ·F =gg · r̃ ·I ·u. (56)

Equating this to zero represents one necessary condition for an equilibrium.
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Finally, consider the projection of F along n̂, or n̂ · F. This does not
result in as simple of a result,

n̂ ·F = u

g

[
ν(r ·g)

u2

g2
−g ·I ·u

]
. (57)

Equating Equation (57) to zero results in the second independent equi-
librium condition. Again, we see that u = 0 will satisfy these conditions
without putting any constraints on the orientation of the angular velocity,
implying that this is only a necessary condition.

3.4.2. A sufficient condition for equilibrium

Now we derive a different form of the equilibrium conditions, decomposing
the g vector into two components. This form of the equations will allow us
to define a set of sufficient conditions for an equilibrium to exist.

First, substitute Equation (48) into Equation (53), simplifying and
expanding all terms results in the expression:

g4r̃ ·I · r −g2(r ·g)g̃ ·I · r +νg2r2(r ·g)g̃ · r

−g2(r ·g)r̃ ·I ·g + (r ·g)2g̃ ·I ·g −ν(r ·g)3g̃ · r =0. (58)

Next we note that the gravitational acceleration can be split into two com-
ponents, one parallel to the radius vector r and one perpendicular to it:

g =g‖r̂ +g⊥p̂, (59)

where g2 =g2
‖ +g2

⊥. We note that r̂ · p̂=0, although p̂ is not uniquely defined
when g⊥ =0. Making these substitutions we find:

(g2
‖ +g2

⊥)2r̃ ·I · r − rg‖(g2
‖ +g2

⊥)
(
g̃‖ + g̃⊥

) ·I · r

+νr3g‖(g2
‖ +g2

⊥)g̃⊥ · r − rg‖(g2
‖ +g2

⊥)r̃ ·I · (g‖ +g⊥
)

+r2g2
‖
(
g̃‖ + g̃⊥

) ·I · (g‖ +g⊥
)−νr3g3

‖ g̃⊥ · r =0. (60)

A few observations for this system can be noted. First, g‖, g⊥, and p̂ are
all functions of the relative position r. Next, if we group all terms that are
not factored by g⊥, we find an equation which can be shown to be identi-
cally equal to zero:

g4
‖ r̃ ·I · r − rg3

‖ g̃‖ ·I · r − rg3
‖ r̃ ·I ·g‖ + r2g2

‖ g̃‖ ·I ·g‖ =0. (61)

To show that this is identically zero we note that p̂ is defined as being
perpendicular to r̂. We see that this is true independent of whether r̂ is
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along a principal axis or not. Thus, in Equation (60) we need only retain
terms that are factored by g⊥. Expanding this condition and simplifying we
find:

F̃(r)=g4
⊥r̃ ·I · r − rg‖g2

⊥g̃⊥ ·I · r +νr3g‖g2
⊥g̃⊥ · r

−rg‖g2
⊥r̃ ·I ·g⊥ + r2g2

‖ g̃⊥ ·I ·g⊥ (62)

with the equilibrium condition being:

F̃(r)=0. (63)

Now we can state the following proposition.

PROPOSITION 11. The following two conditions are sufficient for a relative
equilibrium to exist

g⊥g‖n̂ ·I · p̂−g2
⊥n̂ ·I · r̂ =0, (64)(

g2
⊥ −g2

‖
)

p̂ ·I · r̂ +g‖g⊥
(
r̂ ·I · r̂ − p̂ ·I · p̂−νr2)=0. (65)

We have defined two basic orthogonal directions, r̂ and p̂, and we can again
form an additional direction n̂= r̂× p̂. As before, we expect the vector F̃ to
have a null value along the vector u. To show this now, we project the vec-
tor equation F̃ =0 into r̂ and p̂ to find:

r̂ · F̃ = r2g⊥g‖
(
g⊥g‖n̂ ·I · p̂−g2

⊥n̂ ·I · r̂
)
, (66)

p̂ · F̃ = r2g2
⊥

(
g‖g⊥n̂ ·I · p̂−g2

⊥n̂ ·I · r
)

(67)

both of which must equal zero. We note that g‖ �= 0 in general and that
g⊥ �=0 by assumption, and thus we see that these two conditions are iden-
tical to each other and only define one condition.

Then the final condition is represented by n̂ · F̃:

n̂ · F̃ = r2g2
⊥

[(
g2

⊥ −g2
‖
)

p̂ ·I · r̂ +g‖g⊥
(
r̂ ·I · r̂ −νr2 − p̂ ·I · p̂

)]
. (68)

In both of these independent conditions, we see that they are explicitly fac-
tored by the term g⊥. This allows us to define a sufficiency condition for
our system to be in equilibrium by removing this factor. Note, while we
can remove this factor from both conditions, we find that it is necessary
to only remove it from one, we choose to remove it from the second condi-
tion. Doing so, we have two independent equations that define a sufficient
condition for the system to be in equilibrium:

g⊥g‖n̂ ·I · p̂−g2
⊥n̂ ·I · r̂ =0, (69)(

g2
⊥ −g2

‖
)

p̂ ·I · r̂ +g‖g⊥
(
r̂ ·I · r̂ − p̂ ·I · p̂−νr2)=0. (70)
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We should note that this set of equations is not necessary, in that if we set
g⊥ = 0 in them they do not provide us the correct general condition for
equilibrium in this situation, but only a sub-set of the general condition.
This condition is useful in that it allows us to avoid the spurious solutions
to the necessary conditions where u =0, yet which aren’t an equilibrium.

3.4.3. A necessary and sufficient condition for equilibrium

Finally, using a much different approach, we find a necessary and sufficient
condition. At the heart of this approach is Proposition 8. Given a trial value
of r we can form the dyad J and delineate the three mutually orthogonal
eigenvectors and their eigenvalues, denoted as wi and λi , i = 1,2,3. Choose
one of these eigenvectors to be aligned with the system angular momentum
(we can choose this freely as the angular momentum is a free parameter of
the system) and assume that the axis of rotation is initially aligned in this
direction as well, denote this eigenvector and eigenvalue as w and λ. Given
this, the remaining condition for an equilibrium is:

1
λ2

r · k̃ · k̃ −Ur =0, (71)

where w ‖k. If we assume a value of |k| we then have three equations for
three unknowns, the elements of the position vector r. Again, we find it
convenient to decompose this equation into three transverse directions. We
will consider the projection of this equation into the three directions r, w,
and w ×g where g =Ur again.

Projecting Equation (71) along r we find:

k2

λ2
r · w̃ · w̃ · r − r ·g =0. (72)

We can solve this equation for the magnitude of the angular momentum:

k2 =−λ2 r ·g
r2

[
1− (r̂ · ŵ)2

] . (73)

Instead of specifying the angular momentum magnitude, we can use this
equation with a set value of the radius to define the angular momentum
magnitude. In this way we can easily eliminate one of the unknowns.

PROPOSITION 12. The following two conditions are necessary and suffi-
cient for a relative equilibrium to exist.

w ·g =0, (74)

w · r̃ ·g =0. (75)
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To establish this, project Equation (71) along w. The first term is iden-
tically zero, as w ‖ k = 0. The remaining condition is w · g = 0. Next, pro-
ject along w × g, which is orthogonal to g, to find w · g̃ · r = w · r̃ · g = 0.
These two conditions constitute the necessary and sufficient conditions for
equilibrium.

In practice we keep r constant and only vary r̂ to satisfy the two con-
ditions. This method has the advantage of letting us control the placement
of the angular velocity. A drawback of the sufficiency conditions derived
previously is that there is no direct control over which possible eigenvec-
tor orientation the solution is drawn to. A drawback of this necessary
and sufficient condition is that it only seems to converge upon solutions
that take the maximum eigenvalue of the locked inertia matrix J as the
angular momentum of choice. In all situations where we have chosen a
non-maximum eigenvalue of J the solution procedure has not converged.
We surmise that this is due to the strong saddle structure in the vicinity of
the equilibrium in these situations.

4. Stability of the Equilibria

Given the existence of relative equilibria, the next question of interest is
the stability of the equilibria. For dynamical systems involving both trans-
lational and rotational motion, it is not sufficient to establish spectral sta-
bility, but we must also determine energetic stability. This is well known in
the field of attitude dynamics, where a rotating body is spectrally stable if
it rotates about its maximum or minimum moment of inertia, but is only
energetically stable if it rotates about its maximum moment of inertia. We
will find similar situations here, when we consider the stability of our rel-
ative equilibrium.

We must note that it is still of interest to compute spectral sta-
bility, as this can provide important information about the motion of
the system in the vicinity of the equilibrium, such as the frequencies
of oscillation, the characteristic times of instability, and the orienta-
tion of these motions along the eigenvectors of the linear system. This
information cannot be found using an energetic stability analysis. In the
following we provide conditions for evaluating the stability of our rela-
tive equilibria. Theoretical approaches to determining the energetic sta-
bility of a system are detailed in (Simo et al., 1991), however we go
through an explicit derivation and discussion as we are able to provide
the general conditions that must be checked for stability of our relative
equilibria.
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4.1. SPECTRAL STABILITY

For our system, we are only concerned with the stability of the inter-
nal variables, those being the relative position and velocity of the bodies
and the angular velocity of the non-spherical body. Thus, the equations
of motion we must analyze are given by Equations (13) and (14). Now
note that the energy integral is only a function of these internal variables,
and thus a system that evolves in the neighborhood of a relative equi-
librium must conserve this quantity. In general we note that the angular
momentum integral is a function of the internal variables and the attitude
of the system. However, as established earlier, the magnitude of the angu-
lar momentum is only a function of the internal variables, and thus must
be conserved under their variation. The unit vector defining the angular
momentum is not conserved under the evolution of the internal variables
alone and thus is not considered in the following.

To determine spectral stability, we consider small deviations of the dynam-
ical system from a relative equilibrium and study the characteristic exponents
of its linearized dynamics. Thus, in the following, assume that we have found
a relative equilibrium solution of the form r = r∗, r′ = 0, ω =ω∗ that satisfy
Equations (27) and (28). Next, consider small deviations from these condi-
tions, δr, δr′, δω, and linearize the equations of motion to find:

⎡
⎣ δr′

δr′′

δω′

⎤
⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 U 0

−ω̃ · ω̃+Urr −2ω̃ ω̃ · r̃ + ˜ω× r

+ν r̃ ·I−1 ·
[
Ũr − r̃ ·Urr

]
+r̃ ·I−1 · [Ĩ ·ω− ω̃ ·I]

νI−1 ·
[
Ũr − r̃ ·Urr

]
0 I−1 · [Ĩ ·ω− ω̃ ·I]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·
⎡
⎣ δr

δr′

δω

⎤
⎦ . (76)

The resulting 9×9 matrix is degenerate in that it allows an additional inte-
gral of motion beyond the energy – the angular momentum magnitude. To
correctly account for this we must remove this variation from the dynam-
ical system. If we denote the angular momentum vector in the body-fixed
frame as k = I · ω + νr × (

r′ +ω× r
)
, then the constraint on the linearized

system about the relative equilibrium is

k · δk =0. (77)

This can be reduced to an explicit condition on the variations in the internal
variables
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ω ·J ·
[
ν

(
r̃ · ω̃− ˜ω× r

)
ν r̃ J

]
·
⎡
⎣ δr

δr′

δω

⎤
⎦=0. (78)

We note that at least one of the coefficients of the δω variable is always
non-singular, which allows us to remove a component of the angular veloc-
ity vector variation from the dynamics matrix, yielding an 8×8 matrix, the
eigenvalues of which determine spectral stability. In practice, once a rela-
tive equilibrium is found the 9×9 matrix is computed and the component
of the angular velocity that has the largest eigenvalue is removed to reduce
the matrix to an 8×8 matrix. Then the eigenvalues of this matrix are com-
puted to determine the spectral stability.

The characteristic exponents of the equilibrium solution can be of three
types in general, real, imaginary, and complex. Each pair of real solu-
tions correspond to a pair of 1-dimensional exponentially stable and unsta-
ble manifolds, while a set of complex solutions consists of a pair of
2-dimensional exponentially stable and unstable manifolds. The presence of
any characteristic exponent with a real part indicates that the system is unsta-
ble, as small deviations from the equilibrium will grow at an exponentially
increasing rate in time. Each pair of imaginary solutions correspond to one
set of 2-dimensional harmonic oscillations about the equilibrium point. For
an equilibrium point to be spectrally stable, all 4 complex–conjugate pairs of
the characteristic exponents must be purely imaginary. The test for stability is
easy, once the characteristic exponents are found. If any of the characteristic
exponents has a non-zero real value, the system is hyperbolically unstable,
whereas if none of the characteristic exponents has a real component, the
system is spectrally stable. We note that spectral stability only determines
the linear stability of an equilibrium configuration. To determine the non-
linear stability of an equilibrium condition one must in addition consider
energetic stability.

4.2. ENERGETIC STABILITY

The computation of energetic stability allows one to identify a sufficient
condition for the non-linear stability of an equilibrium point. At heart,
energetic stability is conceptually much simpler than spectral stability, as it
just provides conditions under which no allowable variation of the system
state can result in a lower energy value, and hence defines the lowest energy
state of the system. The computation of this condition is not as straight-
forward, however, and is generally difficult to perform. A theoretical basis
and algorithmic description for evaluating this stability is given in (Simo
et al., 1991), however it is couched in terms of geometric mechanics, which
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is sometimes difficult to implement for generic gravity fields. In the follow-
ing we present a classical derivation of the energetic stability condition for
our system, only using basic ideas taken from the calculus.

Specifically, to determine whether a relative equilibrium is energetically
stable we must compute the second variation of the energy with respect
to the internal system variables. This second variation can be described
as a quadratic form, and stability is present if that quadratic form is
positive definite. If it is not positive definite, then there exist pathways in
which the system can evolve to a lower energy state, and hence the system is
not stable at the current equilibrium point and energy value. In the current
analysis the difficulty lies in performing this second variation while enforcing
the condition that the angular momentum must be conserved. The following
analysis is simplified, however, by the following insights, mentioned earlier.
First, the energy integral is only a function of the internal variables, and
does not involve the inertial attitude of the system. Second, we only need
the internal system to conserve the angular momentum magnitude, meaning
that we only have a single constraint on our energy variation computation.

To properly carry out our second variation, we must first discuss the
condition for a relative equilibrium in terms of finding stationary points of
the energy at a specified value of angular momentum. To do this we intro-
duce the modified energy functional by appending the angular momentum
value constraint to the energy with a Lagrange multiplier:

�=E +λ
(
k ·k −k2) . (79)

Stationary values of � then correspond to stationary values of the energy
at a specified value of the angular momentum magnitude, k2. Now let us
consider variations in the internal variables r, r′, and ω as well as in the
Lagrange multiplier λ.

The first variation yields:

δ�= δE +2λk · δk + (
k ·k −k2) δλ. (80)

The difficulty is in establishing the proper value of λ to yield a stationary
value of �. It is important to note that we do not yet enforce the condition
that variations in angular momentum must be zero, only that the nominal
angular momentum is equal to a certain value, thus we cannot set k ·δk=0
yet. This is a dynamical constraint that the first variation need not verify
to find a locally stationary value. We restate the above equation explicitly
in terms of the variation of the internal states and note that the coefficient
of δλ is identically zero to find:

δ�= [Ex +2λk ·kx] · δx. (81)
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We know, however, that at a relative equilibrium we have the following nec-
essary conditions: r′ =0 and that the angular momentum is parallel to the
angular velocity of the system. Using these facts we find the following rela-
tions for Ex and 2λk ·kx. We note that the gradient of the energy is not, by
itself, identically zero at a relative equilibrium.

Ex =
⎡
⎣−νω̃ · ω̃ · r −νUr

νω̃ · r
J ·ω

⎤
⎦ , (82)

where we have used our previous definition of J . A similar analysis of the
term 2λk · kx, where we rewrite this as 2λ k

ω
ω · kx using Corollary 4 yields

the following.

2λ
k

ω
ω ·kx =2λk/ω

⎡
⎣−2νω̃ · ω̃ · r

νω̃ · r
J ·ω

⎤
⎦ . (83)

The condition for � to be stationary independent of variations in the inter-
nal variables is now that Ex +2λk ·kx ≡0. This condition applied to the last
two blocks of the matrix equations yield the same condition on λ, that

λ=− ω

2k
. (84)

Substituting this into the first block and simplifying yields ω̃ · ω̃ · r −Ur = 0
which is a necessary condition for a relative equilibrium and hence must be
identically satisfied. Thus we find the value of λ.

Now consider the second variation of �, which must be done prior to
applying our constraints on the variation of the angular momentum.

δ2�= δ2E +4k · δkδλ+2λ
[
δk · δk +k · δ2k

]
. (85)

We note again that the second order variation δ2λ is again multiplied by
a term identically zero, and thus we do not show it. Now, at this second
order variation, we wish to restrict ourselves to a constant value of angular
momentum, meaning that the constraint k · δk = 0 is active. This simplifies
our analysis and means, for our case, that we can disregard the first-order
variations in λ. Considering these constant angular momentum variations,
and substituting in for our proper value of λ, we find the simpler equation
we must evaluate:

δ2�= δ2E − ω

k

[
δk · δk +k · δ2k

]
. (86)

Our next step is to re-write this as a quadratic form in the internal vari-
ables, or δ2�=δx ·�xx ·δx, subject to the constraint k ·kx ·δx=0. The term
�xx can be expressed in matrix notation as follows, while the constraint has
already been evaluated in Equation 78.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ν [Urr − ω̃ · ω̃] −ν2 ω

k

[
ω̃ · r̃ + ˜ω× r

]
· r̃ −ν ω

k

[
ω̃ · r̃ + ˜ω× r

]
·J

−ν2 ω

k

[
ω̃ · r̃ + ˜ω× r

]
·[

r̃ · ω̃− ˜ω× r
]

ν2 ω

k
r̃ ·

[
r̃ · ω̃− ˜ω× r

]
ν

[
U +ν ω

k
r̃ · r̃

] −ν r̃ · [U − ω

k
J ]

−ν ω

k
J ·

[
r̃ · ω̃− ˜ω× r

]
ν

[
U − ω

k
J ] · r̃ J − ω

k
J ·J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (87)

We note that this is a symmetric matrix and that this 9 × 9 matrix is
easily evaluated once a relative equilibrium is found. Again, the dimension
of the matrix is reduced to 8 × 8 by removing an element of the angular
velocity variation, δω, which can always be found due again to the non-
singularity of J . The eigenvalues of this reduced matrix are computed and,
if all are positive, we know that the relative equilibrium is energetically sta-
ble as the energy is at a local minimum and the system cannot shed addi-
tional energy without also reducing its angular momentum. Such stability
conditions have been found to be extremely important for the rotational
dynamics of satellites, and are often used to ensure their non-linear stabil-
ity. Should any of the eigenvalues of the reduced matrix be negative, then
the state can vary along the direction of the corresponding eigenvector and
further reduce the energy of the system. This also implies that the system
will move away from the current equilibrium point.

Indeed, the above condition trivially yields the conditions for the ener-
getic stability of a rigid body rotating in free space (i.e., with no forces
present, or U ≡0). This situation is modeled by setting ν ≡0, meaning that
the non-spherical body has all the mass and there is no gravitational attrac-
tion from the sphere. Then, the variations in the position and velocity of
the spherical particle are immaterial and the energetic stability condition
δ2� reduces to the condition

δω ·
[
I − ω

k
I ·I

]
· δω>0 (88)

subject to the constraint

ω ·I ·I · δω=0. (89)

For a body rotating in free space the relative equilibrium condition is just
that the angular velocity lies along a principal axis of the body. If the iner-
tia dyad is expressed in a principal axis frame I = diag[I1, I2, I3] with the
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rotation occurring about the third axis, we have ω = [0,0,ω], ω/k = 1/I3,
and the angular momentum constraint reduces to δω3 =0 with no constraint
on δω1 and δω2. The matrix can be trivially reduced to the 2×2 matrix

[
I1
I3

(I3 − I1) 0
0 I2

I3
(I3 − I2)

]
. (90)

The positive definite condition is that the two diagonal terms be positive,
or that I3 > I1 and I3 > I2. This, of course, is the well-known condition
that the body rotate about its maximum moment of inertia. Such a rotat-
ing body is spectrally stable when it rotates about either its maximum or
minimum axis, however. Thus, with this simple example, we see that our
condition recovers this standard result.

5. Study of relative equilibria for Toutatis

Now we consider the solution of the equilibrium conditions for a general
gravity field and inertia tensor. For a general gravity field we cannot hope
to find analytical solutions to these equations, although it may be possi-
ble to develop approximate solutions under the assumption that r � 1 by
expanding the gravity field to the lowest order. We do not pursue such
an approach here, but instead describe how we can solve these equations
under general conditions when the two bodies are in close proximity to
each other. To motivate our general approach we will use a realistic aster-
oid shape model for Toutatis and its associated constant density gravity
field (Werner and Scheeres, 1997). We use this asteroid due to its clearly
non-symmetric shape (Scheeres et al., 1998).

We have investigated solutions to both the sufficient and the necessary
and sufficient conditions. We have found, for reasons not fully understood,
that the sufficient conditions are better suited to solving for relative equi-
libria which spin about the intermediate and minimum axes of the locked
inertia tensor J , while the necessary and sufficient condition is better suited
to finding relative equilibria that spin about the maximum inertia axis of J .
We hypothesize that the local structure of the equilibrium point controls this
aspect of solution. In the following we concentrate on providing a detailed
discussion and presentation of our solutions of the necessary and sufficient
conditions, as systems rotating about their maximum moment of inertia
are of the most physical interest and are the only ones which exhibit ener-
getic stability. We do provide some example solutions using the sufficiency
conditions in Table I.
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TABLE I

Details of select relative equilibria about Toutatis.

Relative position Spin pole

ν r Latitude Longitude Latitude Longitude Spectral Energetic
− km deg deg deg deg Stability Stability

# Real # Negative
Eigenvalues Eigenvalues

0.5 3 −1.61 0.70 88.62 8.64 No No
2 1

0.5 4 −0.99 0.75 89.09 9.21 Yes Yes
0 0

0.2 2 −0.99 −96.89 89.03 89.44 No No
4 2

0.2 3.5 1.29 −94.32 88.74 89.65 Yes No
0 2

0.2 5 1.10 −93.15 88.92 89.74 No No
2 1

0.5 3 6.52 93.27 0.41 3.87 No No
4 2

0.5 3 3.68 −92.22 0.16 −2.65 No No
4 2

0.5 3 −2.44 0.46 −0.19 90.40 No No
4 2

0.5 3 −1.21 177.72 0.47 −91.97 No No
4 2

In the following we first present results for relative equilibria at a
range of distances and mass parameters ν for Toutatis. All these results
assume rotation about the maximum moment of inertia of the system, and
the use of the necessary and sufficient conditions from Proposition 12 to
compute the relative equilibrium. We note that these results are qualita-
tively similar to those found for an ellipsoid (Scheeres, 2004), albeit with
clear deviations in the relative equilibrium positions due to the asymme-
try of the mass distribution. Figure 2 shows a view down the maximum
moment of inertia of Toutatis, plotting the location of the relative equilib-
ria for values of radius ranging from the surface to 3 km in the y direc-
tion and 5 km in the x direction. For each distance the values of the
mass parameter range from 0 to 1. In this plot, Toutatis is lined up along
its principal axes of inertia, while the locations of the relative equilibria
are clearly offset from the principal axes. Thus, we directly see the effect
of the mass distribution asymmetry. The plotted locations of the relative
equilibria are actually extended swaths, as shown in Figure 3, as they are
computed for a range of radius and ν values. Specifically, we choose a
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Figure 2. Locations of relative equilibria about maximum moment of inertia.

Figure 3. Detail of location of relative equilibria along the +y axis.
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value of ν and then generate relative equilibria for radius values ranging
from just off the Toutatis surface to some maximum limit, then increment
the value of ν and repeat. At a given value of radius, the relative equilibria
tend to sweep from one side of the region to the other as the mass fraction
is changed. In Figure 3 it is clear that the lateral location of these relative
equilbria shift as a function of distance from the center of mass and as a
function of mass ratio.

In Figures 4 and 5 we show the results of our spectral stability com-
putations for relative equilibria along the +x and −y axes of Toutatis. In
these figures, each point corresponds to a relative equilbrium. In Figure 4
the shaded regions are spectrally stable, and in this case are also all ener-
getically stable, while the clear regions are hyperbolically unstable and are
energetically unstable as well. In Figure 5 the shaded region is spectrally
stable. The region below the stable area has a set of four roots correspond-
ing to hyperbolic spirals, while the region above the stability area has a
set of two roots corresponding to 1-dimensional hyperbolic manifolds. In
both cases the remaining characteristic exponents correspond to oscillatory
motions. We note that all the relative equilibria represented in Figure 5 are
energetically unstable.

We also present a few detailed results, chosen from the many relative
equilibria we have computed. In Table I we present a number of detailed
parameters related to the computed relative equilibria. In the table we also
provide the longitude and latitude of the relative position and of the angu-
lar velocity vector, information on its spectral stability and information on
its energetic stability. For spectral stability, if not stable we provide the

Figure 4. Spectral stability of relative equilibria along the +x axis.
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Figure 5. Spectral stability of relative equilibria along the −y axis.

number of eigenvalues with real terms. For energetic stability, if not sta-
ble we provide the number of negative eigenvalues. In the first five entries
we chose one relative equilibria from each stability and instability region
from Figures 4 and 5. In the last four entries we use the sufficiency condi-
tions from Proposition 11 to compute relative equilibria that are not about
the maximum moment of inertia of the J dyad. From the table we, again,
clearly see that the system does not rotate about a principal moment of
inertia nor does the sphere lie along a principal axis. This situation should
actually be the generic situation found for all relative equilbria, even those
between a spacecraft and planet, due to the non-symmetric distribution of
mass in general. However, for those cases we find that the distance between
the spacecraft and planet are so large that these small deviations from prin-
cipal axis may be difficult to detect.

Finally, in Figures 6 and 7 we show a dynamical simulation of the rel-
ative trajectory between Toutatis and a sphere, the system having a mass
ratio of 0.5. The simulation is initialized in the close vicinity of the relative
equilibrium given in the first line of Table I, located at a radius of 3 km.
Two runs are made, one just inside of this radius and the other just outside
of this radius. The initial position just inside the radius departs the rela-
tive equilibrium on a hyperbolic manifold and impacts the Toutatis surface.
The starting position just outside the radius departs on a hyperbolic man-
ifold but is instead trapped within a bounded region defined by the energy
and angular momentum integrals, similar to the zero-velocity regions in the
restricted 3-body problem. Applying the analysis from (Scheeres, 2002b) we
note that this system has a negative total energy and thus is Hill stable,
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Figure 6. Unstable, Hill stable trajectory in x–y plane, ν =0.5, r =3.

Figure 7. Unstable, Hill stable trajectory in x–z plane, ν =0.5, r =3.



RELATIVE EQUILIBRIA FOR GENERAL GRAVITY FIELDS 347

meaning that the two bodies cannot escape from each other. Applying the
stability against impact criterion from the same reference we also find that
for this second case the system is stable against impact, meaning that the
system is trapped in this state ad-infinitum. For a real system, we would
expect energy dissipation to occur, forcing the bounded region to shrink
and eventually forcing the system to fall into a new relative equilibrium
(Scheeres, 2002a). By definition, this new relative equilibrium would be
energetically (and spectrally), stable, as it would be sought out by energy
dissipation. It is interesting to note that the angular momentum magnitude
of this new relative equilibria would be equal to that of the original, mean-
ing that the angular momentum magnitude must be double-valued in the
radius in this range of initial conditions.

6. Conclusions

We derive a set of conditions for a relative equilibrium that are amenable
to the computation of relative equilibrium for systems without any spatial
symmetry. We find and discuss three different versions of these conditions,
corresponding to necessary, sufficient, and necessary and sufficient condi-
tions for a relative equilibrium. Given a solution for the relative equilibrium
of such a system we also derive explicit conditions for spectral and energetic
stability. The algorithm is applied to a model of the asteroid Toutatis.
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Appendix A: Dyad Notation

In this paper we make extensive use of dyad notation, as it fits well with
our use of vectors and arbitrary coordinate frames for our final results.
In this Appendix we state a number of identities involving dyads that we
apply, usually without comment, in the paper. In the following we assume
Cartesian vectors and tensors throughout.
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We may always specify a vector a in an arbitrary coordinate frame, so
long as we keep track of its defining unit vectors. Then a=∑3

i=1 ai êi =ai êi

using the Einstein summation convention. The simplest dyad can be con-
structed by the term-by-term multiplication of two vectors a and b and is
simply stated as

ab =aibj êi êj , (A.1)

where it is clear that the order of multiplication is important. It is impor-
tant to note that the unit vectors for a and b need not be specified in the
same coordinate frame. This operation is similar to the outer-product of
two column vectors in matrix analysis. Given this basic form, we can gen-
eralize the concept of a dyad beyond the product of two vectors and define
a general dyad as

A =aij êi êj . (A.2)

A dyad can have similar properties to a matrix, such as symmetry (aij =
aji), skew-symmetry (aij =−aji), positive definiteness, etc. Similarly, opera-
tions that can be performed on matrices can also be performed on dyads,
such as transpose, inversion, eigenvalue and eigenvector analysis, etc. Per-
haps their most convenient property is that multiplications between vectors,
dyads, and higher-order tensors can be made notationally without worry-
ing about the coordinate frames these are occurring in, at least not until
the actual computation is to be made.

A particularly useful application of the dyad is to the representation
of the cross-product operator in vector mechanics. Given a cross-product,
c = a × b = ã · b = a · b̃. The term ã is the cross-product dyad and is
skew-symmetric. In general, given a vector a =ai êi we have:

ã =a1
(
ê3ê2 − ê2ê3

)+a2
(
ê1ê3 − ê3ê1

)+a3
(
ê2ê1 − ê1ê2

)
. (A.3)

A further generalization of this operator as a third-rank tensor also exists,
but is not needed for our current analysis. From the basic properties of this
operator, we find the following useful identities:

ã · b̃ =ba − (a ·b)U, (A.4)
˜a ×b =ba −ab, (A.5)

a · b̃ · b̃ ·a =b · ã · ã ·b, (A.6)

where U is the identity dyad, i.e., a ·U =U ·a =a.
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