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Abstract. In this paper we find a class of new degenerate central configurations and
bifurcations in the Newtonian n-body problem. In particular we analyze the Rosette cen-
tral configurations, namely a coplanar configuration where n particles of mass m1 lie at
the vertices of a regular n-gon, n particles of mass m2 lie at the vertices of another n-
gon concentric with the first, but rotated of an angle π/n, and an additional particle of
mass m0 lies at the center of mass of the system. This system admits two mass parame-
ters µ=m0/m1 and ε =m2/m1. We show that, as µ varies, if n>3, there is a degenerate
central configuration and a bifurcation for every ε >0, while if n=3 there is a bifurcation
only for some values of ε.

Key words: bifurcations, central configurations, degenerate central configurations, n-body
problem

1. Introduction

In the planar Newtonian n-body problem the simplest possible motions are
such that the whole system of particles rotates as a rigid body about its
center of mass. In this case the configuration of the bodies does not change
with time. Only some special configurations of point particles are allowed
such motions. These configurations are called central configurations.

Many questions were raised about the set of central configurations.
The main general open problem is the Chazy–Wintner–Smale conjecture:
given n positive masses m1, . . . ,mn interacting by means of the Newtonian
potential, the set of equivalence classes of central configurations is finite.
Such conjecture was proved for n = 4, in the case of equal masses,
by Albouy (1995) and (1996) and in the general case by Hampton and
Moeckel (2006).
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Chazy believed in a stronger statement: namely that any equivalence
class of central configuration is nondegenerate. This statement is known
to be false: Palmore (1975, 1976) showed the existence of degenerate cen-
tral configurations in the planar n-body problem with n � 4. His example
consists of n − 1 particles lying at the vertices of a regular polygon and
one particle at the centroid. Unfortunately only few examples of degener-
ate central configurations are known. In this paper, we find a new family of
degenerate central configurations that arise from some highly symmetrical
configurations.

Another interesting problem, that is strictly related to the study of
degenerate central configurations, is the study of bifurcations in the n-body
problem. The interest in this problem arises because, at a bifurcation, the
structure of the phase space changes. Several authors studied bifurcations
in the n-body problem (see Sekiguchi, 2004 for a list of references), in par-
ticular Sekiguchi analyzed a highly symmetrical configuration of 2n + 1-
bodies. He considered a Rosette configuration, i.e. a planar configuration
where 2n particles of mass m lie at the vertices of two concentric regular
n-gons, one rotated an angle of π/n from the other and another particle
of mass m0 lies at the center of the two n-gons. He showed that there is a
bifurcation in the number of classes of central configurations for any n�3.

In this paper we generalize Sekiguchi example and we allow the masses
on the two concentric n-gons to be different. This considerably complicates
the analysis. Indeed, if one considers two concentric n-gons one with parti-
cles of mass m1 and the other (rotated of an angle π/n from the first) with
particles of masses m2 and a mass m0 in the center, one has to deal with
two mass parameters µ=m0/m1 and ε =m2/m1. In this case we prove that,
as µ varies, if n>3, there is a degenerate central configuration and a bifur-
cation for every ε > 0. On the other hand the case n= 3 is special and, in
this case, as µ is varied, there is a bifurcation for some values of ε but not
for others.

This paper is organized as follows. In the next section we introduce the
equation of the n-body problem. In Section 3 we discuss central configura-
tions. In the following section we introduce the highly symmetrical configu-
rations that are the object of the paper. In Section 5 we present and prove
the main results of the paper: the existence, for any n>3, of a bifurcation
in the number of classes of central configurations and of a new family of
degenerate central configurations. In the last section we analyze the special
case where n=3.
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2. Equations of Motion

The planar n-body problem concerns the motion of n particles with masses
mi ∈ R

+ and positions qi ∈ R
2, where i = 1, . . . , n. The motion is governed

by Newton’s law of motion

miq̈i = �U

�qi

. (1)

Where U(q) is the Newtonian potential

U(q)=
∑

i<j

mimj

|qi −qj | . (2)

Let q = (q1, . . . , qn)∈R
2n and M =diag[m1,m2, . . . ,mn]. Then the equations

of motion can be written as

q̈ =M−1 �U

�q
. (3)

In studying this problem it is natural to assume that the center of mass of
the system is at the origin, i.e. m1q1 +· · ·+mnqn =0, and that the configu-
ration avoids the set �={q:qi =qj for some qi �=qj }.

3. Central Configurations

DEFINITION 1. A configuration q ∈R
2 \� is called a central configuration

if there is some constant λ such that

M−1 �U

�q
=λq.

Central configurations, as it was shown by Smale (see, Smale, 1970; Abra-
ham and Marsden, 1978), can be viewed as rest points of a certain gradient
flow. Introduce a metric in R

2n such that 〈q, q〉=qT Mq and let

S ={q: 〈q, q〉=1,m1q1 +· · ·+mnqn =0}
denote the unit sphere S2n−3 with respect to this metric in the subspace
where the center of mass is at the origin. The scalar product I =〈q, q〉 is
called moment of inertia. Let S∗ = S \�. The vector field X = M−1 ∂U

∂q
+

λq where λ = U(q) is the gradient of US , the restriction of U to the unit
sphere S with respect to the metric 〈·, ·〉. This is because X is tangent to
S, it has rest points at exactly the central configurations with 〈q, q〉 = 1
and 〈X(q), v〉=DU(q)v for every q ∈S and v ∈TqS. Furthermore the rest
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points of X are exactly the central configurations in S. Note that, since
the Newtonian potential is an homogeneous function, any central configu-
ration is homothetic to one in S. Therefore the problem of finding central
configurations is essentially that of finding rest points of the gradient flow
of US or, equivalently, finding the critical points of US .

The gradient flow preserves some sets of configurations with symmetry.
In this paper we study one of such sets of configurations with symmetry.

We denote by Cn the set of central configuration of the n-body problem.
We say that two relative equilibria in S∗ are equivalent (and belong to the
same equivalence class) if one is obtained from the other by a rotation and
an homothety. The set C̃n is the set of equivalence classes of central con-
figurations.

Clearly I and � are invariant under the action of S1. Thus, we can con-
clude that S∗ is diffeomorphic to the (2n−3)-dimensional sphere S2n−3 (it
is actually an ellipsoid E2n−3) with all the points � removed, that is

S∗ =E2n−3 \ (E2n−3 ∩�)≈S2n−3 \ (S2n−3 ∩�).

Since US is invariant under the action of S1 it defines a map ŨS:S∗/S1 →R.
If we let π :S∗ →S∗/S1 denote the canonical projection, �̃=π(E2n−3 ∩�),
and recalling that E2n−3/S1 ≈ S2n−3/S1 ≈ CP n−2, complex projective space,
we are led to the investigation of the critical points of ŨS :CP n−2 \ �̃→R.

Consequently one can show that the set of equivalence classes of central
configurations is given by the set of critcal points of the map ŨS : CP n−2 \
�̃→ R. More precisely we have the following result of Smale (see, Smale,
1970, 1971; Abraham and Marsden, 1978).

PROPOSITION 1. For any n� 2 and any choices of the masses in the pla-
nar n-body the set of equivalence classes of central configurations is diffeo-
morphic to the set of critical points of the map ŨS : CP n−2 \ �̃→R.

Let q be a critical point of ŨS . A critical point of ŨS is degenerate pro-
vided that the hessian D2ŨS(q) has a nontrivial nullspace. We have the fol-
lowing definition

DEFINITION 2. An equivalence class of central configurations is
degenerate (nondegenerate) provided that the corresponding critical point
q of ŨS is degenerate (nondegenerate).
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Figure 1. Rosette configuration for n=6.

4. Symmetrical Configurations

Consider the set � of all the configuration in R
2 consisting of two con-

centric regular n-gons, one rotated of an angle π/n from the other, with a
mass in their common center of symmetry (see Figure 1).

Let m0, m1 and m2 be the masses in the center of mass, on the n-gon
N1 and on the n-gon N2 respectively. Then it follows from the symme-
try of the configuration that the gradient of ŨS is tangent to �̃ (where
�̃ = π(E2n−3 ∩ �)). Thus to find equivalence classes of central configura-
tions in �̃ it is sufficient to study the critical points of ŨS |�̃. Since �̃ is
one dimensional, only one parameter is needed to describe such symmetric
configuration. This is a great simplification. Figure 1 shows two parameters
(r1, r2) which can be used to describe such a configuration.

The potential in these coordinates is

U(q)= (nm1)
2U(r1, r2)

where

U(r1, r2)= µ

n

(
1
r1

+ ε

r2

)
+kn

(
1
r1

+ ε2

r2

)
+ 1

n

n∑

k=1

ε√
r2

1 + r2
2 −2r1r2 cosφk
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with, µ=m0/m1, ε =m2/m1, φk = (2k −1)π/n and

kn = 1
4n

n−1∑

k=1

csc
π

n
k

is the potential of a regular n-gon of unit size and unit masses. The last
term in U is the moment of inertia

I (q)=〈q, q〉= I (r1, r2)=m1n(r2
1 + εr2

2 ).

The central configurations are the solutions of the equation ∇ŨS |�̃ = 0 or
∇U = λ

2∇I (with λ=U ), that in this case can be written as

�U
�r1

=m1nλr1

�U
�r2

=m1nλεr2.
(4)

Solving the equations above for λ one gets

1

r3
2

F(x)=0 (5)

where

F(x, ε,µ)= µ

n
(1−x3)+kn(ε −x3)+ x3

n

n∑

k=1

(1− ε)− 1
x
(1− εx2) cosφk

(1+x2 −2x cosφk)3/2

(6)

and x = r2/r1. The equation for the central configuration above depends
only on one parameter and is invariant under the transformation (x, ε,µ)→
( 1

x
, 1

ε
,µε). Thus it suffices to study the central configurations with 0<ε �1.

The case ε =1 was studied in detail by Sekiguchi (2004) that proved the
following

THEOREM 1. If n= 2 the number of central configurations is one for any
value of µ. If n � 3 the number of central configurations is three for µ <

µc(n) and one for µ�µc(n), where

µc(n)= 1
12

n∑

k=1

cosφk

sin3
(φk/2)

−nkn

It is therefore sufficient to analyze the problem with 0<ε <1.
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PROPOSITION 2. For every µ > 0 and ε > 0 there is at least one Rosette
central configuration.

Proof. Since limx→0 F(x)= (µ

n
+kn

)
>0 and limx→∞ F(x)=−∞<0, by

the intermediate value theorem, the equation F(x)=0 has at least one solu-
tion.

When n = 2 it can be shown that, for every value of ε, there is only one
class of central configurations and no bifurcation occur, or more precisely
we have the following

PROPOSITION 3. If n = 2 for every µ > 0 and ε > 0 there is only one
Rosette central configurations.

Proof. In this case

F(x, ε,µ)= µ

2
(1−x3)+ 1

8
(ε −x3)+ x3(1− ε)

(1+x2)3/2
(7)

limx→0 F(x) = µ

2 + ε
8 and limx→∞ F(x) = −∞ so F(x) = 0 has at least one

solution. We need only to prove the statement for 0<ε �1. If ε =1F(x) is
a monotonically decreasing and the statement follows. If 0<ε <1 consider

F ′(x)=3x2
(

−
(

µ

2
+ 1

8

)
+ (1− ε)

(1+x2)5/2

)
. (8)

Clearly one solution of F ′(x)=0 is x =0. The other solutions can be found
studying the equation η(x)= µ

2 + 1
8 , where

η(x)= (1− ε)

(1+x2)5/2

is a monotonically decreasing function and η(0) = (1 − ε). The equation
η(x) = µ

2 + 1
8 has no solutions if µ � 7

4 or µ < 7
4 and ε ∈ ( 7

8 − µ

2 ,1
)
. It has

one solution x∗ if µ < 7
4 and ε ∈ (0, 7

8 − µ

2 ]. Consequently if µ � 7
4 or µ <

7
4 and ε ∈ ( 7

8 − µ

2 ,1
)
F ′(x) is always negative, F(x) monotonically decreas-

ing and F(x)= 0 has only one solution. On the other hand, if µ< 7
4 and

ε ∈ (0, 7
8 − µ

2 ], F ′(x) is positive for x ∈ (0, x∗) and negative for x ∈ (x∗,∞).
Thus F(x) is increasing for x ∈ (0, x∗), decreasing for x ∈ (x∗,∞) and
F(x)=0 has one solution since F(0)>0.

5. Bifurcations and Degenerate Central Configurations for n>3

In this section we consider the Rosette central configurations for n>3. The
main result is the existence of a bifurcations for every value of ε as the
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parameter µ increases. The case n=3 is studied in the next section. More
precisely we prove the following

THEOREM 2. For any n > 3 and ε > 0 there is at least one value µ0 cor-
responding to a bifurcation in the number of equivalence classes of Rosette
central configurations as the parameter µ>0 increases.

An important consequence of the existence of a bifurcation is the existence
of a degenerate equivalence class of Rosette central configurations

COROLLARY 1. For any n>3 and ε >0 there is at least one value µ0 of µ

for which there is a degenerate equivalence class of Rosette central configura-
tion.

Proof. The proof is by contradiction. Consider the potential ŨS(q;µ)

for the configuration under discussion in this paper, where we put into evi-
dence the dependence on the mass µ. Let q0

1 , . . . , q0
l be the critical points

of ŨS for µ=µ0, where µ0 is the bifurcation value. Assume that the class
of central configurations is nondegenerate for every q0

l . This means that
D2ŨS(q

0
l ;µ) has bounded inverse. But then by the implicit function theo-

rem, there exist a neighborhood B of µ0 and unique functions {ql(µ)}nl=1
defined in B, such that ql(µ0)=q0

l and DŨS(ql(µ);µ)=0. This contradicts
the assumption that µ0 is a bifurcation value.

The proof of Theorem 2 requires several preparations. The reminder of this
section is devoted to such preparations and to the proof of Theorem 2.

First of all observe that the central configurations, when ε �=1 can also
be viewed as the solutions of h(x, ε)=µ where

h(x, ε)=−nkn

ε −x3

1−x3
− x2

(1−x3)

n∑

k=1

x (1− ε)− (1− ε x2) cosφk

(1+x2 −2 x cosφk)3/2

Hereinafter, we say x to be a Rosette central configuration if x is solution
of the equation µ=h(x, ε). Let uk = cosφk then

h(x, ε)=h0(x)+ (1− ε)h1(x)

where

h0(x)=−nkn + x2(1−x2)

(1−x3)

n∑

k=1

uk

(1+x2 −2xuk)3/2
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and

h1(x)= nkn

(1−x3)
− x3

1−x3

n∑

k=1

(1−xuk)

(1+x2 −2xuk)3/2
.

5.1. THE CASE x >1, ε ∈ (0,1)

We now study the number of central configurations for x >1 and ε ∈ (0,1).
It is easy to show that, for any µ>0, there is at least one Rosette central
configuration with x >1. This follows from the limits

lim
x→1+

h(x, ε)=∞, lim
x→∞ h(x, ε)=−nkn <0

and an application of the Intermediate Value Theorem. The first limit is

lim
x→1+

h(x, ε)=∞× sgn ((ε −1)An)

where

An =nkn − 1
4

n∑

k=1

csc
(

φk

2

)
(9)

and sgn((ε −1)An)=1 since ε −1<0 and An <0 by the following Lemma

LEMMA 1. For all n�2,

An <0.

Proof. Clearly

An = 1
4

(
n−1∑

k=1

csc
k π

n
−

n∑

k=1

csc
(

k π

n
− π

2 n

))
(10)

therefore when n is even one has
n−1∑

k=1

csc
k π

n
−

n∑

k=1

csc
(

k π

n
− π

2 n

)

=
n/2∑

k=1

(
csc

kπ

n
− csc

(
k π

n
− π

2 n

))
− csc

(π

2
+ π

2 n

)

+
n−1∑

k= n
2 +1

(
csc

k π

n
− csc

(
k π

n
+ π

2 n

))
<0 (11)

while when n is odd
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n−1∑

k=1

csc
k π

n
−

n∑

k=1

csc
(

k π

n
− π

2 n

)

=
(n−1)/2∑

k=1

(
csc

k π

n
− csc

(
k π

n
− π

2 n

))
− csc

π

2

+
n−1∑

k=(n+1)/2

(
csc

k π

n
− csc

(
k π

n
+ π

2 n

))
<0. (12)

We now want to show that when µ is large enough, for every ε ∈ (0,1),
there is exactly one Rosette central configuration with x >1, i.e., we prove
the following

PROPOSITION 4. For every ε ∈ (0,1) there exists a µ̂ such that for every
µ>µ̂ there is one and only one Rosette central configuration

Proof. Observe that one can write

h(x, ε)=−(1− ε)An

3(x −1)
+O((x −1)0). (13)

Therefore there exist µ̂0 > 0 and δ > 0 such that for any µ> µ̂0 the equa-
tion h(x, ε)=µ has a unique solution in (1,1 + δ). Moreover the function
h(x, ε) has a maximum value µ̂1 in [1+δ,∞), since limx→∞ h(x, ε)=−nkn.
Let

µ̂=max(µ̂0, µ̂1)

then, if µ>µ̂, the equation h(x, ε)=µ has a unique solution.

5.2. THE CASE 0<x <1, ε ∈ (0,1)

We now study the number of central configurations for x <1 and ε ∈ (0,1).
In particular we show that

PROPOSITION 5. For any n>3 and ε ∈ (0,1),

1. there is a µ∗
n > 0 such that for every 0 < µ < µ∗

n there are at least two
Rosette central configurations, with x ∈ (0,1)

2. there is a µ̌�µ∗
n such that for every µ> µ̌ there are no Rosette central

configurations with x ∈ (0,1).
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Proof. (a) Observe that, if ε ∈ (0,1),

h(0, ε)=−nkn ε <0, lim
x→1−

h(x, ε)=−∞× sgn ((ε −1)An))=−∞,

where the limit follows from Lemma 1. If there exists x∗
n ∈ (0,1) such

that h1(x
∗
n) = 0 and h0(x

∗
n) > 0, then by the Intermediate Value Theorem,

µ=h(x, ε) has at least two solutions for every 0<µ<µ∗
n =h0(x

∗
n). To com-

plete the proof it is necessary to show the existence of x∗
n . The existence of

x∗
n will be proved in Lemma 3.

(b) Since h(0, ε) < 0 and limx→1− h(x, ε) = −∞ < 0 the function h(x, ε)

has a maximum value in [0,1]. Let µ̌ be such maximum. Then the equa-
tion µ=h(x, ε) has no solutions for x ∈ (0,1) if µ>µ̌.

To complete the proof of the proposition above, and prove Lemma 3 we
need the following technical result.

LEMMA 2. Let

k−
n = 1

4π
ln
(

1+ cos π
n

1− cos π
n

)
+ 1

4n sin π
n

(14)

then for all n�3

kn >k−
n .

Moreover k−
n is monotonically increasing with n.

Proof. The sum:

n−1∑

k=1

csc
πk

n

can be estimated using the trapezoidal rule. Since g(u) = csc πu
n

is convex
on [1, n−1] the trapezoidal rule gives an upper bound for the integral over
[1, n−1]:

∫ n−1

1
g(x) dx <

1
2
g(1)+g(2)+· · ·+g(n−2)+ 1

2
g(n−1).

This gives the formula for k−
n . Moreover k−

n is monotonically increasing
since the derivative of the function, obtained replacing π

n
in k−

n with the
continuous variable u, is negative.

We can finally prove the following

LEMMA 3. For any n > 3, there exists a x∗
n ∈ ( 54

100 ,1
)

such that h1(x
∗
n) = 0

and h0(x
∗
n)>0.
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Figure 2. The root x∗
n such that h1(x

∗
n)=0 and corresponding h0(x

∗
n) for 4�n�106.

Proof. Verifying these conclusions numerically for small n is triv-
ial by common mathematical software (for example, Mathematica1 or
Matlab2). Numerical results for 4 � n � 106 are given in Figure 2 (The
solutions x∗

n are found numerically through the function FindRoot pro-
vided by Mathematica). The proof for n�107 is given below.

The proof will be completed by showing firstly that h1(x)= 0 has solu-
tion x∗

n ∈ ( 54
100 ,1

)
and secondly that h0(x)> 0 for any x ∈ ( 54

100 ,1
)

such that
h1(x)=0.

1. We first show that for any n � 107, the equation h1(x) = 0 has at
least one solution x∗

n ∈ ( 54
100 ,1

)
. To this end, it is sufficient to show that

h1
( 54

100

)
>0 and h1(1)<0. Equivalentlly, let

h̃1(x)= (1−x3) h1(x)=nkn −x3
n∑

k=1

1−xuk

(1+x2 −2xuk)3/2

we will show that h̃1
( 54

100

)
>0 and h̃1(1)<0.

1http://www.wolfram.com/
2http://www.mathworks.com/
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When u∈ [−1,1] and x ∈ [0,1], we have

1−xu

(1+x2 −2xu)3/2
<

1
(1−x)2

.

and therewith

h̃1(x)>n

(
kn − x3

(1−x)2

)

Thus, when n�107

h̃1

(
54
100

)
>n

(
kn −

( 54
100

)3

(
1− 54

100

)2

)
>n

(
k−
n − 75

100

)
�n

(
k−

107 − 75
100

)
>0

where k−
107 = 0.7514096544 was computed using Lemma 5.2 and k−

n > k−
107

since k−
n is monotonically increasing with n.

A simple computation shows that

h̃1(1)=An = 1
4

(
n−1∑

k=1

csc
k π

n
−

n∑

k=1

csc
(

k π

n
− π

2 n

))
, (15)

and thus, by Lemma 1, h̃1(1) < 0 for any n. Hence, we conclude that for
any n�3, there exist x∗

n ∈ ( 54
100 ,1

)
, such that h1(x

∗
n)=0.

2. We now show that for any n � 107 and x∗
n ∈ ( 54

100 ,1
)

such that
h1(x

∗
n)=0, h0(x

∗
n)>0.

Let

h2(x)= 1−x3

x2 (1−x5)
(h0(x)+ (1−x3) h1(x))

then

h0(x
∗
n)= x∗

n
3

R1(x∗
n)

h2(x
∗
n)

where

R1(x)= x (1+x +x2)

1+x +x2 +x3 +x4

Thus, it is sufficient to prove that h2(x)>0 for any x ∈ ( 54
100 ,1

)
. To this end,

introduce the notations

R2(x)=0.15R1(x)+0.85

g(x, u)= u−R1(x)

(1+x2 −2 x u)3/2
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then

h2(x)=
n∑

k=1

g(x, uk).

It is easy to have

0<R1(x)<R2(x)<1, ∀x ∈ (0,1).

Thus, grouping the subscripts k in the summation as follows

J1 ={k |1�k �n, uk <R1(x)}
J2 ={k | 1�k �n, uk �R2(x)}

we have

h2(x)�
∑

k∈J1

g(x, uk)+
∑

k∈J2

g(x, uk).

Now, the function g(x, u) of u∈ [0,1] (with given x ∈ ( 54
100 ,1

)
) has minimum

at

u=u−(x)= 3x R1(x)−1−x2

x

and is increasing when R2(x)<u<1. Thus, when k ∈J1, we have

0>g(x,uk)>g(x, u−(x))

and when k ∈J2,

g(x, uk)�g(x,R2(x))>0.

The number of elements in J1 and J2 are respectively

N(J1)=
⌊
n (1− arccosR1(x)

π
)

⌋
<

n

π
(π −arccosR1(x))

N(J2)=2
⌊

n

2 π
arccosR2(x)+ 1

2

⌋
� n

π
arccosR2(x)−1.

Therefore, we have

h2(x) >
∑

k∈J1

g(x, u−(x))+
∑

k∈J2

g(x,R2(x))

= N(J1) g(x, u−(x))+N(J2) g(x,R2(x))

>
n

π
((π −arccosR1(x)) g(x, u−(x))

+ arccosR2(x) g(x,R2(x)))−g(x,R2(x))

:=h3(x;n)
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Figure 3. The function h3(x;n) with n=107 and x ∈ (0.54,1).

Now, we only need to verify h3(x;n) > 0 for any n � 107 and x ∈( 54
100 ,1

)
. It is evident that h3(x, n) is increasing with respect to n, and thus

h3(x;107)>0, which is shown in Figure 3, is enough to complete the proof.
The Lemma has been proved.

5.3. PROOF OF THEOREM 2

With all the preparations above we are now well on our way to proving
Theorem 2.

On one hand, using Proposition 4 and 5, we have, for every ε ∈ (0,1),
that if µ>max(µ̂, µ̌) the equation µ=h(x, ε) has a unique solution.

On the other hand, by Proposition 5, we have, for every ε ∈ (0,1), that if
µ<µ∗

n the equation µ=h(x, ε) has at least two solutions for x ∈ (0,1) and
at least one solution for x > 1. Moreover if ε �= 1, x = 1 is not a solution
of µ=h(x, ε). Thus the number of Rosette central configurations changes
as the parameter µ increases. The fact that this result holds for every ε >

0 follows from Theorem 1 and the invariance under the transformation
(x, ε,µ)→ ( 1

x
, 1

ε
,µε).

This concludes the proof of Theorem 2.

6. The case n=3

The case n=3 is special, indeed for n=3 the proof of Lemma 3 fails. This
is because x∗

3 =0.617364> 54
100 but h(x∗

3 )=−0.188154<0.
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Figure 4. (a) The maximum of the function h(x, ε) as a function of x for 0 <ε < 1. (b)
Magnification of (a) near ε =0.

In this case we study numerically the maximum hmax(ε) of the func-
tion h(x, ε) (as a function of x) on the interval (0,1). Figure 4a depicts
hmax(ε) for ε ∈ (0,1). Figure 4b shows a magnification of Figure 4(a) near
ε = 0 making apparent that, near ε = 0, hmax(ε) > 0. From Figure 4a,b
it is apparent that hmax(ε) is always negative except when ε is close to
0 or to 1. More precisely we find that hmax(ε) > 0 for ε ∈ (0, ε1) and
ε ∈ (ε2,1) while hmax(ε) < 0 for ε ∈ (ε1, ε2), where ε1 = 0.00076760883 and
ε2 = 0.97198893434. On the other hand it can be proved that h(x, ε) is
a monotone decreasing function with respect to x for x ∈ (1,∞) and ε ∈
(0,1). In fact, when n=3, we have

h(x, ε)=h0(x)+ (1− ε)h1(x)

where

h0(x)=−
√

3
3

+ x2 (1+x)

1+x +x2

(
1

(1−x +x2)3/2
− 1

(1+x)3

)

h1(x)=
√

3
3(1−x3)

− x3

1−x3

(
1

(1+x)2
+ 2−x

(1−x +x2)3/2

)

When x >1, we have h′
0(x)<0 and h′

0(x)+h′
1(x)<0. From which it is easy

to conclude that h′
x(x, ε)< 0 for any x > 1 and ε ∈ (0,1). Detailed compu-

tations will be omitted.
Consequently for every ε ∈ (ε1, ε2) there is one and only one Rosette cen-

tral configuration for every value of µ>0. On the other hand, our numer-
ical study shows that, if ε ∈ (0, ε1) or ε ∈ (ε2,1) there is a µ∗ such that if
0<µ<µ∗ there are three Rosette central configurations and if µ>µ∗ there
is only one.

In conclusion, we have the following.
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PROPOSITION 6. For n = 3 and ε ∈ (ε1, ε2), there is exactly one Rosette
configuration for any µ>0. For n=3 and ε ∈ (0, ε1) or ε ∈ (ε2,1), there exists
a value µ0(ε)>0, such that when µ>µ0(ε), µ=µ0(ε), and µ<µ0(ε), there
are exactly one, two and three Rosette configurations, respectively.
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