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Abstract. We derive the transformations to convert the state vector in cartesian coordi-
nates into geometric orbital elements (and conversely the geometric elements into the state
vector) for a test particle moving around an oblate planet. These transformations arise
from the epicyclic theory and are accurate to second order in eccentricity and inclina-
tion. This paper is written to be directly used for computational purposes, such as the
numerical study of ring dynamics.
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1. Introduction

The concept of ring streamlines is both powerful and convenient for dis-
cussion of a large spectrum of dynamical effects commonly found in ring
systems. These streamlines are the lines of the velocity field of the rings
considered as a fluid. They are used for example to describe the shape of
the narrow rings of Uranus or the density waves of Saturn’s rings. For an
equatorial ring, the shape of the streamlines is given by:

r = a
[
1 − e cos(m� + mβ)

]
(1)

or by a superposition of sinusoidal terms of the same form, where r is the
ring radius, m the azimuthal wave number (integer), β a phase angle, and
� the longitude in a frame rotating with pattern speed �p, related to the
orbital longitude L relative to an inertial reference frame by �=L−�pt .
The case of an elliptic ring is included in this description by taking m= 1
and �p = �̇ , where �̇ is the apsidal precession rate.

The orbital elements (semi-major axis a, eccentricity e, . . . ) resulting
from the fits of Equation (1) to observational data are referred to as
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the geometric elements. They differ from the more familiar osculating
ones, especially when the planet’s oblateness is taken into account. The
osculating elements are the elements that particles would have if the
oblateness were instantaneously suppressed. When the central body is
oblate, the osculating elements exhibit significant short-period variations.
The geometric elements also undergo short-period oscillations, but the
amplitude is very small and can be neglected.

Furthermore, a particle on a circular orbit around an oblate planet has
a non-zero osculating eccentricity e0 ∼ (3/2)J2(Rp/r)2. Indeed, the particle’s
eccentricity would be the osculating eccentricity if the oblateness were sud-
denly suppressed. The same problem arises with the semimajor axis: the
semi-major axis of a particle on a circular orbit around an oblate planet
would take the osculating value a0 ∼ r[1+ (3/2)J2(Rp/r)2] if the oblateness
were cancelled. For example, e0 ∼ 0.0045 and a0 ∼ 137,650 km, for a parti-
cle on a circular orbit around Saturn with a radius r =137,000 km, corre-
sponding to outer edge of the main rings. Thus the osculating semi-major
axis can be substantially different from the geometric radius of the orbit,
even if the difference is only relative (whereas it is absolute for the eccen-
tricity). Therefore the geometric elements are the suitable elements to use
when considering orbits of satellites (with small eccentricities and inclina-
tions) or ring particles around an oblate planet.

Theoretically, how are they defined these geometric elements? The
answer is in the epicyclic theory. This theory was initially introduced by
Chandrasekar in 1942 in stellar dynamics and deals with the almost cir-
cular and almost equatorial motions in an oblate (or prolate) potential. It
can be applied to planetary rings because all known rings have small incli-
nations and small eccentricities. The exact solutions of the equations of
motions are series expansion around circular equatorial orbits. The con-
stants arising from these series expansions are the epicyclic elements. The
theory also involves three basic frequencies which are the angular veloc-
ity of revolution on circular orbits, the horizontal epicyclic frequency κ,
which characterizes radial oscillations around the circular motion, and
the vertical epicyclic frequency ν, which characterizes vertical oscillations.
From the epicyclic elements we can introduce a new set of elements which
makes the epicyclic solution analogous to the more familiar elliptic one.
These new elements are the geometric elements. The reader will refer
to Borderies and Longaretti (1987), Longaretti and Borderies (1991) and
Borderies-Rappaport and Longaretti (1994) (hereafter referred to as BL94)
for a complete resolution of this problem.

In numerical simulations, the motion of a particle is often integrated
in a planet-centered and cartesian reference frame. Then, we must con-
vert the geometric elements into position-velocity vectors (state vector) in
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a planet-centered cartesian reference frame. This is necessary for instance
at the start time of an integration, when only the orbital elements are
known at a given epoch. Conversely, we need to convert the state vector
of the particle at a given time into geometric elements (as outputs of an
integration). The aim of this paper is to give these two sets of transforma-
tions (Sections 2 and 3) at a high level of accuracy, and the correspond-
ing numerical implementation. We have applied the results of BL94: the
transformations result from the epicyclic theory and are accurate to second
order in eccentricity and inclination.

This second order correction can be important in numerical simulations.
Let us consider, for instance, the outer shepherd moon for Saturn’s F ring,
Pandora. Due to a nearby 3:2 co-rotation eccentric resonance with Mimas,
Pandora’s semi-major axis vary by approximately ±1.5 km (French et al.,
2003). Such an effect cannot be detected in simulations, without taking
into account the second-order contributions in eccentricity and inclination.
Indeed, if we integrate the motion of Pandora alone (semi-major axis
a ∼141,700 km, eccentricity e∼4.5×10−3) and compute the geometric ele-
ments to first order only, then the semi-major axis vary by about ±10 km.

2. From Geometric Elements to State Vector

Consider a test particle moving around an oblate planet of mass Mp, radius
Rp, and zonal harmonic coefficients J2, J4 and J6.

At a given time, the test particle motion is defined by six geometric orbi-
tal elements a, e, I,�,�, and λ, where a denotes the semi-major axis, e the
eccentricity, I the inclination, � the longitude of ascending node, � the
longitude of periapsis and λ the mean longitude.

The mean longitude has no simple geometrical interpretation: it is
defined by λ = M + � = n(t − τ) + � = (2π/T )(t − τ) + � , where M, n, τ

and T are the mean anomaly, the mean motion, the time of passage at the
periapsis and the orbital period of the particle, respectively. The true lon-
gitude is defined by f +� , where f is the true anomaly.

In the remainder of this paper, r, L, z (resp. x, y, z) is an inertial cylin-
drical (resp. cartesian) system of coordinates tied to the planet axis and
plane of symmetry.

The transformation of the geometric elements into the state vector is
straightforward and results from the direct application of the formulae
(62–67) of BL94. In cylindrical coordinates, we have:
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r =a
[
1− e cos(λ−�)+ e2
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In cartesian coordinates, we have:

x = r cosL, (8)

y = r sin L, (9)

z= z, (10)

ẋ = ṙ cosL− rL̇ sin L, (11)

ẏ = ṙ sin L+ rL̇ cosL, (12)

ż= ż. (13)
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The formulae (2–7) are accurate to second order in eccentricity and
inclination. The terms κ, ν, η, χ , α1, α2 and α contain some derivatives
of the planetary potential and are homogeneous to frequencies. In par-
ticular, κ is the horizontal epicyclic frequency, which characterizes radial
oscillations around the circular motion (κ =n− �̇ where �̇ is the apsidal
precession rate of the test particle), and ν is the vertical epicyclic frequency,
which characterizes vertical oscillations (ν =n−�̇ where �̇ is the precession
rate of the ascending node). To second order in eccentricity and inclination,
the frequencies are given by:
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κ =
√

GMp

a3

[
1− 3

4

(Rp

a

)2
J2 + 45

16

(Rp

a

)4
J4 − 175

32

(Rp

a

)6
J6

− 9
32

(Rp

a

)4
J 2

2 + 135
64

(Rp

a

)6
J2J4 − 27

128

(Rp

a

)6
J 3

2

−9
(Rp

a

)2
J2I

2
]
, (15)

ν =
√

GMp

a3

[
1+ 9

4

(Rp

a

)2
J2 − 75

16

(Rp

a

)4
J4 + 245

32

(Rp

a

)6
J6

− 81
32

(Rp

a

)4
J 2

2 + 675
64

(Rp

a

)6
J2J4 + 729

128

(Rp

a

)6
J 3

2

+6
(Rp

a

)2
J2e

2 − 51
4

(Rp

a

)2
J2I

2
]
, (16)

η2 = GMp

a3

[
1−2

(Rp

a

)2
J2 + 75

8

(Rp

a

)4
J4 − 175

8

(Rp

a

)6
J6

]
, (17)

χ2 = GMp

a3

[
1+ 15

2

(Rp

a

)2
J2 − 175

8

(Rp

a

)4
J4 + 735

16

(Rp

a

)6
J6

]
, (18)
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All these frequencies reduce to the Keplerian mean motion
√

GMp/a3 if
the planet is spherical. The relations (14), (15), . . . , (21) correspond respec-
tively to (A10), (A12), (A11), (A4), (A5), (36), (37) and (38) of BL94.

Remark. There are misprints in the original paper (BL94): the last term
(proportional to I 2) in the right-hand side member of Equation (65) should
have a minus instead of a plus. In Equation (6), the second and third terms
in the right-hand side member should have a νa in the denominator instead
of a ν0. Here we have applied these corrections (where ν ≡ νa), see Equa-
tions (5) and (7).

3. From State Vector to Geometric Elements

Let v = (x, y, z, ẋ, ẏ, ż) be the state vector of the test particle in the
planet-centered cartesian reference frame (Oxyz). In cylindrical coordinates,
v = (r,L, z, ṙ, L̇, ż), where:

r =
√

x2 +y2, (22)

L=arctan(y/x), (23)

ṙ = ẋ cosL+ ẏ sin L, (24)

L̇= (−ẋ sin L+ ẏ cosL)/r. (25)

Note that the longitude L is defined on [0,2π ] whereas arctan(R) =
]−π/2, π/2[. Therefore, it must be modified in the following cases:

L=arctan(y/x)+π x <0, (26)

L=arctan(y/x)+2π arctan(y/x)<0, (27)

L=π/2 x =0 y >0, (28)

L=3π/2 x =0 y <0. (29)
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The transformations (2–7) can be written:
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ż=aIν cos(λ−�)+ żC, (35)
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We must derive the geometric orbital elements, knowing the position
and the velocity of the test particle, i.e. r, L, z, ṙ, L̇, ż. From (30–35) we
have:

a = r − rC

1− L̇− L̇C −n

2n

,
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√
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a
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We compute a, e, I , λ, � and � from the relations (42–47) by an iter-
ative method on the frequencies n, κ, ν, η and χ :

– first, we assume that a = r, e = I = 0 and that rC = LC = zC = ṙC = L̇C =
żC =0.

– We compute all the frequency values from (14–21), which yield new val-
ues for the geometric elements (42–47) and for rC , LC , zC , ṙC , L̇C , żC

(36–41).
Note that � and � must be modified in some cases, as in (26–29) for the
longitude L, since they are computed from the arctan function (46–47).

– Then we compute again the frequencies (14–24), the geometric elements
(42–47), the second order terms (36–41), and so on until the iteration
converges (this convergence is very fast).

– To stop the iteration and store the orbital elements, we introduce the
following simple test on the semi-major axis: |ai+1 − ai | < ε, where ε is
a prescribed small strictly positive parameter, and ai is the ith value of
the semi-major axis computed in the iteration.
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As required, the orbital elements derived are accurate to second order in
eccentricity and inclination. However, we can use an integral of the motion
(the vertical component of the angular momentum) to compute a more
accurate value for the semi-major axis.

Let Hz be the vertical angular momentum of the test particle, and r0 the
radius of the equatorial circular orbit around which the solution r, L, z is
expanded. We can always choose the radius r0 such that the vertical angu-
lar momentum of the solution Hz is equal to the angular momentum of the
equatorial circular orbit, i.e.:

Hz ≡xẏ −yẋ = r2
0 n0, (48)

where, considering terms up to and including J6, the mean motion n0

above is defined by:

n2
0 = GMp

r3
0

[
1+ 3

2

(Rp

r0

)2
J2 − 15

8

(Rp

r0

)4
J4 + 35

16

(Rp

r0

)6
J6

]
. (49)

The formula (49) is the relation (A3) of BL94. As explained in BL94
(see Equation 56), the geometric elements a, e, I and the radius r0 are
related by:

a = r0(1+ e2 + I 2) (50)

Therefore, for a given state vector of the test particle, we compute
iteratively the value of r0 using (48–49), and we deduce the semi-major
axis a from (50), using the values of e and I determined with the previous
iteration (42–47).

Remark. Let us suppose that we want to integrate numerically the motion
of a test particle with given orbital elements ap, ep, Ip, following the
numerical implementation proposed in this paper. Then, we must choose at
the start of the simulation a different initial semi-major axis ap ±c3, where
c3 is a third order correction term in eccentricity and inclination. Indeed,
the semi-major axis value, r0(1+ e2

p + I 2
p), computed during the integration

from the vertical angular momentum Hz (48–50), is initially different from
ap: the difference is of order three, since the transformations (2–7) that
convert initially the geometric elements into the state vector are accurate
to second order in eccentricity and inclination. The exact c3 value is deter-
mined numerically (see Section 4) and depends on the initial phases.
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4. Application

The orbital elements derived with our method are accurate for the descrip-
tion of the orbits of most of the planetary satellites and ring particles, with
typical eccentricities e∼0.001,0.01 and inclinations I ∼1◦ or less.

Here we consider a typical example. We use the mercury 6 integrator
package (Chambers, 1999), with a Bulirsch-Stoer algorithm, and an accu-
racy parameter δ=10−12, the relative error per step the algorithm tolerates.
The motion is integrated in cartesian coordinates in a reference frame cen-
tered on the central body.

We consider a test particle on an eccentric and inclined orbit around
Saturn, with a = 150,000 km, e = 0.01 and I = 0.5◦. The physical parame-
ters of Saturn (mass, radius and oblateness) are given in Table I (Campbell
and Anderson, 1989).

We assume that, initially, � = � = 90◦ and λ = 0. The integration time
is equal to the orbital period TORB = 0.6846 days of the test particle. The
particle is launched with the following initial value for the semi-major axis:
150,000.497 km. Thus, the mean value over one orbital period TORB for the
semi-major axis a, as derived from Equations (48–50), is equal to the pre-
scribed value of 150,000 km (see the Remark at the end of Section 3).

The variations of the orbital elements a, e, I , as calculated from Equa-
tions (48–50), (43) and (44), respectively, are presented in Figure 1. The
amplitudes of these variations are independent from the initial phases, and
are of order three in eccentricity and inclination. In particular, the max-
imum variation for the semi-major axis, as defined in Equation (50), is
here �a ∼ 40 m (Figure 1). If we derive a from the iteration (42–47),
then we obtain a maximum variation �a ∼ 1.5 km. This shows why we
deduce the semi-major axis from the vertical angular momentum, see
Equations (48–50). Furthermore, let us remark that if we do not take into
account the second order contributions in e and I , then �a ∼ 100 km for
the same orbit.

Short-period variations of the longitude of periapsis, the longitude of
ascending node or the mean longitude are extremely small and are not pre-
sented here.

TABLE I

Saturn’s physical parameters, from Campbell and Anderson (1989).

GMp (km3 s−2) Rp (km) J2 J4 J6

3.7931272×107 60330. 16298×10−6 −915×10−6 103×10−6



GEOMETRIC ELEMENTS IN NUMERICAL SIMULATIONS 247

Figure 1. Geometric semi-major axis a, eccentricity e and inclination I versus time (in
units of the orbital period TORB of the test particle). The other initial conditions are � =
� = 90◦ and λ = 0. The maximum variations for a, e and I are respectively �a = 3.9 ×
10−2 km, �e=1.2×10−5 and �I =1.6×10−6 rad. For comparison, if we compute the geo-
metric elements to first order in e and I only, the maximum variations for a, e and I

are respectively: �a =99.001 km, �e=8.7×10−4 and �I =1.8×10−4 rad.
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248 STÉFAN RENNER AND BRUNO SICARDY

Borderies-Rappaport, N. and Longaretti, P.-Y.: 1994, ‘Test particle motion around an oblate
planet’, Icarus 107, 129–141.

Campbell, J. K. and Anderson, J. D.: 1989, ‘Gravity field of the saturnian system from
Pioneer and Voyager tracking data’, AJ 97, 1485–1495.

Chambers, J. E.: 1999, ‘A hybrid symplectic integrator that permits close encounters between
massive bodies’, MNRAS 304, 793–799.

French, R. G., McGhee, C. A., Dones, L. and Lissauer, J. J.: 2003, ‘Saturn’s wayward
shepherds: the peregrinations of Prometheus and Pandora’, Icarus, 162, 143–170.

Longaretti, P.-Y. and Borderies, N.: 1991, ‘Streamline formalism and ring orbit determina-
tion’, Icarus 94, 165–170.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


