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Abstract. Contemporary surveys provide a huge number of detections of small solar
system bodies, mostly asteroids. Typically, the reported astrometry is not enough to com-
pute an orbit and/or perform an identification with an already discovered object. The
classical methods for preliminary orbit determination fail in such cases: a new approach
is necessary. When the observations are not enough to compute an orbit we represent the
data with an attributable (two angles and their time derivatives). The undetermined vari-
ables range and range rate span an admissible region of solar system orbits, which can
be sampled by a set of Virtual Asteroids (VAs) selected by an optimal triangulation. The
attributable results from a fit and has an uncertainty represented by a covariance matrix,
thus the predictions of future observations can be described by a quasi-product structure
(admissible region times confidence ellipsoid), which can be approximated by a triangu-
lation with each node surrounded by a confidence ellipsoid. The problem of identifying
two independent short arcs of observations has been solved. For each VA in the admis-
sible region of the first arc we consider prediction at the time of the second arc and the
corresponding covariance matrix, and we compare them with the attributable of the sec-
ond arc with its own covariance. By using the penalty (increase in the sum of squares,
as in the algorithms for identification) we select the VAs which can fit together both arcs
and compute a preliminary orbit. Even two attributables may not be enough to compute
an orbit with a convergent differential corrections algorithm. The preliminary orbits are
used as first guess for constrained differential corrections, providing solutions along the
Line Of Variations (LOV) which can be used as second generation VAs to further predict
the observations at the time of a third arc. In general the identification with a third arc
will ensure a least squares orbit, with uncertainty described by the covariance matrix.
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1. Introduction

The astrometric observations of a small body by themselves do not provide
an orbit for the observed body, thus do not provide information on the
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nature of the object (asteroid, comet, satellite, Transneptunian). The first
complete mathematical method to convert astrometry into orbits had been
established by Gauss (1809): he devised an algorithm to compute a pre-
liminary orbit satisfying three given observations in different nights. When
additional observations became available, Gauss proposed to correct the
preliminary orbit by solving a least squares problem. This method is now
called differential corrections, and this sequence, preliminary orbit followed
by least squares,1 is now the algorithm almost universally used and consid-
ered classic. At the time when the asteroids were detected as “intruders”
not found in star charts, the observations were indeed typically only one
per night, and the algorithms found by Gauss were the optimal solution
of the orbit determination problem. The fact is, the circumstances of the
observations of asteroids (and other small bodies) are now deeply changed:
the historical discovery procedure should not be conditioning our way of
thinking about orbit determination to be performed with modern data.

The number of asteroid observations has in recent years increased
dramatically, mostly because of the automated surveys like LINEAR,
LONEOS, Catalina, Spacewatch, NEAT. The procedures of operation of
these surveys are basically the same, although they can differ in details. A
number of images of the same area on the celestial sphere are taken over
a short time span, typically within a single night. The images are then dig-
itally blinked and all the changes from one to another logged. If an object
moves from image to image, at a constant rate and along a straight line,
this is probably the detection of a real body. The series of observations,
usually consisting of 3–5 positions over a time span 1–2 hours, are reported
as a sequence of individual observations of the same object (note that this
initial identification is done by the observer); we shall refer to this sequence
as a very short arc.

This method of work is optimal for the discovery of asteroids and com-
ets, but it is not suited for the determination of their orbits. In Gauss’
method for preliminary orbit determination the curvature of the arc on the
celestial sphere appears as divisor already in the first iteration. The smaller
the curvature, the less accurate the resulting orbit: taking also into account
the observational errors, often the standard algorithm fails to provide the
solution. Either the preliminary orbit cannot be determined at all, or it can
be computed, but the differential corrections do not converge. In such a
case, we speak of a Too Short Arc (TSA), by which we mean too short for

1In the modern orbit determination, the least squares solution is computed by solving
numerically the perturbed N-body problem, while Gauss was using the analytical solution
of the 2-body problem, but the spirit is not changed.
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orbit determination. The reported sequence of observations can be consid-
ered the detection of a moving object, rather than a discovery.

This situation is unsatisfactory, given the wealth of information con-
tained in these observations, which remains unused due to the failure of
the orbit determination procedure. Without an orbit, on the other hand,
we cannot determine what kind of body we are looking at, we can neither
compute an ephemeris for the later follow up observations, nor identify the
observed object with any other associated to a known orbit. We need to
establish a new paradigm for the process leading from astrometry to orbit
determination, working efficiently and reliably under the prevailing observ-
ing conditions of today.

Our goal is to develop the procedure which would allow to extract all
the existing information from the TSA, and to combine it with some plau-
sible assumptions about the nature of the motion of the detected body,
in order to get preliminary orbits. Our research plan consists of several
steps, of which three are completed (Milani et al., 2004, 2005a,b); these are
described in the present paper. The basic idea is as follows: a TSA com-
prises a number of observed positions with deviations from alignment com-
patible with a random observational error. We can fit a straight line to the
data and compute two average angular coordinates and their corresponding
average angular rates, assigning the results to the reference epoch (simple
mean of the observing times). We shall call such a set of data an attribut-
able.

Note that an attributable does not provide any information on the geo-
centric distance (range) of the body and its radial velocity (range rate) at
the reference time. However, the range and range rate are constrained if we
assume that the body belongs to the solar system, but that it is not a satel-
lite of the Earth. Hence we introduce a concept of admissible region, which
in our algorithm replaces the conventional confidence region as defined in
the classical orbit determination procedure. Such a region can be sampled
by virtual asteroids, and we can compute a sort of generalized ephemerides
which allow identification in the sense of attribution (Milani et al., 2001),
linking of two TSA’s and computation of preliminary orbit, detection of
virtual impactors, etc.

Our method represents an extension and important upgrade of the exist-
ing methods developed by Virtanen et al. (2001), by Tholen and Whiteley
(2003) and by Goldader and Alcock (2003). We introduced several sig-
nificant improvements making our method more efficient and reliable,
but we agree with these authors’ main conclusion that ephemerides pre-
diction is often possible, with an accuracy good enough e.g. for recov-
ery planning, even when the orbit cannot be computed in the usual
way.
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2. Definition of the Admissible Region

We assume that at time t an asteroid A with heliocentric position P is
observed from the Earth, which is at the same time in P⊕. Let (r, α, δ) be
spherical coordinates for the geocentric position P −P⊕.

DEFINITION 1. We shall call attributable a 4-dimensional vector A =
(α, δ, α̇, δ̇), observed at a time t .

Here t has to be interpreted as the mean of the observation times. The
angles (α, δ) can be specified as necessary: usually the geocentric equatorial
coordinates, right ascension and declination for the standard epoch J2000,
are used. Also, with the data contained in the observations we option-
ally can have another component of the attributable – an average appar-
ent magnitude h. Note that range and range rate (r, ṙ) are left completely
undetermined by this definition.

The conditions to constrain (r, ṙ) make use of the following well–known
quantities:

Heliocentric two-body energy

E�(r, ṙ)= 1
2
‖Ṗ ‖2 −k2 1

‖P ‖ , (1)

where k =0.01720209895 is Gauss’ constant;
Geocentric two-body energy

E⊕(r, ṙ)= 1
2
‖Ṗ − Ṗ⊕‖2 −k2µ⊕

1
‖P −P⊕‖ , (2)

where µ⊕ is the ratio (mass of the Earth)/(mass of the Sun);

Radius of the sphere of influence of the Earth

RSI =a⊕
(µ⊕

3

)1/3
=0.010044 AU ,

that is the distance from the Earth to the collinear Lagrangian point L2,
apart from terms of order µ

2/3
⊕ . Here a⊕ is the semimajor axis of the orbit

of the Earth;

Physical radius of the Earth

R⊕ �4.2×10−5 AU.
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The following four conditions make now obvious physical sense:

(A) D1 ={(r, ṙ) :E⊕ �0} (A is not a satellite of the Earth);
(B) D2 ={(r, ṙ) : r �RSI} (the orbit of A is not controlled by the Earth);
(C) D3 ={(r, ṙ) :E� �0} (A belongs to the solar system);
(D) D4 ={(r, ṙ) : r �R⊕} (A is outside the Earth).

DEFINITION 2. Given an attributable A, we define as admissible region the
domain

D={D1 ∪D2}∩D3 ∩D4 .

3. Borders of the Admissible Region

The multi-line border of the admissible region can be mathematically
described in a rigorous way. The procedures and all the results are
described in full detail in Milani et al. (2004).

The admissible region cannot have more than two connected compo-
nents. More precisely, the degree six polynomial resulting from condition
(C) cannot have more than three real positive roots: when there is only one
such root, the admissible region has only one component, when there are
three, it has two components (see Figures 1 and 2 in Milani et al., 2004).

The boundary of the admissible region consists of

1. part of the algebraic curve E� = 0. If the degree six polynomial has
three positive roots there is another component, a simple closed curve,
at larger values of r: this includes the case when this curve reduces to a
single point, if there is a double positive root;

2. two segments of the straight line r =R⊕;
3. two portions of the curve ṙ2 =G(r) (corresponding to E⊕ = 0) and one

segment of the straight line r =RSI if RSI <r0; if RSI � r0 the two por-
tions of the ṙ2 =G(r) are joined at r = r0.

Note that G(r) derives from condition (A):

ṙ2 � 2k2µ⊕
r

−η2r2 :=G(r),

where η is the proper motion and G(r)>0 for

0<r <r0 = 3

√
2k2µ⊕

η2
.
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Figure 1. Residuals in right ascension (above) and declination (below) with respect to the
fit of the observations of the asteroid 2004 SA1 taken by LINEAR on 14 January 2004.
The crosses represent the observations as reported, the continuous line is the best fitting
parabola, the dotted lines the confidence boundaries for the parabolic fit, the circles are
the observations “without astrometric error”, computed from a very well determined orbit
known a posteriori.

This result provides full analytical and topological description of the
admissible region. From the metric point of view, however, the definition
of the region is not entirely satisfactory, since the inner boundary might
be too close to the observer. Instead of condition (D), therefore, one can
set an upper limit for the absolute magnitude of the body to exclude very
small and very close objects of minor importance:

(E) the absolute magnitude H of the object is �Hmax.

The region defined by condition (E) is a half plane r � rH (the differ-
ence between the absolute and the observed apparent magnitude does not
depend on the range rate). As an example, if we set Hmax =25, correspond-
ing to a body which most likely would not result in a very significant
damage on the ground in case of impact, and the measured apparent mag-
nitude is �20, the resulting rH �0.01 AU.2

2For an accurate computation of rH the phase effect has to be taken into account.



FROM ASTROMETRY TO CELESTIAL MECHANICS 7

0 5 10 15 20 25
−25

−20

−15

−10

−5

0

5

x 10
−3

dr
/d

t, 
(A

U
/d

ay
)

r (AU)

Figure 2. Triangulation of the modified admissible region for the prediscovery observa-
tions of 2000 EC98. The cross marks the actual position, in the range, range rate plane,
of the Centaur, as determined a posteriori with additional observations.

Sometimes it is also desirable to limit the upper boundary of the admis-
sible region to exclude from consideration the long periodic comets with
large orbital semimajor axes a>amax =100AU; condition (C) in such a case
becomes (C100) E� � −k2/(2amax). If we apply these alternative conditions
(E) and (C100) in place of (C) and (D), we speak of the modified admissible
region.

4. Sampling the Admissible Region

Given a very short arc of observations and the corresponding attributa-
ble A0 = (α, δ, α̇, δ̇) at the mean observation time t , we need to represent
the uncertainty of the orbit, hence of the ephemerides, in a different way
with respect to the traditional method of covariance matrices and confi-
dence ellipsoids. This because a least square solution for the orbital ele-
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ments X, with its normal matrix C and covariance matrix �, is in general
not computable.

If the arc is very short, to the point that there is no significant infor-
mation on the curvature of the path on the celestial sphere, the values of
(r, ṙ) are not constrained by the observations. If, to the contrary, there is
significant curvature, this allows to constrain both the range and the range
rate (Danby, 1989, Ch. 6). Figure 1 shows a typical example of a set of
four observations spanning only one hour, for which the curvature is not
significant, that is less than the uncertainty resulting from the known per-
formance of the station (Carpino et al., 2003.)

Even without curvature information, if we assume the object belongs
to the solar system we can limit the uncertainty in the (r, ṙ) plane to the
admissible region. The (modified) admissible region is a compact subset of
the r > 0 half plane. However, this is still an infinite set, with a complex
shape, thus there are infinite possible orbits and we need to find efficient
ways to sample them with a finite number of points in the initial condi-
tions space, the Virtual Asteroids (VAs) sharing the reality of the object, in
the sense that the orbit through one of them is a good approximation of
the orbit of the real object, but we do not know which one.

This requires to sample the admissible region D with a number of
points. The most natural and geometrically significant way to sample a
2-dimensional region is a triangulation, with nodes and sides joining them.
Regions with simple boundaries (such as the r > 0 half plane) can be
triangulated by equilateral triangles, but the admissible region has a com-
plicated boundary. A Delaunay triangulation has a number of optimal prop-
erties, e.g., it is the triangulation with the largest minimum angle (among
all the triangles).

There is an efficient algorithm to compute a Delaunay triangulation,
starting from a finite sampling of the boundary. Thanks to the explicit
analytic description of the admissible region we can sample the boundary
with approximately uniform distances and compute a Delaunay triangula-
tion with the given nodes on the boundary. Then the nodes are selected as
points (ri, ṙi), i = 1,N sampling the admissible region, with the sides and
the triangles providing an additional geometric structure.3

As an example, from the prediscovery observations of the Centaur 2000
EC98 taken on February 5, 2000 (one month before the official “discovery”)
we have computed the attributable, the modified admissible region and its

3The properties defining the Delaunay triangulation are metric ones, thus the nodes
selected depend upon the choice of a metric. Different metrics can be used to enhance
the resolution in some portions of the admissible region, e.g., when the main goal is to
search for either NEO, or main belt asteroids, or TNO.
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Delaunay triangulation, shown in Figure 2. Note that in this case, as it is
common for Centaurs and Transneptunians, the admissible region has two
connected components and the real object is in the one farther from the
Earth.

The set of VAs selected is then

Xi =
(
α, δ, α̇, δ̇, ri, ṙi

)
, i =1,N.

The set of six coordinates forming the vector Xi = (α, δ, α̇, δ̇, ri, ṙi) can
be considered as a set of orbital elements.4 They can be converted into
Cartesian position and velocity (topocentric, then heliocentric since the
observer’s position is well known), as well as into other types of elements,
e.g., Keplerian.

To assess how representative are the set of orbital element vectors {Xi}
with respect to the full set of possible orbits we need to take into account
that even the measured part of the Xi vectors, that is the 4-dimensional
vector A0, has some uncertainty. The values of the angles and their rates
are computed by least square fit to a set of observations, thus their uncer-
tainty can be represented in the conventional way with a 4 × 4 covariance
matrix �A. If we assume the value of two variables (ri, ṙi), without uncer-
tainty, then the uncertainty of the 6-vector Xi is represented by the condi-
tional covariance matrix, a 6×6 matrix �X

�X =
[

�A 0
0 0

]

with 0 suitable matrices with null coefficients. This matrix is obviously not
positive-definite, but has the (r, ṙ) subspace as kernel (null space).

A geometric description of the confidence region for the orbits compat-
ible with the given attributable with uncertainty (A0,�A) can be given as
follows: for each point A of a confidence ellipsoid centered in A0 (in the
4-dimensional attributable space) we need to compute the admissible region
D(A). This gives as confidence region a subset of the 6-dimensional
elements space with a positive 6-dimensional volume. However, if the
attributable A0 is well determined, the confidence region is flattened, with
a two dimensional “base plate” {A0} × D(A0). This set is not exactly a
product (confidence ellipsoid × admissible region), because the confidence
region changes with the attributable; however, it is not very different from
a product and the set of VAs Xi, i = 1,N selected along {A0} × D(A0) is
quite representative.

4The epoch corresponding to the initial conditions is tj = t − rj /c, with c the speed
of light, to take into account the light travel time.
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5. Propagating to Another Epoch

Given a triangulation Bi, i = 1,N , each (Xi,�X) is an orbital element set
with uncertainty.

If these elements are converted into other coordinates Y , such as
Keplerian elements, and propagated (nonlinearly) to some later epoch t1,
the covariance matrix can be propagated (linearly) to a new one �Y (t1).
The fact that the covariance matrix �X is not invertible does not mat-
ter, but of course �Y (t1) will also have a 2-dimensional kernel. Then it
is possible to compute the predicted attributable (for observation time t1)
with uncertainty (Ai,�Ai ) for each node. The ephemerides (with confidence
ellipse) computed in the conventional case of a well determined orbit are
thus replaced by the union of N confidence ellipsoids, one for each VA, in
the 4-dimensional space of the attributables A′ at the new epoch.

If another very short arc of observations is available at the second
epoch, its attributable with uncertainty (A1,�A1) can be compared with the
predictions for each VA. As an example, for the same asteroid of Figure 2,
we have computed the attributable A1 corresponding to the official discov-
ery observations of March 3–4, 2000: Figures 3 and 4 show the predic-
tions Ai for the same attributable, computed by using only the data of
February 5.

Both in angles and in proper motion the predictions can be good
enough for pointing the telescope and to discriminate this object from oth-
ers in the same fields, that is by using the triangulation technique the “dis-
covery” could have been a targeted recovery. Note that the uncertainty
arises from two mathematically very different sources: the span of the
admissible region, and the confidence ellipsoids. In this example, if only
the connected component farther from the Earth is considered the span of
the predictions from the different VA selected in the admissible region is
small, while the size of the ellipsoid is the main error term. On the con-
trary the other connected component would give predictions for the differ-
ent VAs spread over a large part of the sky, none of them close to the
recovery observations. This means that a targeted recovery after one month
was possible only assuming that the object was on an orbit beyond Jupiter,
an assumption which was by no means obvious given the available data.

6. Identification and Preliminary Orbits

When using the data from surveys, the correspondence between the very
short arcs of observations and the physically distinct objects is not known.
This is the problem of asteroid identification. Since the arcs are too short,



FROM ASTROMETRY TO CELESTIAL MECHANICS 11

−168 −167 −166 −165 −164 −163 −162

4.5

5

5.5

6

6.5

7

7.5

8

Negative Right Ascension, degrees

D
ec

lin
at

io
n,

 d
eg

re
es

Figure 3. Prediction (propagated triangulation) for the observations of March 3–4, 2000
based only on the prediscovery observations of February 5, projected on the (α, δ) plane.
The confidence ellipses are also drawn, but the uncertainty of the prediction is dominated
by the unknown location on the (r, ṙ) plane at the time of the prediscovery attributable.

more than one TSA needs to be used to constrain the orbit, to be able to
obtain a least squares solution. However, how do we know whether two
TSAs belong to the same object, having an orbit for neither one of the
two?

An algorithm has been defined (Milani et al., 2001) to decide whether
two arcs of observations are to be identified, provided that an orbit is
available (for at least one of the two) with its uncertainty, represented
by a covariance matrix: this case of identification is called an attribution,
hence the term attributable. When both observed arcs are TSA, the only
available orbits are the ones of the VA defined by the triangulation of the
admissible region of the first attributable.5

The predicted attributable with uncertainty (Ai,�Ai ) is computed for
each node and it is compared with the attributable computed from the

5Of course it is also possible to triangulate the admissible region of the second attrib-
utable: the algorithm is not invariant by exchanging the two observed arcs.



12 ANDREA MILANI AND ZORAN KNEŽEVIĆ
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Figure 4. Detail of the previous figure, showing only the predictions from the nodes
belonging to the second connected component of the admissible region, the one farther
from the Earth. For this subset of VAs, the uncertainty is dominated by the uncertainty
of the attributable, as expressed by its covariance matrix and represented here by the con-
fidence ellipses. The recovery attributable as observed is labeled by the letter R.

observations of the second arc (A1,�A1). By means of the normal matrices

CAi = [�Ai ]−1 , CA1 = [
�A1

]−1

the attribution penalty Ki is computed as

Ci
1 =CAi +CA1,

C =CAi −CAi

[
Ci

1

]−1
CAi =CA1 −CA1

[
Ci

1

]−1
CA1,

Ki � 1
2

[
Ai −A1

]T
C

[
Ai −A1

]
.

If the attribution penalty Ki is low for some VA index i, then the two
attributables A0 and A1 may belong to the same object. If this is the case,
we need a preliminary orbit to be used as first guess to start the differential
correction procedure. One possibility is to use Xi as the preliminary orbit,
but there are ways to define a better one, taking into account that an opti-
mal “compromise” attributable between the predicted Ai and the observed
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A1 is provided by the algorithms of Milani et al. (2001, 2005b, submitted):

Ai
1 = [

Ci
1

]−1
(CA1 A1 +CAi Ai).

This algorithm has a geometrical interpretation in terms of intersections of
the two families of confidence ellipsoids.

At this stage, the identification between the two attributables can only
be hypothetical. The values of the attribution penalty to be considered
acceptable cannot be very small, because the minimum of the values of Ki

for i =1,N is not the same as the minimum for all possible choices of (r, ṙ)

in D(A0): the finite sampling implies an increase of the penalty with respect
to the minimum possible. As a result, acceptable values may occur also for
couples of attributables which either cannot be fit together, or would give
large residuals.

The procedure outlined in this section has to be interpreted just as
a step of a multi-stage filtering process to select the proposed identifica-
tions, to be confirmed by finding an orbit fitting both sets of observations
according to the least square principle.

7. Constrained Differential Corrections

When only two very short arcs are available the classical differential correc-
tion procedure, starting from a rough preliminary orbit, may not converge.
Even if it converges to a nominal least squares solution, the latter may be
poorly determined and may a posteriori turn out to be very far from the
true orbit. A good strategy is to seek for a Line Of Variations (LOV) orbit,
by means of a constrained differential corrections algorithm (Milani et al.,
2005a).

At a point X in the elements space (at an epoch near the observa-
tions) the orbit determination has a weak direction V1(X), corresponding to
the long axis of the confidence ellipsoid computed with the normal matrix
C(X). The point X is on the LOV if the cost function Q restricted to the
hyperplane H(X) normal to the weak direction V1(X) has a local mini-
mum. The differential corrections can be constrained to corrections lying
on the hyperplane H(X). If the iterations converge, then the limit point is
on the LOV (Milani et al., 2005a). In other words, the constrained differ-
ential corrections are attempting to find a five parameter solution, with
the assumed variable along the weak direction. It is often the case, when
there are few data, that constrained differential corrections converge, but
full differential corrections do not.
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This procedure is very effective when combined with the computation of
preliminary identification orbits described in the Section 6. For the same
example of the previous Figures, namely the attributables formed with the
prediscovery data of February 5, 2000 and with the discovery data of
March 3–4 for the Centaur 2000 EC98, we have selected the 5 VAs with√

Ki �6, corresponding to the nodes 4, 15 and 25–27 of the triangulation,
computed the preliminary orbits and used them to start the constrained
differential corrections.

The LOV is represented by a straight line segment on the (r, ṙ) plane of
the first attributable in Figure 5, with the 5 LOV solutions labeled with the
node indexes. Note that 3 out of the 5 LOV solutions are outside the admissible
region, and indeed they are hyperbolic; nevertheless, one of the elliptic solutions
(number 4) is quite close to the “true” solution (as determined a posteriori with
additional observations), which is marked with a crossed square.
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Figure 5. Identification of the discovery observations (March 3–4, 2000) with the prelim-
inary orbits based upon the February 5 prediscovery observations. The sides of the tri-
angulation joining nodes with identification penalty �36 are marked with a full line, the
others are dotted. The true solution is marked with a crossed square.
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In this case the attempt to compute a nominal solution, even start-
ing from a comparatively good guess (such as the LOV point number 4),
fails. However, the two elliptic solutions (in particular number 4) are good
enough to compute useful predictions, allowing identification with addi-
tional observations, as described in the next Section.

8. From Multiple Solutions to the Nominal Orbit

When a third very short arc is available, the observations can be compared
with the predictions resulting from the LOV solutions. As an example, from
LOV solution number 4 of Figure 5 we have computed the predictions for
an observation of 2000 EC98 on April 4, 2000. The confidence region is not
small, although it is narrow.

The attribution of this observation to one of the LOV orbits com-
puted as described in the Section 7 is quite obvious. Differential corrections
provide an orbit fitting the three very short arcs with a normalized RMS of 0.35.
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Figure 6. Confidence ellipse on the (α, δ) residuals plane for a recovery observation of
2000 EC98 on 4 April 2000, computed by using one of the LOV solutions based upon
the observations of February 5 and March 3–4. The cross is the recovery observation.
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The orbit is still not tightly constrained by the observations, e.g., the semimajor
axis is 11.3±0.8 AU, the eccentricity 0.33±0.15, but the confidence ellipsoid is
still a reasonably accurate description of the uncertainty region. As this exam-
ple shows, the attribution of additional observations becomes easier and easier
as more short arcs are available. After three short arcs have been fitted, the orbit
determination procedure can follow the classical paradigm, with step by step
improvements obtained by full differential corrections.

This could be the new paradigm, replacing the classical one (Gauss’ pre-
liminary orbit from three observations followed by full differential correc-
tions). First, the attributables are computed by fitting the observations of
the available very short arcs. Let us suppose three attributables belonging
to the same object are available: the steps leading to the orbit determina-
tion are the following:

1. The admissible region of the first attributable is computed and sampled
by a Delaunay triangulation, providing a set of VAs.

2. The predictions for the time of the second arc, computed from the VAs
of the first, are compared with the second arc attributable.

3. For the VAs such that the attribution penalty (with the second attribut-
able) is low a preliminary orbit is computed.

4. The above preliminary orbits are used as first guess in constrained
differential corrections, providing, when there is convergence, LOV solu-
tions fitting both very short arcs.

5. The LOV orbits are propagated and the predictions are compared with
the attributable of the third arc.

6. For the LOV orbits such that the attribution penalty (with the third
attributable) is low full differential corrections are used to check the
attribution.

7. The orbit resulting from the fit to three very short arcs is used with
its covariance, as in the classical procedure, for additional attributions
when more observations are available.

In this way the orbit progresses from the stage in which there is an
essentially 2-dimensional indetermination (steps 1–3), to a 1-dimensional
indetermination (steps 4, 5), to a single nominal least squares solution
(steps 6, 7).

9. Conclusions and Future Work

The new procedure, as described in the previous Section, has been rigor-
ously defined, but to test it for reliability and efficiency in processing a
large data set of astrometric observations is quite another matter.
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Indeed the preceding discussion does not clearly indicate the main diffi-
culty, namely, the false identifications. The problem to be solved is by
no means to find an orbit fitting three very short arcs of observations,
known to belong to the same object. If this was the case, by selecting one
observation from each arc we could use Gauss’ preliminary orbit method,
then proceed with the classical paradigm. The problem is to compute �N

orbits, given �N very short arcs in each one of three separate nights cov-
ering the same (large) region in the sky: for the current surveys, the num-
ber N is of the order of a few thousands, for the next generation surveys
N > 100,000. It is computationally impossible to proceed, for each triple
formed with one arc per each night, with the classical orbit determina-
tion procedure6. Thus we need to apply the most computationally intensive
tests, such as the differential corrections, to a very small subset of the set
of all triples.

The challenge is to define a sequence of filtering stages, with increasing
computational load and screening a decreasing number of couples/triples
of arcs. Of the steps listed in the previous Section, the ones with com-
putational load linear in N , such as step 1, are not a problem. Step 2 is
quadratic in N and requires a very efficient use of the orbit propagator,
possibly a simplified one. Step 3 is quadratic, but simple; it should pro-
vide a number of couples candidate for identification by far smaller than
N2, because step 4 is the most computationally intensive. Steps 5 and 6
are expensive, but they should be performed only on the confirmed cou-
ples. Step 7 needs to be performed only on the confirmed triples. All this
would be inefficient if the number of spurious identifications resulting from
steps 2–4 was large.

To test the algorithms of the new paradigm, and especially the global
data flow and computational load, we need to use first simulated data.
Real data are affected by too many errors and we can not know which
identifications remain to be found. In a simulation, we have a “ground
truth”, that is the catalog of objects used as input, thus we can exactly
compute the level of completeness of a set of identifications obtained with
a given procedure, and also the fraction of false identifications. By training
our algorithms with the simulation test cases we can select the most effi-
cient sequence of operations and the best values for the control parameters.
After this, we have to test on real data.

So far the individual steps have been tested on both simulated and real
data, but the full procedure has been tested only on comparatively small
simulations. The next stages of our work will include testing on full scale

6For � 1015 preliminary orbits and a similar number of differential corrections, the
CPU time with a current processor would be between 1012 and 1013 s.
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simulations of the next generation surveys, and on the real data of the cur-
rent surveys. Only after these tests are successfully concluded we will be
able to claim we have established a new paradigm for the conversion of
astrometric data into catalogs of orbits, and a new link between astrometry
and celestial mechanics.
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