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Abstract. We consider the plane restricted elliptic 3 body problem with small mass ratio
and small eccentricity and prove the existence of many periodic orbits shadowing chains
of collision orbits of the Kepler problem. Such periodic orbits were first studied by Poin-
caré for the non-restricted 3 body problem. Poincaré called them second species solutions.
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1. Introduction

Suppose the Sun of mass 1, Jupiter of mass µ�1 and an Asteroid of neg-
ligible mass move in R

2. The Asteroid does not influence the motion of the
Sun and Jupiter. Then Jupiter’s and Sun’s orbits are ellipses with foci at 0
and eccentricity ε ∈ (0,1). We normalize the variables in such a way that
the period of motion equals 2π . Then by Kepler’s law the major semiax-
is of Jupiter’s orbit is (1 +µ)−1/3. Jupiter’s position u(t,µ, ε) is a 2π -peri-
odic function of time t ∈T=R/2πZ depending analytically on the parame-
ters µ, ε. The elliptic restricted 3-body problem describing the motion of the
Asteroid has the Hamiltonian

H(p,q, t,µ, ε)= |p|2
2

− 1
|q+µu(t,µ, ε)| − µ

|q−u(t,µ, ε)| , p, q ∈R
2.

(1.1)

For µ= 0 Jupiter disappears and Hamiltonian (1.1) describes the Kepler
problem Sun–Asteroid:

H0(p, q)= |p|2
2

− 1
|q| . (1.2)
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It has integrals of energy H0 =E and angular momentum G. For E<0 and
G �= 0 orbits of the Kepler problem are ellipses with major semi axis and
eccentricity

a=− 1
2E
, e=

√
1+2EG2. (1.3)

Jupiter’s orbit u(t)= u(t,0, ε) is an ellipse with eccentricity ε and major
semi axis 1.

For small µ> 0 orbits of the elliptic 3 body problem (1.1) are close to
the orbits of the Kepler problem (1.2), because Jupiter’s influence is small.
However, when the Asteroid comes near Jupiter, Jupiter’s gravitational
force ceases to be small. Very close to Jupiter, Sun’s influence becomes neg-
ligible, and the orbit of the Asteroid will be close to a hyperbolic orbit
of the Kepler problem Jupiter–Asteroid. After interacting with Jupiter, the
Asteroid exits its neighborhood, and then moves again along almost Kep-
ler orbit, till the next almost collision with Jupiter. Such an almost colli-
sion orbit of the Asteroid shadows a chain σ = (γi)

n
i=1 of collision orbits

γi : [ti−1, ti ]→R
2 \{0} of the Kepler problem Sun–Asteroid: γi(ti−1)=u(ti−1),

γ (ti)=u(ti) and γi(t) �=u(t) for ti−1<t <ti .
Periodic almost collision orbits were first considered by Poincaré who

named them second species solutions. Poincaré claimed the existence of such
solutions shadowing a 2-chain of collision orbits for the general 3 body
problem, but did not provide a complete proof. In fact making the argu-
ment rigorous is not easy due to a singular nature of the perturbation.
Non-periodic almost collision orbits were used by Alexeev (1970) and oth-
ers to study capture in the 3 body problem.

For ε= 0 Jupiter’s orbit is a circle. Then we obtain the circular 3 body
problem with Hamiltonian H 0. It is autonomous in the rotating coordinate
frame, where Sun and Jupiter are fixed, and hence has Jacobi’s integral h=
H 0 −G, where G is the angular momentum with respect to 0. Sometimes
Jacobi’s constant −2h is used, but we prefer to use the relative Hamilto-
nian h.

For the circular 3 body problem, second species periodic orbits with
given Jacobi’s integral h were studied e.g. by Henon (1977), Perko (1981),
Bruno (1990), Gomez and Olle (1991). These orbits are periodic in the
rotating coordinate frame and quasiperiodic in the fixed coordinate frame.
They may exist for Jacobi’s integral h∈ (−3/2,

√
2), when there are Kepler

ellipses with E−G=h crossing Jupiter’s orbit which is the unit circle. The
corresponding values of angular momentum G lie in (2 − √

4h+6,−h).
Marko and Niderman (1995) proved the existence of second species peri-
odic orbits shadowing a symmetric chain of two collision orbits w with
mathematical level of rigor.
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Bolotin and MacKay (2000) proved the existence of an infinite num-
ber of periodic (in the rotating coordinate frame) and chaotic almost colli-
sion orbits for the circular 3 body problem for any h∈ (−3/2,

√
2) by using

variational methods. In the rotating coordinate frame, there exist infinitely
many Kepler collision orbits {γk}k∈K , with Jacobi’s integral Ek−Gk=h and
the set of angular momenta {Gk}k∈K dense in (2−√

4h+6,−h), such that
for any finite set L⊂K, sufficiently small µ>0 and any chain σ = (γki )i∈Z

of collision orbits with ki ∈L, there exists a unique (up to time translation)
almost collision orbit γ of the circular 3 body problem with Jacobi’s inte-
gral H 0 −G= h which is O(µ)-shadowing (up to time reparametrization)
the chain σ . These orbits form a hyperbolic invariant set with Lyapunov
exponents of order | ln µ|. A hyperbolic invariant set was constructed also
by Font et al. (2002). If the sequence (ki)i∈Z is periodic, then γ is periodic.

Second species periodic orbits of the elliptic 3 body problem were pre-
viously studied by Gomez and Olle (1991). The goal of the present paper
is to describe second species periodic orbits of the elliptic 3 body problem
with small eccentricity ε ∈ (0,1). These solutions are periodic with respect
to the fixed coordinate frame, and their period is an integer multiple of
2π . Our results are similar to the results of (Bolotin and MacKay 2000)
for the circular 3 body problem, but we consider only periodic collision
chains. It turns out that the proofs for the elliptic problem are consider-
ably harder. The method can provide also chaotic almost collision shadow-
ing orbits which will be studied in a subsequent paper.

2. Main Results

To give conditions which allow us to shadow a chain of collision orbits of
the Kepler problem we need to introduce some notation.

Set µ= 0 and let u(t)=u(t,0, ε) be Jupiter’s orbit. Let � be the set of
C1 collision curves γ : [t0, t1] → R

2 \ {0} such that γ (t0)=u(t0), γ (t1)=u(t1)
and γ (t) �= u(t) for t ∈ (t0, t1). We identify � with an open set in �× R

2,
where �⊂C1([0,1],R2) is the set of loops at 0, via the reparametrization

γ �→ (γ̂ , t0, t1), γ (t)= γ̂ ((t− t0)/(t1 − t0))+u(t). (2.1)

If γ is a collision orbit of the Kepler problem, then it is a critical point of
Hamilton’s action

A(γ )=
∫ t1

t0

(
1
2
|γ̇ (t)|2 + 1

|γ (t)|
)

dt (2.2)

on the set of curves in � with fixed end points. We say that γ is
non-degenerate if it is a non-degenerate critical point, i.e. time moments
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t0, t1 are not conjugate along γ . If we allow variations of t0, t1, then by the
first variation formula,

dA(γ )= (p dq−H0 dt)
∣∣t1
t0

=h(γ̇ (t0), t0)dt0 −h(γ̇ (t1), t1)dt1, (2.3)

where

h(p, t)=H0(p,u(t))−p · u̇(t)= 1
2
|p− u̇(t)|2 − 1

2
|u̇(t)|2 − 1

|u(t)| (2.4)

is the energy relative to Jupiter at the collision.
Fix m,n∈ N. Let �=�nm be the set of all 2πm-periodic n-chains σ =

(γi)
n
i=1 ∈�n of collision curves γi : [ti−1, ti ] → R

2 \ {0}, where t0<t1< · · ·<tn
and tn = t0 + 2πm. The time moments t1 < · · ·< tn are not fixed: they are
independent variables in �. By reparametrization (2.1), we identify � with
an open set in �n×R

n.
Define the action functional on � by A(σ)=∑n

i=1A(γi). If σ is a criti-
cal point of A, then each γi is a collision orbit of the Kepler problem and
by (2.3),

dA(σ)=
n∑

i=1

(h(p−
i , ti)−h(p+

i , ti))dti =0,

where p+
i = γ̇i−1(ti) and p−

i = γ̇i(ti). Hence

h(p−
i , ti)=h(p+

i , ti)=hi. (2.5)

Equivalently, |v+
i |= |v−

i |, where v±
i =p±

i − u̇(ti) are relative collision veloci-
ties.

We call σ ∈� a non-degenerate periodic collision chain if σ is a non-
degenerate critical point of the functional A and satisfies the changing
direction condition: v+

i �=±v−
i for i=1, . . . , n.

Remark. Collision chains are break solutions of Kepler’s problem (1.2), and
they depend on Jupiter only through velocity changes at times ti . Then
solutions undergo elastic reflections from Jupiter.

THEOREM 2.1. For any non-degenerate periodic collision chain σ = (γi)ni=1
of the Kepler problem there exists µ0> 0 such that for all µ∈ (0,µ0) there
exists a unique 2πm-periodic orbit γ : R → R

2 \ {0} of the elliptic 3 body
problem which is O(µ)-shadowing the chain σ and avoids collisions with Jupi-
ter. More precisely, there exist constants a, b>0 independent of µ such that

|γ (t)−u(t,µ, ε)|�aµ, |γ (t)−γi(t)|�bµ for ti−1 � t� ti . (2.6)
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The proof is given in (Bolotin 2006). Theorem 2.1 holds for systems more
general than the elliptic 3 body problem. What is important is the presence
of a small Newtonian singularity in the potential. However, we do not dis-
cuss such generalizations here.

Formally, the assertion of Theorem 2.1 holds also for 1-chains consist-
ing of one collision orbit γ : [t0, t1] → R

2 \ {0} with t1 − t0 = 2πm. How-
ever, all 1-chains are degenerate, because the action of an elliptic orbit is
a function of period only. Note that for the circular 3 body problem, there
are many non-degenerate 1-chains, because the notion of non-degeneracy is
different (Bolotin and MacKay 2000).

The goal of the present paper is to prove the following:

THEOREM 2.2. For any h∈ (−3/2,
√

2) there is a dense set {Gk}k∈L(h) in
(2 − √

4h+6,−h) such that for any N � 2, any sequence (ki)Ni=1 with1 ki ∈
L(h) and ki−1 �=ki for i=1, . . . ,N , and any sequence (li)Ni=1 of positive inte-
gers with sufficiently large

∑N
i=1 li , there exists an integer sequence (mi)Ni=1,

|mj − lj |� 1, such that for sufficiently small ε > 0 the Kepler problem has 2
non-degenerate periodic collision n-chains σ± of the form

γ11 . . . γ1m1︸ ︷︷ ︸
m1

. . . γi1 . . . γimi︸ ︷︷ ︸
mi

. . . γN1 . . . γNmN︸ ︷︷ ︸
mN

, n=
N∑

i=1

mi, (2.7)

where γij is an elliptic collision orbit with angular momentum Gij and energy
Eij which are O(ε,n−1)-close to Gki and Eki =h−Gki , respectively.

Each collision orbit γij performs several rotations along a Kepler ellipse
with major semiaxis and eccentricity given by (1.3), where E=Eij and G=
Gij . In fact the proof gives more information which we dropped to simplify
the formulation. Theorems 2.1 and 2.2 imply:

COROLLARY 2.1. For small µ>0, there exist periodic orbits γ± of the ellip-
tic 3 body problem which are O(µ)-shadowing collision the chains σ± in The-
orem 2.2. Poincaré’s multipliers2 of γ± have the form α±, α−1

± , β±, β−1
± , where

α± = ea±
√±ε+O(µ,ε), β± =b±µ−1 +O(ε,µ), a±, b± �=0.

The property of the multipliers follows from Theorem 4.3 and Proposition
3.1. Thus γ− has a pair of multipliers on the unit circle, and the other on
the real line. All multipliers of γ+ are real.

1We set k0 =kN .
2Multipliers are eigenvalues of the monodromy map.
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A drawback of Theorem 2.1 is that µ0 depends on the collision chain
σ . Hence for fixed µ we are unable to conclude the existence of an infi-
nite number of periodic orbits of the elliptic 3 body problem. In fact they
exist, but to show this we need a uniform version of Theorem 2.1 which
is proved in (Bolotin 2006). To apply this result, we need also a uniform
version of Theorem 2.2. We will prove this version in a subsequent paper.
It gives periodic and chaotic collision chains with certain hyperbolicity, so
the infinite set of periodic shadowing orbits we will get are hyperbolic. On
the other hand, half of the periodic orbits given by Theorems 2.1 and 2.2
are linearly stable in some directions. For applications one has to estimate
how small ε,µ need to be, but we do not address this problem in the pres-
ent paper.

Remark. One may hope to find almost collision periodic orbits of the ellip-
tic 3 body problem with small eccentricity ε by perturbing the periodic
orbits with given Jacobi’s integral h ∈ (−3/2,

√
2) found by Marco and

Niderman (1995) and Bolotin and Mackay (2000) for the circular 3 body
problem. They are periodic with respect to the rotating coordinate frame
with period T (h). If T (h)/2π is rational, these orbits are periodic with
respect to the fixed frame, and they fill a 2-torus in the extended phase
space R

4 × T. As shown by Poincaré, for 0<ε�µ such torus generically
disintegrates into a pair of periodic solutions. However for fixed ε >0 and
small µ such approach does not work. Hence it seems impossible to obtain
our results by using similar results for the circular problem.

In the next section we reformulate the definition of a non-degenerate
collision chain and show that such chains correspond to non-degenerate
periodic orbits of sequences of twist maps of annuli. Then we give suffi-
cient conditions for the existence of such orbits for sequences of almost
integrable twist maps. Lastly, we check that these conditions hold for twist
maps arising from the Kepler problem with small eccentricity and deduce
Theorem 2.2.

3. Twist Maps Reformulation of the Non-degeneracy Condition

In the remaining part of the paper we set µ=0. The eccentricity ε >0 will
be fixed so we do not show it in the notation.

Let 
 ⊂ � be the set of all non-degenerate collision orbits γ : [t0, t1] →
R

2 \ {0} of Kepler’s problem. Then 
 is a 2-dimensional manifold and the
projection π : 
 → R

2, π(γ ) = (t0, t1), is a local diffeomorphism. Hence

 has an open covering {
k}k∈K such that πk = π |
k : 
k → Uk ⊂ R

2 is a
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diffeomorphism. Without loss of generality we assume that the sets Uk are
invariant under the translation (t0, t1) �→ (t0 +2π, t1 +2π).

For (t0, t1)∈Uk let

v−
k (t0, t1)= γ̇ (t0)− u̇(t0), v+

k (t0, t1)= γ̇ (t1)− u̇(t1) (3.1)

be the relative collision velocities of the collision orbit γ =π−1
k (t0, t1)∈
k,

and let

Sk(t0, t1)=A(γ ) (3.2)

be the action (2.2). By (2.3),

D1Sk(t0, t1)=h(γ̇ (t0), t0), D2Sk(t0, t1)=−h(γ̇ (t1), t1), (3.3)

where Di is ith partial derivative.
Let K be the index set for the covering {
k}k∈K . Fix n,m∈N and for a

sequence k = (ki)ni=1 ∈Kn let

Xk ={t = (ti)ni=1 : (ti−1, ti)∈Uki for i=1, . . . , n}, tn= t0 +2πm.

We identify points of Xk which differ by a translation (ti) �→ (ti + 2π).
Define a function Ak on Xk by

Ak(t)=
n∑

i=1

Ski (ti−1, ti). (3.4)

If σ = (γi)
n
i=1, γi : [ti−1, ti ] → R

2 \ {0}, is a non-degenerate periodic colli-
sion chain, then γi ∈
ki for some (maybe non-unique) sequence k. Then
t = (ti)ni=1 ∈Xk is a non-degenerate critical point of Ak. The relative Ham-
iltonian (2.5) at the collisions is given by (3.3):

hi =−D2Ski (ti−1, ti)=D1Ski+1(ti, ti+1). (3.5)

Conversely, a non-degenerate critical point t of Ak satisfying the changing
direction condition

v+
ki
(ti−1, ti) �=±v−

ki+1
(ti, ti+1), i=1, . . . , n, (3.6)

defines a non-degenerate collision chain σ = (γi)ni=1, γi =π−1
ki
(ti−1, ti).

Remark. The assertion of Theorem 2.1 holds also if t is a topologically
non-degenerate critical point of Ak, e.g. if the degree of gradAk at t is non-
zero. The only difference is that the shadowing orbit is non-unique in gen-
eral, and there is no O(µ)-estimate (2.6) for the shadowing distance.
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Next we reformulate the non-degeneracy condition in the language of
twist maps. We do not assume that the functions Sk are necessarily related
to the Kepler problem. In what follows {Sk}k∈K are some generic C2 func-
tions on closures of open sets Uk ⊂R

2, invariant under the 2π -translation.
We will come back to the Kepler problem later on.

Suppose that {Sk}k∈K satisfy the twist condition:

D12Sk(t0, t1) �=0 for (t0, t1)∈Uk. (3.7)

In general the twist condition may not hold in the whole Uk, and we have
to cut it in smaller pieces. For simplicity we assume that Ik(t0)= {t1 − t0 :
(t0, t1)∈Uk} is a non-empty interval of length less than 2π for each t0. This
holds in our application.

Let Ũk be the quotient of Uk under the translation (t0, t1) �→ (t0 +2π, t1 +
2π), and let A=T×R be the annulus. The map gk: Ũk → A given by

gk(t0, t1)= (t0, h0), h0 =D1Sk(t0, t1)

is a diffeomorphism of Ũk onto the annulus Vk = gk(Ũk). Define the map
fk: Vk → A by fk(t0, h0)= (t1, h1), where

(t0, t1)=g−1
k (t0, h0), h1 =−D2Sk(t0, t1). (3.8)

The symplectic map fk is called a twist map with the generating function
Sk. Since the closure of Ũk is compact, the twist condition is uniform in
Uk. Hence fk can be extended to a twist map of a neighborhood of V k in
A.

Let k = (ki)ni=1. A critical point t = (ti)ni=1 ∈Xk of Ak defines a sequence
x= (xi)n−1

i=0 , xi = (ti, hi)∈Vki+1 , where hi is given by (3.5). Then xi =fki (xi−1)

for i = 1, . . . , n. Hence x is a periodic orbit of a sequence fk1, . . . , fkn of
twist maps, and x0 is a fixed point of the composition fk = fkn ◦ · · · ◦ fk1 .
The orbit x defines t modulo 2π -translations.

The following result is well known for periodic orbits of twist maps
(MacKay and Meiss 1983; Kozlov and Treschev 1991), and of course holds
also for their random compositions.

LEMMA 3.1. A sequence t= (ti)ni=1 ∈Xk is a non-degenerate critical point of
Ak iff the corresponding fixed point x0 of fk is non-degenerate:

det(f ′
k(x0)− I ) �=0. (3.9)

Moreover

det(f ′
k(x0)− I )=−det(A′′

k(t))
n∏

i=1

(−D12Ski (ti−1, ti))
−1. (3.10)
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Condition (3.9) often holds even when each map fk is completely integrable
and hence has no non-degenerate periodic orbits, (see Section 4). In fact a
composition of completely integrable maps is generically chaotic.

Equation (3.10) gives a relation between the Morse index m(t) of the
critical point t and stability of the periodic orbit x. Suppose for simplic-
ity that the twist of all maps fki has the same sign, for example D12Ski <0
in Uki . Then

sign det(f ′
k(x0)− I )=−sign det A′′

k(t).

Hence if m(t) is even, the fixed point x0 is hyperbolic, and if m(t) is odd,
it is elliptic.

If we find a non-degenerate fixed point of fk, we find a non-degenerate
periodic collision chain σ of the Kepler problem and hence, by Theo-
rem 2.1, a periodic shadowing orbit γ of the elliptic 3 body problem with
small µ> 0. We only need to check that the changing direction condition
(3.6) is satisfied.

The proof of Theorem 2.1 in (Bolotin 2006) implies:

PROPOSITION 3.1. Let λ,λ−1 be the multipliers of a non-degenerate fixed
point of fk. If the corresponding collision chain σ satisfies the changing direc-
tion condition, then for small µ>0 the multipliers α,α−1, β, β−1 of the shad-
owing orbit γ in Theorem 2.1 satisfy α=λ+O(µ), β=bµ−1 +O(µ).

In the next section, for almost autonomous generating functions Sk, we
give sufficient conditions for the existence of non-degenerate critical points
of Ak, or, equivalently, non-degenerate fixed points of fk. The proofs are
contained in section 5. In Sections 6 and 7 we compute the functions Sk for
the elliptic 3 body problem with small eccentricity ε and show that these
sufficient conditions are satisfied.

4. Almost Autonomous Twist Maps

If the generating function Sk satisfies an additional non-degeneracy condition

D22Sk(t0, t1) �=0 for (t0, t1)∈Uk, (4.1)

we can represent fk by another generating function Fk: fk(t0, h0)= (t1, h1),
where

h0 =h1 +D1Fk(t0, h1), t1 = t0 +D2Fk(t0, h1). (4.2)
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Set Jk(t0) = −D2Sk(t0, t0 + Ik(t0)). Then h1 ∈ Jk(t0) �→ Fk(t0, h1) is the
Legendre transform of the function s ∈ Ik(t0) �→−Sk(t0, t0 + s). Thus

Fk(t0, h1)=h1(t1 − t0)+Sk(t0, t1), h1 =−D1Sk(t0, t1).

Suppose that the twist maps fk are almost autonomous, i.e. the generating
functions Sk have the form

Sk(t0, t1)=�k(s)+ εψk(t0, s)+O(ε2), s= t1 − t0, (4.3)

where ε is a small parameter. For example, for the elliptic 3 body problem
with small eccentricity, Sk has the form (4.3).

If fk is almost autonomous, we can assume that Uk = {(t0, t1) : t1 − t0 ∈
Ik} with Ik a fixed interval. To satisfy the twist conditions (3.7) and (4.1),
suppose that � ′′

k (s) �=0 for s ∈ Īk.3 Let Jk =−� ′
k(Ik) and let h∈Jk �→�k(h)

be the Legendre transform of the function s∈ Ik �→−�k(s). Denote ρk(h)=
�′
k(h)=−1/� ′

k(s). Then Ik=ρk(Jk). The generating function Fk in (4.2) has
the form

Fk(t0, h1)=�k(h1)+ εφk(t0, h1)+O(ε2),

where

φk(t, h)=ψk(t, ρk(h)), (t, h)∈T×Jk. (4.4)

The twist map fk: (t0, h0) �→ (t1, h1) is given by (4.2):

h0 =h1 + εD1φk(t0, h1)+O(ε2),

t1 = t0 +ρk(h1)+ εD2φk(t0, h1)+O(ε2).
(4.5)

It is defined on an annulus Vk which is O(ε)-close to T×Jk. For ε=0, fk
is an integrable twist map (t, h) �→ (t+ρk(h), h).4

To prove the existence of complicated dynamics for each map fk is a
transcendental problem related to exponentially small splitting of separatri-
ces, and no finite Taylor expansion of Fk in ε provides enough information
for that. Getting non-degenerate periodic orbits is easier. Poincaré proved
(Arnold et al. 1989) that if

φk(t, h)=
∑

n∈Z

akn(h)e
int (4.6)

has many Fourier harmonics, then fk has many periodic orbits for small
ε �=0. If there is a resonance at h∈Jk, i.e. akn(h) �=0 and ρk(h)=2πm/n for
some m∈Z, then fk has at least two n-periodic orbits O(ε)-close to T×{h}.

3If the twist condition does not hold in the whole Ik , we cut it in smaller intervals.
4In the application to the 3 body problem, h is Jacobi’s integral.
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However, we will see that in the elliptic 3 body problem,

φk(t, h)=ak(h)eit + āk(h)e−it . (4.7)

Thus we may obtain only fixed points of fk corresponding to ρk(h)=2πm.
They do not give any non-degenerate collision chains of the Kepler prob-
lem, because all 1-chains are degenerate.

To get more Fourier harmonics in Fk of higher order in ε, we need
to perform several steps of the perturbation scheme (Arnold et al. 1989)
which is difficult analytically. Hence it is hard to get non-degenerate colli-
sion chains by using orbits of just one map fk.

This difficulty disappears if we take compositions of random sequences
of different maps fk. Suppose for simplicity (this holds in our application)
that φk is a Fourier polynomial and there are no resonances5 in Jk, i.e. if
akn(h) �= 0 for some h∈ Jk and n∈ Z, then nρk(h) /∈ 2πZ. Then fk has an
approximate first integral

Hk(t, h)=h+ εD1χk(t, h), Hk ◦fk =Hk +O(ε2),

where χk is the solution of the homological equation6

χk(t+ρk(h), h)−χk(t, h)=φk(t, h), (t, h)∈Vk =T×Jk. (4.8)

Hence

χk(t, h)=
∑

n�=0

bkn(h)e
int , bkn(h)= akn(h)

einρk(h)−1
. (4.9)

Then for small ε, fk has a family of approximate invariant curves7

�k(ε, h)={(t, h− εD1χk(t, h)) : t ∈T}, h∈Jk.
Suppose that Jk ∩ Jl �= ∅ for a pair k, l ∈K, and the integrals Hk,Hl are
independent in Vk ∩Vl. Then there is an interval J ⊂Jk ∩Jl such that

t �→χkl(t, h)=χk(t, h)−χl(t, h) �≡0, h∈J. (4.10)

Equivalently, there is n �= 0 such that bkn(h) �= bln(h). Then for small ε > 0
the curves �k(ε, h) and �l(ε, h) intersect but do not coincide.

5If there are resonances in Jk , we divide it in non-resonance subintervals.
6For simplicity of notation we assume that the time average of φk(t, h) is zero. This

holds in our application. In general, we need to subtract the average.
7There are also exact KAM invariant curves corresponding to Diophantine ρk(h)/(2π).
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Any sequence k ∈{k, l}n has the form

k =k, . . . , k︸ ︷︷ ︸
m1

, l, . . . , l︸ ︷︷ ︸
m2

, k, . . . , k︸ ︷︷ ︸
m3

, . . . , l, . . . , l︸ ︷︷ ︸
mN

,

N∑

j=1

mj =n. (4.11)

We assumed that N is even, because the corresponding periodic orbits do
not change if we make a cyclic permutation of k. Hence for odd N we may
replace N by N −1 and m1 by m1 +mN .

The next result is a generalization of Poincaré’s theorem on periodic
orbits of perturbed Hamiltonian systems.

THEOREM 4.1. For any even N�2 there exists an infinite set MN ⊂N
N of

integer sequences m = (mi)Ni=1 such that for any m ∈MN there exists hm ∈J
such that:

• There exist ε0>0, c>0 such that for any ε ∈ (0, ε0) the composition

fk =f mNl ◦f mN−1
k ◦ · · · ◦f m2

l ◦f m1
k

has a pair of topologically nondegenerate fixed points x± in T × (hm −
cε, hm + cε).

• The multipliers of x± are

λ±, λ−1
± , λ± = ec±

√±ε+O(ε), c± �0. (4.12)

• The set {hm ∈J : m ∈MN } is dense in J .

Hence the fixed point x− has multipliers on the unit circle, and x+ on the
real line. Generically x− is elliptic and x+ hyperbolic.

We will see that the set MN is relatively dense in N
N in the following

sense: there exist constants a, b > 0 independent of N such that for any
sequence (lj )Nj=1 with

∑
lj �b there exists m ∈MN with maxj |mj − lj |�a.

Note that any m ∈ MN defines a sequence jm in MjN for any integer
j by repeating m several times. Such a sequence gives the same periodic
orbit, so we do not count it twice. Thus for non-prime N we delete from
MN all sequences of the form jm, where j is a divisor of N .

Conditions of Theorem 4.1 holds also if both maps fk, fl are completely
integrable, provided their invariant curves are different. In a subsequent
paper we will show that the skew product dynamical system on {k, l}Z ×
J obtained by composing the maps fk, fl in random order has a chaotic
compact hyperbolic invariant set containing an infinite number of hyper-
bolic periodic orbits. There exist also diffusion orbits. This can be shown
using the arguments similar to these of Moeckel (2002) and Marco and
Sauzin (2004).
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We will prove Theorem 4.1 and its generalization in Section 5. For the
elliptic 3 body problem we can obtain a more explicit statement. Indeed,
then the functions φk have the form (4.7), and hence by (4.9),

χk(t, h)=bk(h)eit + b̄k(h)e−it , bk(h)= ak(h)

eiρk(h)−1
. (4.13)

We will compute the coefficients bk for the elliptic 3 body problem in Sec-
tion 7.

Till the end of this section we assume for simplicity that χk has the form
(4.13). If we take k, l ∈K such that h∈ Jk ∩ Jl and bk(h) �= bl(h), then the
function t �→χkl(t, h) has two non-degenerate critical points, and for small
ε > 0, the curves �k(ε, h) and �l(ε, h) have two points of transverse inter-
section. In this case we can get non-degenerate periodic orbits.

For a sequence k of the form (4.11), let

�k(h)= (m1 +m3 +· · ·+mN−1)ρk(h)+ (m2 +m4 +· · ·+mN)ρl(h),
ck(h)=1− eim1ρk + ei(m1ρk+m2ρl)− ei((m1+m3)ρk+m2ρl) (4.14)

+· · ·− ei((m1+m3+···+mN−1)ρk+(m2+···+mN−2)ρl).

THEOREM 4.2. Suppose for some h∈J we have

�k(h)=0, �′
k(h) �=0, ck(h) �=0. (4.15)

Then there exist ε0>0, c>0 such that for any ε∈ (0, ε0) the composition fk
has a pair of non-degenerate fixed points x± in T× (h−cε, h+cε). The mul-
tipliers of x± have the form (4.12).

Let us show that the set of h∈J such that (4.15) holds for some sequence
m is dense in J . Suppose for example that N =2. Then

k =k, . . . , k︸ ︷︷ ︸
m1

, l, . . . , l︸ ︷︷ ︸
m2

(4.16)

and ck(h)=1− eim1ρk(h). Hence condition (4.15) gives

m1ρk(h)+m2ρl(h)∈2πZ, (4.17)

m1ρk(h) /∈2πZ, m2ρl(h) /∈2πZ. (4.18)

Suppose for simplicity that ρ ′
k(h) and ρ ′

l (h) have the same sign. Then for
large n=m1 +m2 the distance between the neighbors of the solution set of
(4.17) is approximately

d=2π(m1|ρ ′
k(h)|+m2|ρ ′

l (h)|)−1 +O(n−2).
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On the other hand, the length of the components of the set (4.18) is
approximately

d ′ =2π(min{m1|ρ ′
k(h)|,m2|ρ ′

l (h)|})−1 +O(n−2).

If m1 and m2 are both non-zero and n is large, then d ′>d. Then there are
many8 h∈ J such that (4.17) and (4.18) holds. Hence for N = 2 the set of
h∈J satisfying the conditions of Theorem 4.2 is dense in J .

A similar argument works for any even N . For example, if N =4, then

k =k, . . . , k︸ ︷︷ ︸
m1

, l, . . . , l︸ ︷︷ ︸
m2

, k, . . . , k︸ ︷︷ ︸
m3

, l, . . . , l︸ ︷︷ ︸
m4

,

where m1 �=m3 or m2 �=m4 (or else we get the case N=2). Condition (4.15)
gives

�k(h)= (m1 +m3)ρk(h)+ (m2 +m4)ρl(h)∈2πZ,

ck(h)=1− eim1ρk + ei(m1ρk+m2ρl)− ei((m1+m3)ρk+m2ρl) �=0.

If the sum ck(h) of four unit complex numbers is zero, they form a paral-
lelogram in C=R

2. Then there are two possibilities:

• eim1ρk = eim3ρk =1.
• ei(m1ρk+m2ρl)= ei(m3ρk+m2ρl)=−1.

In the first case m1ρk ∈ 2πZ and m3ρk ∈ 2πZ. In the second case m1ρk +
m2ρl ∈π+2πZ and m3ρk+m2ρl ∈π+2πZ. If n is sufficiently large and all
m1,m2,m3,m4 are non-zero, a density argument as above gives many h∈J
such that (4.15) holds. Hence for N =4 the set of h∈J satisfying the con-
dition of Theorem 4.2 is dense in J .

We can proceed in a similar way getting periodic orbits corresponding
to any even N .

We will see that for the elliptic 3 body problem, for almost any pair
k, l the collision chains of the Kepler problem corresponding to the fixed
points in Theorem 4.2 satisfy the changing direction condition (see Lemma
6.3). Thus for an alternating sequence (ki)Ni=1, Theorem 2.2 follows from
Theorem 4.2. To prove the complete version of Theorem 2.2, we need a
more general result.

8We use a crude argument to show the existence of solutions. One can easily get
more information.
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Let K(h)={k∈K :h∈Jk}. For definiteness we fix a set of k∈K(h) such
that all ρ ′

k(h) have the same sign.9 For example, let

L(h)={k∈K(h) :ρ ′
k <0 in Jk}. (4.19)

Let

D(h)={(k, l)∈L(h)×L(h) :bk(h) �=bl(h)}.
Let � be a closed interval and � a finite set such that �⊂D(h) for all
h∈�.

Any sequence k ∈Kn has the form

k =k1, . . . , k1︸ ︷︷ ︸
m1

, . . . , ki, . . . , ki︸ ︷︷ ︸
mi

, . . . , kN, . . . , kN︸ ︷︷ ︸
mN

,

N∑

j=1

mj =n. (4.20)

Since we study periodic orbits, set k0 = kN . Without loss of generality,
ki−1 �=ki for i=1, . . . ,N .

THEOREM 4.3. There exist constants b, c, d > 0 depending on � and �

such that for any h∈�, any sequence (ki)Ni=1 such that (ki−1, ki)∈� for i=
1, . . . ,N and any sequence (lj )Nj=1 of positive integers with

∑N
j=1 lj �b, there

exist an integer sequence (mi)Ni=1, |li −mi |� 1, and h̃∈ (h− cn−1, h+ cn−1),
n= ∑

mi , such that for small ε0 > 0 and all ε ∈ (0, ε0) the map fk = f mNkN
◦

· · · ◦ f m1
k1

has 2 non-degenerate fixed points x± in T × (h̃− dε, h̃+ dε). The
multipliers of x± have the form (4.12).

In Section 7 we will deduce Theorem 2.2 from Theorem 4.3. Theorems
4.1–4.3 are proved in the next section. First we consider arbitrary almost
autonomous generating functions Sk and prove Theorem 4.1 and its gen-
eralization, Theorem 5.1. Then we will assume that φk has the form (4.7)
and prove Theorems 4.2 and 4.3.

5. Periodic Orbits of Almost Autonomous Maps

By Lemma 3.1, to prove the existence of non-degenerate periodic orbits of
sequences of twist maps fk, we need to find n,m∈ N and a sequence k =
(ki)

n
i=1 such that the function Ak in (3.4) has non-degenerate critical points.

9If we take indices k with different signs of ρ ′
k , the description of admissible

sequences will need a minor modification. Since we do not aim for higher generality, we
make this assumption.
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If Sk has the form (4.3), then

Ak(t)=�k(s)+ εψk(t)+O(ε2),

where s = (sj )nj=1 with sj = tj − tj−1 ∈ Ikj and

�k(s)=
n∑

j=1

�kj (sj ), ψk(t)=
n∑

j=1

ψkj (tj−1, sj ).

Since tn= t0 +2πm,

n∑

j=1

sj =2πm. (5.1)

If s is a critical point of �k subject to the constraint (5.1), then there exists
h∈∩nj=1Jkj such that −� ′

kj
(sj )=h for j =1, . . . , n. Hence sj =ρkj (h) and

�k(h)=
n∑

j=1

ρkj (h)=2πm. (5.2)

We assume for simplicity10 that all ki belong to the set L(h) in (4.19). Then
� ′′
ki
(si) > 0. Hence s is a non-degenerate minimum point of �k subject to

the constraint (5.1). Then for ε=0 the function Ak has a one-dimensional
non-degenerate minimal critical manifold

Z=
{

t = (tj )nj=1 : tj = t+
j∑

i=1

ρkj (h), t ∈T

}

⊂Xk.

Define the Poincaré function on Z by

φk(t, h)=ψk|Z =
n∑

j=1

ψkj (tj−1, ρkj (h))=
n∑

j=1

φkj (tj−1, h). (5.3)

It is 2π -periodic in time and has zero average. By the Lyapunov–Schmidt
reduction, if t is a non-degenerate critical point of Poincaré’s function t �→
φk(t, h), then Ak has a non-degenerate critical point t∈Xk in a O(ε)-neigh-
borhood of Z for small ε > 0. If all ki ∈L(h), then Z is a minimal criti-
cal manifold. Hence for small ε>0 the Morse index m(t) equals the Morse
index m(t) of the corresponding critical point of Poincaré’s function. Then
for small ε > 0, fk will have a non-degenerate fixed point x0 near (t, h).

10If we drop this assumption, we have to assume that �′
k(h) �=0.
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By Lemma 3.1, x0 is elliptic if m(t)= 1, and hyperbolic if m(t)= 0. Since
detA′′

k(t)=O(ε), the multipliers of x0 have the form e±O(
√
ε).

This works also without the non-degeneracy assumption. If Poincaré’s
function t �→ φk(t, h) is non-constant, then for small ε > 0 the function
Ak will have at least two topologically non-degenerate critical points in
O(ε)-neighborhood of Z, one minimum and the other mountain pass. The
corresponding fixed points of fk may be degenerate, but one of them has
multipliers on the unit circle, and the other on the real line.

Let us write the sequence k in the form (4.20). Then

�k(h)=
N∑

j=1

mjρkj (h)=2πm, (5.4)

φk(t, h)=
N∑

j=1

φkjmj (τj−1, h), (5.5)

where

τj = t+ θj , θj =
j∑

i=1

miρki (h), (5.6)

φkm(t, h)=
m−1∑

j=0

φk(t+ jρk(h), h). (5.7)

By the homological equation (4.8), the sum telescopes:

φkm(t, h)=χk(t+mρk(h), h)−χk(t, h). (5.8)

Hence

φk(t, h)=
N∑

j=1

(χkj (τj , h)−χkj (τj−1, h))=
N∑

j=1

χkj−1kj (τj−1, h), (5.9)

where χkj−1kj is the function (4.10) and we set τN = τ0 +2πm.
We will find t and sequences (ki)Ni=1, (mi)Ni=1 such that

χkj−1kj (τj−1, h)>0 for j =1, . . . ,N. (5.10)

Then Poincaré’s function t �→φk(t, h) is non-constant.
Let �⊂L(h)×L(h) be a finite set of pairs (k, l) such that t �→χkl(t, h) �≡0.

There exist δ, r >0 such that for each (k, l)∈� there is an interval

Pkl = [θkl −3r, θkl +3r]⊂T (5.11)
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such that χkl(t, h̃)>0 for all t ∈Pkl and h̃∈�= [h−δ, h+δ]. Let Ikl = [θkl −
r, θkl + r] and take a >π/(2r). The set {mρk(h)}am=−a has two points with
distance mod 2π less than π/a < 2r in T. Thus for any τ ∈ T and l ∈ N

there exists an integer m such that |m− l|�a and τ +mρk(h)∈ Ikl.
Take any sequence (ki)Ni=1 such that (ki−1, ki) ∈� for i = 1, . . . ,N and

any sequence (li)Ni=1 of positive integers. Let t ∈ Ik0k1 . We will choose the
sequence (mi)Ni=1 as follows. Take any m1 ∈ N such that |m1 − l1| � a and
τ1 = t +m1ρk1(h)∈ Ik1k2 . Then take any m2 ∈ N such that |m2 − l2| � a and
τ2 = τ1 +m2ρk2(h) ∈ Ik2k3 . We proceed indefinitely defining mj for all j =
1, . . . ,N . Then τj ∈ Ikj kj+1 , τj − τj−1 =mjρkj (h) and |mj − lj | � a for all j .
In particular (5.10) holds.

We also need to satisfy (5.4): �k(h)=τN − t ∈2πZ. Since t, τN ∈Ik0k1 mod
2π , there exists m∈Z such that |�k(h)−2πm|<2r. There exists ρ>0 such
that ρ ′

k <−ρ in Jk for any (k, l)∈�. Then �′
k(h)<−nρ < 0 for all h∈�.

Hence for large n we can find h̃ ∈� such that |h− h̃|< 2r/(nρ) < δ and
�k(h̃)= 2πm. If we replace h by h̃, then τi will be replaced by τ̃i = t + θ̃i ,
where θ̃i is given by (5.6). Then τ̃N = t + 2πm, while all (τi)N−1

i=1 change by
less than 2r. Hence new τ̃j lie in Pkjkj+1 , and thus (5.10) holds for all j .

We proved:

THEOREM 5.1. There exist a, b, c, d > 0 such that for any h ∈ �, any
sequence (ki)Ni=1 such that (ki−1, ki) ∈� for i = 1, . . . ,N and any sequence
(li)

N
i=1 of positive integers with

∑N
i=1 li � b, there exist an integer sequence

(mi)
N
i=1, |li −mi |�a, and h̃∈ (h− cn−1, h+ cn−1), n=∑N

i=1mi , such that for
small ε0>0 and all ε ∈ (0, ε0) the map f mNkN

◦ · · · ◦f m1
k1

has a pair of topolog-
ically non-degenerate fixed points x± in T× (h̃−dε, h̃+dε). The multipliers
of x± have the form (4.12).

If (ki)Ni=1 is an alternating sequence as in (4.11), then we obtain Theo-
rem 4.1. If the functions φk have the form (4.7), then

φk(t, h)=ak(h)e
it + āk(h)e

−it . (5.12)

Hence if Poincaré’s function t �→ φk(t, h) is non-constant, it has only
non-degenerate critical points. Moreover {t ∈ T : χkl(t, h) > 0} is a half the
circle. Then Theorem 4.3 follows immediately.

To prove Theorem 4.2, we may use a more direct argument. Computation
of Poincaré’s function simplifies for an alternating sequence (4.11). By (5.6),
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φk(t, h)=
N−1∑

j=0

(−1)jχkl(t+ θj , h).

If φk has the form (4.7), then by (4.13), φk has the form (5.12) with

ak(t, h)= (bk(h)−bl(h))ck(h), (5.13)

where

ck(h)=
N−1∑

j=0

(−1)j eiθj

is given by (4.15). If ck(h) �=0, then Poincaré’s function t �→φk(t, h) has two
non-degenerate critical points. Theorem 4.2 is proved.

In the remaining part of the paper we compute the generating functions Sk
for the elliptic 3 body problem with small eccentricity ε of Jupiter’s orbit
and check that the conditions of Theorems 4.2 and 4.3 are satisfied. Then
the assertion of Theorem 2.2 will follow.

First we compute the autonomous generating functions �k. Then we will
apply a perturbation argument and find the non-autonomous perturbation
ψk.

6. Collision Orbits for the Circular Jupiter’s Orbit

In this section we set ε = 0. Then Jupiter moves counterclockwise with
angular velocity one along a unit circle, and its position11 is u(t,0,0)=eit .
We need to find intervals Ik such that for s= t1 − t0 ∈ Ik there exists a non-
degenerate collision orbit σ : [t0, t1] → R

2 of the Kepler problem such that
σ(t0)= eit0 and σ(t1)= eit1 . Since the circular problem is time-invariant, we
may set t0 =0 and t1 = s.

Let a, e be the major semiaxis and eccentricity of the elliptic orbit of
the Asteroid. Let ±θ ∈ (−π,0)∪ (0, π) be the polar angles corresponding
to intersections of Asteroid’s and Jupiter’s orbits, measured counterclock-
wise from the perihelion of Asteroid’s orbit. Then the polar radius at the
collision is

r= a(1− e2)

1+ e cos θ
=1.

11We write vectors in R
2 as complex numbers.
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Suppose that −θ corresponds to collision at t=0, and θ to collision at t= s.
Then s= 2θ + 2πn for some n∈ N. Let η∈ (−π,0)∪ (0, π) be the eccentric
anomaly corresponding to θ . We choose η mod 2π so that it has the same
sign as θ . Then for r=1,

cos θ =a(cos η− e), sin θ =a
√

1− e2 sin η.

By Kepler’s time equation (Arnold et al. 1989), ωs= 2(η− e sin η)+ 2πm,
m∈Z, where ω=±a−3/2 is the mean angular velocity of the Asteroid. We
obtain a system of three equations (compare with e.g. (Henon 1977; Bruno
1981, Marko and Niderman 1995))

ω(θ +πn)=η− e sin η+πm, (6.1)

cos θ =a(cos η− e), (6.2)

1+ e cos θ =a(1− e2) (6.3)

with four variables a = ω−2/3, e ∈ (0,1), θ ∈ (−π,0) ∪ (0, π), η ∈ (−π,0) ∪
(0, π) and integer parameters n∈N, m∈Z.

Using more work (including computer simulation) one can obtain a
complete description of the solution set, (see e.g. (Henon 1977; Bruno
1981). However, for simplicity we consider only solutions with large n cor-
responding to many rotations of collision orbits along the Kepler ellipse.
Then no technique is needed except the implicit function theorem. The
computation below is similar to that of Marco and Niderman (1995) for
collision orbits with fixed Jacobi’s constant. However, we need more infor-
mation on time intervals since the perturbed system is nonautonomous.

We will find values of θ for which system (6.1)–(6.3) has a
non-degenerate12 solution a(θ), e(θ), η(θ). Equation (6.3) implies

e= e(a, θ)= (2a)−1(− cos θ ±
√

cos2 θ +4a(a−1)). (6.4)

For a>1 the solution e∈ (0,1) is non-degenerate for θ in the intervals L± =
L±(a), where L− = (−π,0) and L+ = (0, π). We have to take plus in (6.4) to
ensure that e>0. The range of the function θ ∈L± �→e+(a, θ) is (1−a−1,1).

For 1/2<a < 1 we need to assume that cos2 θ > 4a(1 − a). Let ϑ(a)=
arccos(−√

4a(1−a)). A non-degenerate solution e∈ (0,1) of (6.3) exists for
θ in L−(a)= (−π,−ϑ(a)) or L+(a)= (ϑ(a),π), and we may take both plus
and minus in (6.4). Let e±(a, θ) be the corresponding functions. The range
of the function θ ∈L±(a) �→ e+(a, θ) is (

√
a−1 −1,1), and the range of the

function θ ∈L±(a) �→ e−(a, θ) is (a−1 −1,
√
a−1 −1).

12This means that the Jacobian with respect to a, e, η has rank 3.
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For a=1 we need to take θ in L−(1)= (−π,−π/2) or L+(1)= (π/2, π),
and θ ∈L±(1) �→ e+(1, θ)=− cos θ has the range (0,1).

To take care of all cases simultaneously, we introduce the following
notation. Set α= ± in L±(a). For 1/2<a < 1 set β = ± in e±(a, θ), and
for a�1 set β=+. Equation (6.2) gives

η=ηαβ(a, θ)=α arccos(a−1 cos θ + eβ(a, θ)), θ ∈Lα(a), (6.5)

where α and β take values + or − as explained above. Substituting (6.4)
and (6.5) in (6.1), we get

ω=ν+ (πn)−1(−ωθ +ηαβ(ω−2/3, θ)− eβ(ω−2/3, θ) sin ηαβ(ω−2/3, θ)),

(6.6)

where ν=m/n and θ ∈Lα(a).
For large n on the right-hand side of Equation (6.6) is a contraction

with respect to ω, and hence it can be solved for ω= ν +O(n−1). More
precisely, fix small δ>0 and take sufficiently large N >0. Let K be the set
of triples k= (ν, α,β), where ν=m/n is a rational number with relatively
prime m∈Z, n>N such that δ < |ν|< 1 − δ or 1 + δ < |ν|< 23/2 − δ, α=±,
and β=+ if |ν|<1, and β=± if |ν|>1. We delete δ-neighborhoods of the
endpoints of the intervals Lα(ν−2/3) and set

Lk ={θ : [θ − δ, θ + δ]⊂Lα(ν−2/3)}.
If N =N(δ) is sufficiently large, then for any k= (ν, α,β)∈K and θ ∈Lk
Equation (6.6) has a non-degenerate analytic solution

ω=ωk(θ)=ν+ (πn)−1Rk(θ), (6.7)

Rk(θ)=−θ +ηαβ(ν−2/3, θ)− eαβ(ν−2/3, θ) sin ηβ(ν−2/3, θ)+O(n−1). (6.8)

Then

a=ω−2/3
k (θ)=ν−2/3 + 2

3n
−1ν−5/3Rk(θ)+O(n−2).

Substituting in (6.4), we get

e= ek(θ)= 1
2ν

2/3
(
− cos θ +β

√
cos2 θ +4ν−2/3(ν−2/3 −1)

)
+O(n−1).

(6.9)

For δ→ 0 and N→∞ and the range ek(Lk) approaches one of the inter-
vals (1 − ν2/3,1) or (

√
ν2/3 −1,1) or (ν2/3 − 1,

√
ν2/3 −1), depending on |ν|

and α.
Thus for k∈K and θ ∈Lk we obtain a countable set of families of non-

degenerate solutions ak(θ), ek(θ), ηk(θ) of system (6.1)–(6.3). Let Ik=2Lk+
2πn. If θ ∈Lk, then s=2θ +2πn∈ Ik. We obtain:
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LEMMA 6.1. For any k∈K and s ∈ Ik there exists a unique non-degenerate
elliptic collision orbit σ : [0, s] → R

2 \ {0} of the Kepler problem such that
σ(0)=1, σ(s)=eis . The action function A(σ)=�k(s) satisfies the twist con-
dition � ′′

k �=0 in Īk. Moreover

sign � ′′
k = ιk =αβ sign ν, k= (ν, α,β). (6.10)

The first statement is already proved. Next we prove (6.10). By (3.3),
� ′
k(s)=−h, where h is the relative Hamiltonian at the collision. In the cir-

cular case, h is Jacobi’s integral h=E−G, where E is the energy of the
Asteroid, and G is the angular momentum. By (1.3),

E=− 1
2ω

2/3, G=ω−1/3(1− e2)1/2, (6.11)

where ω and e are given by (6.7) and (6.9). Then

� ′
k(s)=−h= 1

2ω
2/3 +G. (6.12)

Since ω=ωk(θ) is constant up to O(n−1), for large n we have

� ′′
k (s)=−ω−1/3(1− e2)−1/2eD1e(θ, a)+O(n−1).

Differentiating (6.3) we get

D1e(θ, a)= e sin θ
cos θ +2ae

.

Since sin θ �=0 for θ ∈ L̄k, we have � ′′
k (s) �=0 in Īk for large n.

By (6.4), cos θ + 2ae=β
√

cos2 θ +4a(a−1). Hence for large n the sign
of � ′′

k (s) equals the sign of βν sin θ . Lemma 6.1 is proved.

For large n we can obtain an asymptotic formula for the inverse function
s=ρk(h) of h=−� ′

k(s). First we compute its domain Jk =−� ′
k(Ik).

By (6.11) and (6.12), for a>1 the interval e∈ (1−a−1,1) corresponds to
0< |h+ (2a)−1|<(2−a−1)1/2. Hence, for given k= (ν, α,β)∈K with |ν|<1
and β=+, the domain of ρk(h) is an interval Jk such that

Jk ⊂ (−ν2/3/2,−ν2/3/2+ (2−ν2/3)1/2), ν >0,
Jk ⊂ (−ν2/3/2− (2−ν2/3)1/2,−ν2/3/2), ν <0.

For δ→0 and n→∞, Jk approaches the corresponding interval.
For 1/2 < a < 1, the interval e ∈ (

√
a−1 −1,1) corresponds to 0 <

|h+ (2a)−1|<√
2a−1, and the interval e∈ (a−1 − 1,

√
a−1 −1) corresponds
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to
√

2a−1< |h+ (2a)−1|<√
2−a−1. Hence for k= (ν, α,β)∈K with |ν|>1,

the domain of ρk(h) is an interval Jk such that

Jk ⊂ (−ν2/3/2,−ν2/3/2+√
2ν−2/3 −1), ν <0, β >0,

Jk ⊂ (−ν2/3/2−√
2ν−2/3 −1,−ν2/3/2), ν >0, β >0,

Jk ⊂ (−ν2/3/2+√
2ν−2/3 −1,−ν2/3/2+√

2−ν2/3), ν <0, β <0,
Jk ⊂ (−ν2/3/2−√

2−ν2/3,−ν2/3/2−√
2ν−2/3 −1), ν >0, β <0

and it approaches the corresponding interval for δ→0 and n→∞.
A formula for ρk(h) is obtained by solving (6.1) for cos θ :

cos θ = e−1(a(1− e2)−1)= (G2 −1)(1−ν2/3G2)−1/2 +O(n−1),

where

G=Gk(h)=−ν2/3 −h+O(n−1). (6.13)

Hence

s=ρk(h)=2πn+2α arccos
(
(G2 −1)(1−ν2/3G2)−1/2)+O(n−1). (6.14)

We obtain:

LEMMA 6.2. For any k ∈K and h∈ Jk there exists a non-degenerate ellip-
tic collision orbit σ = σk(h) : [0, ρk(h)] → R

2\{0} of the Kepler problem
with energy Ek(h), angular momentum Gk(h), and Jacobi’s integral Ek(h)−
Gk(h)=h. Moreover:

• ρ ′
k(h) �=0 in Jk and sign ρ ′

k(h)=−ιk.
• For any closed interval �⊂ (−3/2,

√
2) and sufficiently small δ > 0, the

intervals (Jk)k∈K cover �, and any h∈� is contained in an infinite number
of intervals {Jk}k∈K(h).

• The set {Gk(h)}k∈K(h) of angular momenta is dense in (2 − √
4h+6,−h),

except for a O(δ)-neighborhood of the boundary.

The last statement follows from the description of intervals Jk and
(6.13).

In fact we missed one condition in the definition of a collision orbit. We
need to verify that the collision orbit σ : [0, s] → R

2, s=ρk(h), has no early
collisions: σ(t) �=eit for t ∈ (0, s). If there is a collision at t=τ , then eiτ =1 or
eiτ =eis . Suppose for example that eiτ =eis . Then s−τ =2πp and ω(s−τ)=
2πq for some p∈N and q ∈Z. This means that Jupiter and Asteroid make
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p full rotations in the time interval [τ, s] colliding twice at the same point.
Then ω=q/p with |q|< |m|, p<n. By (6.7), we obtain the equation

Rk(θ)=π(nq−mp)/p, θ = s/2−πn.

We will see that the analytic function Rk(θ) is non-constant in a neighbor-
hood of L̄k. Hence there is a finite (or empty) set Ck of s ∈ Ik which give
collision orbits admitting early collisions. We delete these values of s thus
replacing Ik by a finite union Ĩk = Ik\Ck of smaller intervals.

It is convenient to express Rk(θ) as a function of h∈Jk. By (6.8),

Rk(θ)=Rk(ρk(h)/2−π/2)=αrk(h)+O(n−1),

rk(h)=arccos
1−ν2/3

√
1−ν2/3G2

−arccos
G2 −1√

1−ν2/3G2

−ν1/3
√

2−ν2/3 −G2, (6.15)

where G is given by (6.13). Evidently, rk(h) is a non-constant analytic func-
tion of h. Hence if N is sufficiently large, for any k ∈K there is at most
a finite set Dk of h∈ Jk such that the corresponding collision orbit σ has
early collisions. We delete these values of h replacing Jk by a finite union
J̃k =Jk \Dk of smaller intervals. Then Ĩk =ρk(J̃k).

The deleted values of h ∈Dk correspond to shorter collision orbits σ̃ :
[0, τ ] → R

2 with ν=m/n replaced by ν̃= (m−q)/(n−p). Thus k= (ν, α,β)
is replaced by k̃= (ν̃, α, β) and Ik is replaced by Ik̃ = Ik − 2πp. To insure
non-degeneracy of σ̃ we have to assume that the collision is not too early,
i.e. p<n−N .

We know that for small δ>0 any h∈� is contained in an infinite num-
ber of intervals {Jk}k∈K(h). For an infinite number of k∈K(h) the orbit σ =
σk(h) has no early collisions, and so h∈ J̃k. Indeed, for fixed h, rk(h) is a
non-trivial analytic function of ν. This is evident from (6.13) and (6.15),
for example by looking at one of the singular points. Now Lemma 6.2 is
completely proved with the intervals Ik and Jk replaced by Ĩk and J̃k. We
will drop tildes for simplicity.

To find non-degenerate collision chains, we need to take care of the
changing direction condition (3.6). Let us compute the relative collision
velocities v±

k =v±
k (0, s) of the collision orbit σ in Lemma 6.2. Represent the

velocity of σ in the moving basis:13

σ̇ (t)=v1(t)e
it +v2(t)ie

it . (6.16)

13We write vectors in R
2 as complex numbers.
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The tangent component v2 =Gk(h) at the collisions t=0 or t= s equals the
angular momentum (6.13), while the radial component v1 can be obtained
from the energy integral at the collision:

E= 1
2(v

2
1 +v2

2)−1, v1 =±
√

2+2E−G2.

By (6.12) and (6.13), the radial velocity at the collision t=0 is

v1(0)=Vk(h)=±
√

2−ν2/3 − (h+ν2/3/2)2 +O(n−1). (6.17)

For k= (ν, α,β) with αν >0, we take plus, and for αν <0 we take minus.
The relative velocity v−

k at the collision t = 0 has components v2(0)− 1
and v1(0) in the moving basis. Hence

v−
k =Vk(h)+ (Gk(h)−1)i,
v+
k = (−Vk(h)+ (Gk(h)−1)i)eis .

The absolute value is |v±
k |=√

2h+3.
Take some k= (νk, αk, βk) and l= (νl, αl, βl) in K such that h∈ Jk ∩ Jl.

Then Lemma 6.2 gives a pair of collision orbits σk, σl with Ek −Gk =El −
Gl =h. They can be linked in a collision chain σk, σ̃l, where σl is replaced
by an appropriate time translation σ̃l(t)= eisσl(t − s). The changing direc-
tion condition is not satisfied at t = s if v+

k = eisv−
l or v+

k =−eisv−
l . In the

first case Gk=Gl and Vk=−Vl. In the second case Gk+Gl=2 and Vk=Vl.
By (6.13) and (6.17) the changing direction condition holds automatically
for large N if |νk| �= |νl| and ν

2/3
k +ν2/3

l �=−4h−2.
Even if there is an equality, there is still the radial velocity to take into

account. For example, suppose that ν2/3
k +ν2/3

l =−4h−2. Then if αkνk and
αlνl are of opposite sign, we have Vk �=Vl, and hence the changing direction
condition holds. We obtain:

LEMMA 6.3. The changing direction condition holds for the link σk, σ̃l of a
collision chain except maybe in one of the following cases:

• αkνk =−αlνl,

• ν
2/3
k +ν2/3

l =−4h−2 and αk sign νk =−αl sign νl.

For example, the case νk =νl and αk =−αl corresponds to continuing after
the collision along the same Kepler ellipse. We have to avoid such trivial
collision chains. If k= l then the changing direction condition always holds.
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7. Collision Orbits for the Almost Circular Problem

Suppose that Jupiter’s orbit has small eccentricity ε. Then Jupiter’s position
is

u(t)=u(t,0, ε)= eit + εξ(t)+O(ε2).

By Lemma 6.1, for any k ∈K and t0 ∈ R, s = t1 − t0 ∈ Ik, there exists a
non-degenerate collision orbit σ : [t0, t1] → R

2 of the Kepler problem with
σ(t0) = eit0 , σ(t1) = eit1 . Let h = −� ′

k(s) be its Jacobi’s integral. By the
implicit function theorem, we obtain:

LEMMA 7.1. For small ε>0 there exists a non-degenerate collision orbit γ :
[t0, t1] → R

2 \{0} joining u(t0) and u(t1), and γ (t)=σ(t)+εζ(t)+O(ε2). The
action A(γ )=Sk(t0, t1) has the form (4.3), where

ψk(t0, s)=2Gk(h)(sin(t+ s)− sin t)+Vk(h)(cos(t+ s)+ cos t). (7.1)

If there are no early collisions for σ , then for small ε there will be no early
collisions for γ .

To prove (7.1), let us compute A(γ ) by using the first variation formula
(2.3):

A(γ )=A(σ)+ εdA(σ)(ζ )+O(ε2)=A(σ)+ εσ̇ (t) · ζ(t)∣∣t1
t0

+O(ε2).

Since ξ(t0)= ζ(t0) and ξ(t1)= ζ(t1), we obtain

ψk(t0, s)= σ̇ (t1) · ξ(t1)− σ̇ (t0) · ξ(t0). (7.2)

As in (6.16), we represent ξ(t) in the moving basis:

ξ(t)= ξ1(t)e
it + ξ2(t)ie

it . (7.3)

To compute ξ1(t) and ξ2(t), write the equation of Jupiter’s orbit u(t)= reiθ
in polar coordinates:

r=1− ε cos η, r sin θ =
√

1− ε2 sin η, t=η− ε sin η,

where η is the eccentric anomaly. We used that the major axis equals 1 and
the period equals 2π . Solving for r, θ we get

r=1− ε cos t+O(ε2), θ = t+2ε sin t+O(ε2).

Hence

ξ1(t)=− cos t, ξ2(t)=2 sin t. (7.4)
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Using (6.16) and (7.3)–(7.4), we compute the dot products in (7.2) and
obtain

ψk(t0, s)=Vk(h)(ξ1(t1)+ ξ1(t0))+Gk(h)(ξ2(t1)− ξ2(t0))

=2Gk(h)(sin(t+ s)− sin t)+Vk(h)(cos(t+ s)+ cos t),

where Gk(h) and Vk(h) are given by (6.13) and (6.17). Now Lemma 7.1 is
proved.

LEMMA 7.2. For the elliptic 3 body problem with small eccentricity, the
functions {χk}k∈K in (4.9) have the form

χk(t, h)=Bk(h) sin t, (t, h)∈T×Jk. (7.5)

For any h∈� and k∈K(h), the set {l ∈K(h) :Bl(h)=Bk(h)} is finite.

Proof. Let φk(t, h)=ψk(t, ρk(h)). Rewriting (7.1) in a complex form, we
get (4.7), where

ak(h)= ck + c̄keiρk , ck =Vk/2+ iGk.

A computation shows that the coefficients in (4.13) are

bk =−iBk/2, Bk(h)= Vk sin ρk
1− cos ρk

+2Gk.

Hence χk(t, h) has the form (7.5).
Using (6.13), (6.14) and (6.17), it is easy to see that for fixed h, Bk(h)

is a non-trivial analytic function of ν. Hence for any k ∈K(h), there exist
at most a finite number of l ∈K(h) such that Bk(h)=Bl(h).

Proof of Theorem 2.2. Take a closed interval �⊂ (−3/2,
√

2) and suffi-
ciently small δ>0. Then for any h∈�, L(h) in (4.19) is an infinite set. We
modify the definition of L(h) a little.

If there is a pair k, l ∈ L(h) which does not satisfy the condition of
Lemma 6.3, we delete one of k or l from L(h). We do the same also if
Bk(h)=Bl(h). Let L̃(h) be the remaining set. If k, l ∈ L̃(h), the changing
direction condition holds for the collision orbits σk, σl of the circular prob-
lem. Then for sufficiently small ε > 0 it will hold also for collision orbits
γk, γl of the elliptic problem which are perturbations of time translations
of σk, σl.

By Lemma 7.2, D̃(h) = {(k, l) ∈ L̃(h) × L̃(h) : k �= l} is an infinite set.
We replace D(h) by D̃(h)⊂D(h) in Theorem 4.3 and take any finite set
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�⊂ D̃(h). For each of the fixed points of fk in Theorem 4.3, we get
non-degenerate collision chains of the form (2.6). The changing direction
condition will hold automatically.

Taking all possible sets �⊂ D̃(h), we obtain the assertion of Theorem
2.2 for h ∈�, with the set of angular momenta {Gk}k∈L̃(h) dense in (2 −√

4h+6,−h), except for an O(δ)-neighborhood of the boundary. Taking
δ→0 and �→ (−3/2,

√
2) we complete the proof of Theorem 2.2.

Note that we can get much more collision chains than is required for
the proof of Theorem 2.2.
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