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Abstract. We describe an efficient algorithm to compute all the critical points of the distance
function between two Keplerian orbits (either bounded or unbounded) with a common focus.
The critical values of this function are important for different purposes, for example to evalu-
ate the risk of collisions of asteroids or comets with the Solar system planets. Our algorithm
is based on the algebraic elimination theory: through the computation of the resultant of two
bivariate polynomials, we find a 16th degree univariate polynomial whose real roots give us
one component of the critical points. We discuss also some degenerate cases and show several
examples, involving the orbits of the known asteroids and comets.
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’εϑεώ�oυν σε σπεύδoντα µετασχει̃ν

τ ω̃ν πεπ�αγµένων ‘ηµι̃ν κωνικω̃ν1

(Apollonius of Perga, Conics, Book I)

1. Introduction

The mutual position of two osculating Keplerian orbits with a common
focus can give us interesting information on the possibility of collisions
or close approaches between two celestial bodies that follow approximately
these trajectories. As it is well known these orbits, solutions to the Kepler
problem, are conics, either bounded (circles, ellipses) or unbounded (parab-
olas, hyperbolas).

Given two Keplerian orbits, it is particularly interesting to determine the
Minimal Orbital Intersection Distance (MOID), that is the absolute mini-
mum of the Euclidean distance d between a point on the first orbit and a
point on the second one. Indeed the square of this distance d2 is always

1I observed you were quite eager to be kept informed of the work I was doing in conics.
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used, to have a smooth function of the angular variables parametrizing the
orbits also when the MOID is zero. In this way we can compute the MOID
by searching for all the critical points (or stationary points) of the squared
distance d2 and then selecting the minimum among the values at those
points, that are finitely many for orbits in generic position.

There are several papers available in the literature that deal with the
computation of the MOID; see for example (Sitarski, 1968), (Hoots, 1984),
(Dybczynski et al., 1986). The main difficulty in the algorithms proposed
by these authors is to deal with a nonlinear one-dimensional equation
appearing when we solve for a component of the critical points of d2.

Recently, for the case of two elliptic orbits, the equations of the critical
points of d2 have been interpreted as a polynomial system and some alge-
braic geometry methods have been exploited to compute all of its solutions.
In (Kholshevnikov and Vassilev, 1999) Gröbner bases theory has been used
to obtain a trigonometric polynomial whose real roots represent one com-
ponent of all the solutions. In (Gronchi, 2002) an algorithm is introduced,
based on the resultant theory (Cox et al., l992) and the Fast Fourier Trans-
form (FFT) to perform the elimination of one variable; an upper bound
on the maximal number of critical points (if they are finitely many) is also
obtained by using Newton’s polytopes and Bernstein’s theorem (Bernstein,
1975).

The use of algebraic elimination methods, that generalize Gauss’ elimina-
tion procedure from linear to nonlinear polynomial equations, turns out to
be a powerful tool to deal with this problem, avoiding all the troubles that
may arise when searching for a good starting guess of Newton’s method.

In (Gronchi, 2002) we also stress the importance of computing all the
stationary points of d2: in fact there are cases, with orbits of NEAs and
of the Earth, for which a low value of the distance d can be attained also
at different local minima, and even at saddle points.

The use of the eccentric anomaly, as in both (Kholshevnikov and Vassilev,
1999) and (Gronchi, 2002), simplifies the formulas, but introduces for e = 1
an artificial singularity; this can be avoided by using the true anomalies, as is
done in (Sitarski 1968), where the algorithm was conceived just to compute
the MOID of the comets with respect to the outer planet orbits.

In this paper, by using the true anomalies as orbital parameters, we
generalize the method presented in (Gronchi, 2002) to all the Keplerian
orbits (including parabolas and hyperbolas).2 Furthermore we add several
improvements to our previous work, which are also important from the
computational point of view:

2We shall not consider here the degenerate case of rectilinear orbits, that cannot be
parametrized by the true anomaly.
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1. the mutual variables, used in (Gronchi, 2002), are useful to under-
stand the effective dimensionality of the problem, but they are singu-
lar for vanishing mutual inclination, therefore in this paper we use the
two complete sets of orbital elements. However, when we perform large
scale numerical experiments, we can use the mutual variables to produce
different orbital configurations in terms of the Keplerian elements (see
Section 8);

2. by an appropriate manipulation of the Sylvester matrix (see Subsec-
tions 4.2, A2) we are able to factorize the resultant polynomial and to
obtain a 16th degree univariate polynomial, whose real roots represent
one component of the critical points;

3. due to the lower degree of the univariate polynomial, we succeed in
applying the FFT methods (that optimally work with a number of eval-
uations that is a power of 2) using only 16=24 polynomial evaluations
instead of 32=25, as in our previous work.

We observe that in (Kholshevnikov and Vassiliev, 1999) an 8th degree trigo-
nometric polynomial g(u) (function of sin u, cos u) is computed, that plays
the same role of our 16th degree polynomial, anyway their method requires
a symbolic manipulation program to perform the elimination. In this paper
we shall make a self contained computation of this 16th degree polynomial;
furthermore, since it will be obtained as the determinant of a matrix, we
shall directly work with the coefficients of this matrix, that are polynomi-
als of lower degree.

In (Baluyev and Kholshevnikov, 2005) the authors have generalized
from the theoretical point of view the Gröbner bases approach to arbitrary
unperturbed orbits, including rectilinear ones, obtaining polynomials with
the same degrees as ours, both in the generic case of two nondegenerate
conics (degree 16) and in the case with one parabola (degree 12, see Sub-
section A3). Their approach allows to state that also the univariate poly-
nomials that we find in these cases have the minimal possible degree.

In Sections 2–4 we introduce the problem, its algebraic formulation and
our algorithm to solve it. In Section 5 we present a useful improvement to
the algorithm: we use an angular shift along the elliptic orbits to control
the size of the roots of the polynomial equations that we are solving and to
avoid sending roots to infinity. In Sections 6, 7 we study some properties of
the critical points: in particular we estimate the size of their corresponding
anomalies in the case of parabolic and hyperbolic orbits, and we charac-
terize the cases with infinitely many critical points. In Section 8 we present
some examples with a high number of critical points and some applications
to Solar system orbits.
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2. Critical Points of the Squared Distance

Let us consider two Keplerian orbits with a common focus. We shall use
the cometary elements (Q,E, i1,�1,ω1, V ) and (q, e, i2,�2,ω2, v) to describe
these orbits, that are respectively perihelion distance, eccentricity, inclination,
longitude of the ascending node, perihelion argument and true anomaly. The
orbits, on their respective planes, can be parametrized as follows{

X =R cosV

Y =R sin V

{
x = r cosv

y = r sin v

where

R = P

1+E cosV
; r = p

1+ e cosv
;

and P =Q(1+E),p =q(1+ e) are the conic parameters.
Following (Sitarski, 1968) we can write the position vectors X1 =

(X1, Y1,Z1) ,X2 = (x2 , y2 , z2) as

X1 =X P +Y Q=R [P cosV +Q sin V ] ;
X2 =x p+y q= r [p cosv +q sin v] ;

with

P = (Px ,Py ,Pz

) ; Q= (Qx ,Qy ,Qz

) ;
p = (px ,py ,pz

) ; q= (qx , qy , qz

) ;
where3

3The quantities Px,Py,Pz,Qx,Qy,Qz,px,py,pz, qx, qy, qz are the elements in the first
two rows of the matrices

H1 =
⎡
⎣ 1 0 0

0 cos i1 − sin i1

0 sin i1 cos i1

⎤
⎦
⎡
⎣ cosω1 − sin ω1 0

sin ω1 cosω1 0
0 0 1

⎤
⎦

and

H2 =
⎡
⎣ cos(�2 −�1) − sin(�2 −�1) 0

sin(�2 −�1) cos(�2 −�1) 0
0 0 1

⎤
⎦
⎡
⎣ 1 0 0

0 cos i2 − sin i2

0 sin i2 cosi2

⎤
⎦
⎡
⎣ cosω2 − sin ω2 0

sin ω2 cosω2 0
0 0 1

⎤
⎦

that are used to place the orbits in the 3-dimensional space: the reference frame is rotated
so that the x axis points towards the ascending node of the first orbit. In (Sitarski, 1968)
the same quantities are described as components of cracovians, that are ordinary matri-
ces with a different multiplication rule. The cracovian calculus has been introduced by
the Polish mathematician T. Banachiewicz; see (Banachiewicz, 1955).
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Px = cosω1; Py = sin ω1 cos i1; Pz = sin ω1 sin i1;
Qx =− sin ω1; Qy = cosω1 cos i1; Qz = cosω1 sin i1;
px = cosω2 cos(�2 −�1)− sin ω2 cos i2 sin(�2 −�1);
py = cosω2 sin(�2 −�1)+ sin ω2 cos i2 cos(�2 −�1);
pz = sin ω2 sin i2;
qx =− sin ω2 cos(�2 −�1)− cosω2 cos i2 sin(�2 −�1);
qy =− sin ω2 sin(�2 −�1)+ cosω2 cos i2 cos(�2 −�1);
qz = cosω2 sin i2.

Remark. The following relations hold:

‖P‖=‖Q‖=‖p‖=‖q‖=1; 〈P,Q〉=〈p,q〉=0;
where 〈, 〉 is the Euclidean scalar product.

The squared distance d2 between two points on the two orbits is given
by

d2(V , v)=〈X1 −X2,X1 −X2〉 (1)

and we can write the equations for the stationary points of d2 as⎧⎨
⎩

ERY +Y (Kx +My)− (ER +X)(Lx +Ny)=0

ery +y(KX +LY)− (er +x)(MX +NY)=0
(2)

where

K =〈P,p〉; L=〈Q,p〉; M =〈P,q〉; N =〈Q,q〉.
We rewrite system (2) by collecting its terms as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

p (1+E cosV )
[
sin V

(
K cosv +M sin v

)
− (E + cosV )

(
L cosv +N sin v

)]+EP sin V (1+ e cosv)=0;

P (1+ e cosv)
[
sin v

(
K cosV +L sin V

)
− (e+ cosv)

(
M cosV +N sin V

)]+ ep sin v(1+E cosV )=0.

(3)

Remark. We search for the real solutions of system (3). If E ≥1 (resp. e�1)
we take only the solutions for which 1+E cosV >0 (resp. 1+ e cosv >0).
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Remark. The values of the pairs (V , v) such that 1+E cosV =1+e cosv=0
are always solutions of system (3): they are not real solutions if E < 1 or
e < 1; otherwise they are real, but they have to be discarded because their
components coincide with the angular value of the asymptote of the cor-
responding hyperbola, or with the value π if the orbit is parabolic.

3. Algebraic Formulation of the Problem

Following (Gronchi, 2002) we use the variable change

{
s = tan(V/2)

t = tan(v/2)
(4)

to transform the problem into an algebraic one. Taking into account the
relations

1+E cosV = (E +1)− s2(E −1)

1+ s2
; E + cosV = (E +1)+ s2(E −1)

1+ s2
;

1+ e cosv = (e+1)− t2(e−1)

1+ t2
; e+ cosv = (e+1)+ t2(e−1)

1+ t2
;

we have to solve the polynomial system

{
f (s, t) =f4(t) s4 +f3(t) s3 +f2(t) s2 +f1(t) s +f0(t)=0
g(s, t) =g2(t) s2 +g1(t) s +g0(t)=0

(5)

with

f0(t)=p(E +1)2(Lt2 −2Nt −L);
f1(t)=−2 [Kp(E +1)+EP(e−1)] t2 +4pM(E +1) t

+2 [Kp(E +1)+EP(e+1)] ;
f2(t)=0;
f3(t)=2 [Kp(E −1)−EP(e−1)] t2 −4pM(E −1) t

−2 [Kp(E −1)−EP(e+1)] ;
f4(t)=−p(E −1)2(Lt2 −2Nt −L)=−(E −1)2

(E +1)2
f0(t);

and
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g0(t)=PM(e−1)2 t4 + [−2KP(e−1)+2ep(E +1)] t3

+ [2KP(e+1)+2ep(E +1)] t −PM(e+1)2;
g1(t)=2PN(e−1)2 t4 −4PL(e−1)t3 +4PL(e+1) t −2PN(e+1)2;
g2(t)=−PM(e−1)2 t4 + [2KP(e−1)−2ep(E −1)] t3

+ [−2KP(e+1)−2ep(E −1)] t +PM(e+1)2.

Remark. The variable change (4) does not allow to take into account the
values V =π and v =π , that are sent to infinity: we have to take care of
this fact when we deal with elliptic or circular orbits. A solution to this
problem is the subject of Section 5.

4. Description of the Algorithm

We shall follow the key steps described in (Gronchi, 2002) to compute
the solutions of the polynomial system (5); however we shall present some
important improvements to that technique, allowing to reduce the comput-
ing time. These steps are

1. use the resultant theory to eliminate one variable;
2. compute the coefficients of the resultant polynomial (or of one factor

of its) using an evaluation–interpolation method by the Fast Fourier
Transform applied to the coefficients of the matrix defining the resultant
(or defining its factor).

In the following we shall describe the algorithm in details.

4.1. ELIMINATION OF THE VARIABLE s

From the algebraic theory of elimination (Cox et al., l992) we know that
f (s, t) and g(s, t) have a common factor (as polynomials in the variable
s) if and only if the resultant Res(t) = Res(f (s, t), g(s, t), s) of f and g

with respect to s is zero. The resultant is given by the determinant of the
Sylvester matrix

S(t)=

⎛
⎜⎜⎜⎜⎜⎜⎝

f4 0 g2 0 0 0
f3 f4 g1 g2 0 0
0 f3 g0 g1 g2 0
f1 0 0 g0 g1 g2

f0 f1 0 0 g0 g1

0 f0 0 0 0 g0

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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that is

Res(t)=−g0g
3
1f1f4 +3g2

0g1g2f1f4 +g0g
2
1g2f1f3 −g3

1g2f0f3

−g1g
3
2f0f1+3g0g1g

2
2f0f3 −g3

0g1f3f4 −4 g0g
2
1g2f0f4 +2 g2

0g
2
2f0f4

+g4
2f

2
0 +g4

0f
2
4 +g4

1f0f4 +g3
0g2f

2
3 −2 g2

0g
2
2f1f3 +g0g

3
2f

2
1 ;

and it is generically a 20th degree polynomial in the variable t .

4.2. FACTORIZATION OF THE RESULTANT

In a previous remark we have already observed that we know explicitly four
solutions of (3) and then of (5): we want to use the basic properties of the
determinants to extract a factor of degree 4 from the resultant, related to
these solutions.

Let αE = E−1
E+1 . We note that

g1(t)= [t2(e−1)− (e+1)
]
g̃1(t) (6)

g2(t)+αE g0(t)= [t2(e−1)− (e+1)
]
g̃20(t) (7)

f3(t)+αE f1(t)= [t2(e−1)− (e+1)
]
f̃31(t) (8)

where

g̃1(t)=2P
[
N(e−1)t2 −2Lt +N(e+1)

] ;
g̃20(t)=P (αE −1)

[
M(e−1) t2 −2K t +M(e+1)

] ;
f̃31(t)=−2EP(1+αE).

The resultant is equal to the determinant of the matrix

S̃(t)=

⎛
⎜⎜⎜⎜⎜⎜⎝

f4 0 g2 0 0 0
f3 f4 g1 g2 0 0
0 f3 +αEf1 g0 +g2/αE g1 g2 +αEg0 αEg1

f1 +f3/αE 0 g1/αE g0 +g2/αE g1 g2 +αEg0

f0 f1 0 0 g0 g1

0 f0 0 0 0 g0

⎞
⎟⎟⎟⎟⎟⎟⎠

obtained performing the following operations on the rows of S(t):

1. add to the 3rd row 1/αE times the 1st row and αE times the 5th row;
2. add to the 4th row 1/αE times the 2nd row and αE times the 6th row.

Using relations (6), (7), (8) and the basic properties of determinants we can
write

Res(t)=det(S̃(t))= [t2(e−1)− (e+1)
]2

det(Ŝ(t)) ,
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with

Ŝ(t)=

⎛
⎜⎜⎜⎜⎜⎜⎝

f4 0 g2 0 0 0
f3 f4 g1 g2 0 0
0 f̃31 g̃20/αE g̃1 g̃20 αE g̃1

f̃31/αE 0 g̃1/αE g̃20/αE g̃1 g̃20

f0 f1 0 0 g0 g1

0 f0 0 0 0 g0

⎞
⎟⎟⎟⎟⎟⎟⎠

;

As the resultant Res(t) is divisible by the factor
[
t2(e−1)− (e+1)

]2
we can

take into account the 16th degree polynomial defined by

r(t)=det(Ŝ(t))= Res(t)[
t2(e−1)− (e+1)

]2 .

Remark. The factor t2(e − 1)− (e + 1) (for e �= 1) has the roots t =±
√

e+1
e−1 :

these are purely imaginary if e < 1, while if e > 1 they correspond to the
angular values of the asymptotes of the hyperbolic orbit. In any case these
roots of the resultant have to be discarded: the term t2(e−1)− (e+1) cor-
responds to 1+ e cos(v) in (3).

Remark. The matrix Ŝ(t) is not defined for αE = 0, and this singularity is
not present in the original Sylvester matrix S(t). This can be explained as a
wrong choice of the coordinate change in (4) that prevents us to find solu-
tions at infinity and can be removed using the formulas described in Sec-
tion 5.

Remark. Applying (4) to system (3) with E = 1, the first equation in (5)
has a smaller degree as a function of s than in the general case (see also
Appendix, Subsection A3): for this reason the determinant of the matrix
S(t) becomes a multiple of the resultant Res(t) of the two polynomials of
the system with respect to s, in fact the Sylvester matrix of the system has
in this case a smaller size (it is a 5×5 matrix). On the other hand if e=1
the second equation in (5) has a smaller degree as a function of t , but the
degree of the polynomials in the variable s is not smaller, so that the resul-
tant Res(t) can be computed as the determinant of S(t).

4.3. COMPUTATION OF THE COEFFICIENTS OF r(t)

We use the Fast Fourier Transform (FFT) to compute the coefficients of
the polynomial r(t) = det(Ŝ(t)). The algorithms for the Discrete Fourier
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Transform (DFT) and the Inverse Discrete Fourier Transform (IDFT), that
are respectively the FFT methods to perform evaluation and interpolation,
are particularly efficient when working with a number of evaluations that
is a power of 2. Unfortunately r(t) has 17 (=24 +1) coefficients.

We use the following strategy to work with a lower degree polynomial
requiring only 24 evaluations: we observe that we can write

r(t)= r0 + t r̃(t) (9)

where

r̃(t)=
15∑

j=0

rj+1 t j and r0 =det(Ŝ(0)).

We apply the evaluation–interpolation method to the 15th degree polyno-
mial r̃(t) (with 24 coefficients) whose evaluations in the 16th roots of unity

ωk = e−2πi k
16 , k =0 . . .15

are given by

r̃(ωk)= r(ωk)− r0

ωk

. (10)

Thus we can compute the coefficients of r by interpolating the values of r̃.

4.4. STEPS OF THE ALGORITHM

In this paragraph we explain the main steps of our method.

1. evaluate the polynomials f0, f1, f3, g0, g1, g2, g̃1, g̃20
4 appearing in Ŝ(t) at

t =0 and at all the 16th roots of unity ωk by the DFT algorithm;
2. compute the determinant of the 17 matrices Ŝ(0), Ŝ(ωk), k=0 . . .15; each

of them is evaluated at a different point of the complex plane. If a
square matrix has its coefficients depending on a variable t , then the
evaluation at a point t of the determinant of this matrix is equal to the
determinant of the matrix whose coefficients are evaluated at t . Thus we
obtain the evaluation of r(t) at 0 and at ωk, for k =0 . . .15;

3. use (10) to compute r̃(ωk) for k =0 . . .15;
4. apply the IDFT algorithm to obtain the coefficients of r̃(t) from its 16

evaluations;

4Note that f̃31 is constant and f4 =−α2
e f0.
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5. get the coefficients of r(t) using relation (9);
6. compute the real roots of r(t). For this point we use the algorithm

described in (Bini, 1997), based on simultaneous iterations;
7. given a solution t ∈ R of r(t) = 0, search for one or more values s ∈ R

for which (t, s) is a solution of (5);5

8. detect the type of singularity, i.e. classify the critical points in minimum,
maximum or saddle points.

Note that even if the polynomial r(t) can be written in a short form, its
coefficients hide very long expressions, functions of the orbital elements.
An advantage of the resultant method is that it allows to evaluate directly
the coefficients of the matrix Ŝ, that are lower degree polynomials and have
shorter expressions.

We perform several controls to test the reliability of the results of this
computation, both from the topological and numerical point of view. For
example in the case of two ellipses we check that we find at least one max-
imum and one minimum point, that must exist as the squared distance
function (1) is a continuous function defined on a compact set (the 2-
dimensional torus); another control is an application of Morse theory: the
number of maximum + minimum − saddle points must be equal to Euler–
Poincaré characteristic, that is zero in this case.

There are several additional controls on the size of the coefficients of
the polynomials involved in the computations: if any of these fail, we try
another computation for the same orbits by applying one or more times
the method of the angular shifts, described in Section 5.

5. Shifts along the Bounded Orbits

In the case of bounded orbits (circles/ellipses) the variable change (4) does
not allow to find the angular value π for V or v. We can in principle over-
come this difficulty simply by evaluating at π one of the variables V or v

in (3) and searching explicit solutions for the other variable satisfying both
equations, but in this way we can not avoid the problems arising when a
component of the solutions is close to the value π . In this case, when we

5This step is quite delicate, we have to deal with the following cases:

(i) for a real root t there are more than one real value s such that the pair (t, s) satisfies
(5), indeed up to four values, see (Gronchi, 2002) for an example;

(ii) for a real root t there is a value s ∈C \R such that the pair (t, s) satisfies (5), see
Appendix, Subsection A4 for a simple example with low degree polynomials.
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transform the problem into an algebraic one, we can find numerical insta-
bility, due to the presence of very large numbers. In this section we pro-
pose a method to overcome this problem that is just suitable for algebraic
equations coming from trigonometric polynomials: it consists in sending to
infinity a value significantly different from the values of the components of
the solutions by using an angular shift.

If we know that V ∗ + π and v∗ + π are not components of a critical
point we can send one or both these values to infinity by composing (4)
with an angular shift. We introduce the general variable change{

�=V −α

ξ =v −β

where �,ξ are the new angular variables and α,β are constant angles.
By the usual trigonometric addition formulas applied to equation (1) we

define the squared distance in terms of the unknowns (�, ξ):

δ2(�, ξ)=〈X1 −X2,X1 −X2〉
where

X1 =R [A cos�+B sin �] ; X2 = r [a cos ξ +b sin ξ ] ;
and

A=P cosα +Q sin α; B =−P sin α +Q cosα;
a=p cosβ +q sin β; b=−p sin β +q cosβ;

with components defined by

A= (Ax ,Ay ,Az

) ; B = (Bx ,By ,Bz

) ;
a= (ax , ay , az

) ; b= (bx , by , bz

)
.

The system defining the critical points is

∇�,ξ δ
2(�, ξ)=0, (11)

and the components of the gradient are

∂δ2

∂�
=2〈X1 −X2,

∂

∂�
(X1 −X2)〉; ∂δ2

∂ξ
=2〈X1 −X2,

∂

∂ξ
(X1 −X2)〉;

where

∂

∂�
(X1 −X2)= P

(1+E cosV )2
[B cos�−A sin �+QE] ;

∂

∂ξ
(X1 −X2)= −p

(1+E cosv)2
[b cos ξ −a sin ξ +q e] .
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Remark. The following relations hold:

‖A‖=‖B‖=‖a‖=‖b‖=1; 〈A,B〉=〈a,b〉=0;

A|α=0 =P; B|α=0 =Q; a|β=0 =p; b|β=0 =q.

From (11) we obtain⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p [1+E cos(�+α)]
〈P sin(�+α)−Q [E + cos(�+α)] ,a cos ξ +b sin ξ

〉
+EP sin(�+α) [1+ e cos(ξ +β)]=0;

P [1+ e cos(ξ +β)]
〈
p sin(ξ +β)−q [e+ cos(ξ +β)] ,A cos�+B sin �

〉
+ep sin(ξ +β) [1+E cos(�+α)]=0.

(12)

Remark. The values of the pairs (�, ξ) such that 1 + E cos(� + α) = 1 +
e cos(ξ +β)=0 are always solutions of system (12). Their explicit values are

�=±(arccos(−1/E)−α); ξ =±(arccos(−1/e)−β).

Using the variable change
{

z = tan(�/2)

w = tan(ξ/2)
(13)

we can transform system (12) into a polynomial system in the variables
z,w and we can generalize the procedure described in Sections 3, 4 to find
its solutions, see Subsections A1, A2 in the Appendix for the details.

6. Size of the Solutions along the Unbounded Orbits

As we have seen in the previous sections, there are natural constraints to
the true anomaly V (resp. v) of the critical points of d2 in case it para-
metrizes an unbounded orbit:

1+E cos V >0 (resp. 1+ e cosv >0).

If we consider two unbounded orbits then it is not possible to set addi-
tional bounds to the components of the critical points: think about the
example of two coinciding hyperbolic orbits. It is even possible that the
infimum of d is attained at infinity, see (Baluyev and Kholshevnikov, 2005).
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On the other hand, if the unbounded orbit is only one, we can set a
more restrictive bound on the component of the critical points along this
orbit.

It is useful to remind a geometric interpretation of the stationary points
of the squared distance d2 between two smooth curves γ1(V ), γ2(v) in R

3:

LEMMA 1. If (V , v) is a critical point of d2, and P1 =γ1(V ),P2 =γ2(v) are
the points in R

3 that correspond to it on the two curves, then the straight
line joining P1 and P2 is orthogonal to both the tangent lines to γ1 and γ2

in P1, P2 (see Figure 1).

Proof. We have d2(V , v)=〈γ1(V )−γ2(v), γ1(V )−γ2(v)〉, so that

∂d2

∂V
(V , v)=2

〈
dγ1

dV
(V ),P1 −P2

〉
=0

∂d2

∂v
(V , v)=−2

〈
dγ2

dv
(v),P1 −P2

〉
=0

Let us consider the case of a planet and a non-periodic comet. The para-
metric equation of the orbit of the comet γ2 in terms of the true anomaly
v, in a reference frame with the x axis pointing towards the pericenter of
γ2 and the y axis lying on the plane of this orbit, is given by

γ2 ≡
(

p cosv

1+ e cosv
,

p sin v

1+ e cosv
,0
)

where p =q(1 + e) is the conic parameter, q is the pericenter distance and
e is the eccentricity. For each point P2 ∈γ2, corresponding to a value v, we

γ

γ

1

2

P

P2

1

Figure 1. The geometry of the stationarity condition for the distance function between
two curves: the dashed line joining the two points in P1, P2, corresponding to the two
components of a critical points, must be orthogonal to both tangent vectors.
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write the tangent vector τ(P2) to γ2 in P2 as

τ(P2)= 1√
1+2e cosv + e2

(− sin v, cosv + e,0).

The plane π orthogonal to τ(P2) and passing through P2 is given by

− sin v x + (cos v + e)y −F(v)=0,

where

F(v)= p e sin v

1+ e cosv
.

The squared distance from π to the origin O is the minimum of the func-
tion

δ2(x)=x2

[
1+ sin2

v

(cosv + e)2

]
+2

x sin vF (v)

(cosv + e)2
+ F 2(v)

(cosv + e)2
,

that is attained in

x∗ =− sin vF (v)

1+2e cosv + e2
.

We obtain

δ2(x∗)= F 2(v)

1+2 e cosv + e2
= p2 e2 sin2

v

(1+ e cosv)2 (1+2 e cosv + e2)
.

Let Ra be the apocenter distance of the planet orbit γ1 and let us set ξ =
cosv, that implies ξ ∈]−1/e,1]. Thus Lemma 1 and the previous computa-
tions imply that the ξ component of a critical point has to fulfill the rela-
tion

R2
a(1+ eξ)2 (1+2 e ξ + e2)� e2p2(1− ξ 2). (14)

Remark. For ξ =1 relation (14) trivially holds. We can then assume in the
following that ξ ∈]−1/e,1[.

Let us define the functions

h(ξ)= R2
a(1+ eξ)2

1− ξ 2
; k(ξ)= p2e2

1+2eξ + e2
;

then relation (14) on the interval ] − 1/e,1[ can be written as h(ξ)� k(ξ).
A simple computation of the derivatives of h, k shows that h(ξ) is strictly
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increasing in the interval considered, and k(ξ) is strictly decreasing; further-
more

h(−1/e)=0; lim
ξ→−1/e+

k(ξ)=
{

p2e2

e2−1 >0 if e>1
+∞ if e=1

;

h(0)=R2
a; k(0)= p2e2

1+ e2
; lim

ξ→1−
h(ξ)=+∞; k(1)= p2e2

(1+ e)2
.

From these considerations, using the monotonicity properties of h, k we
know that there is always only one point ξ ∗ ∈] − 1/e,1[ such that h(ξ ∗)=
k(ξ ∗); furthermore condition (14) gives ξ � ξ ∗, that is

−arccos(ξ ∗)�v �arccos(ξ ∗). (15)

Then the maximum value rmax of the distance from the focus for the
Cartesian components of a critical point along the orbit of the comet is
given by

rmax = p

1+ eξ ∗ .

The point ξ ∗ is one of the roots of the third degree equation

R2
a (1+2eξ + e2)(1+ eξ)2 =p2e2 (1− ξ 2).

Using the monotonicity properties of h, k we can give a bound to the size
of ξ ∗: we observe that

1. if h(0)<k(0) then 0<ξ ∗ <ξmax;
2. if h(0)>k(0) then ξmin <ξ ∗ <0;

where ξmax is the positive solution of the second degree equation given
by h(ξ) = k(0), while ξmin is the solution of k(ξ) = h(0), so that |ξ ∗| �
max{|ξmin|, ξmax}.

Remark. The estimate (15) is optimal, in fact the extreme are attained if
the apocenter of the bounded orbit corresponds to the point marked with
P ∗ in Figure (2). It is even possible for the distance to vanish for v =v∗ =
±arccos(ξ ∗) if the apocenter of the planet orbit γ1(π) and γ2(v

∗) coincide
with P ∗.

Remark. If e=1 relation (14) becomes

2R2
a(1+ ξ)2 �p2(1− ξ),
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Figure 2. Geometrical sketch of the estimate (14), that gives a bound for the parameter of
a critical point along the comet orbit (parabolic or hyperbolic). The point P ∗ corresponds
to the tangency of the plane π to the sphere with radius Ra , the apocenter distance of
the orbit of the planet.

and we obtain a simple expression for ξ ∗:

ξ ∗ = 1
4R2

a

[
−(p2 +4R2

a)+p

√
p2 +16R2

a

]
.

Remark. If the apocenter distance Ra is � pe/
√

1+ e2, then ξ ∗ � 0, v ∈
[−π/2, π/2] and rmax =p.

7. Infinitely many Critical Points

In the case of two concentric coplanar circles or two coinciding conics we
have trivially an infinite number of critical points of d2. We shall show that
these cases are the only with this property.

PROPOSITION 1. Let us consider two Keplerian non rectilinear orbits with
a common focus. If there are infinitely many critical points of the squared dis-
tance function d2 between these orbits, then either the two orbits are concen-
tric coplanar circles or they are two coinciding conics.

Proof. If there are infinitely many real solutions of system (A1),6 then
the two polynomials have a common factor hα,β(z,w) (with total degree

6We are considering the general polynomial formulation with the angular shifts given
in the Appendix.
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less or equal to 4) with a continuum of real roots, that correspond to crit-
ical points of d2.

The singular points of the polynomial hα,β(z,w) are isolated, hence
there exists an open set in the plane (z,w) containing regular points of
hα,β , such that hα,β(z,w) = 0. Then we can define a regular parametric
curve � :]−1,1[→R

2, with parameter σ , such that �(σ) is a critical point
of d2 for each σ ∈]−1,1[.

The value of d2 along the curve � is a constant ρ: this can be easily
checked by computing the derivative of d2(�(σ )) with the chain rule.

Let us take into account the first orbit γ1 and draw the smooth sur-
face � composed by the union of the circles with radius ρ centered in the
points of γ1 and orthogonal to γ1 at these points. Consider now a plane
passing through a focus of γ1 (the common focus) and not coinciding with
the first orbit plane: we shall show that no section cut by this plane on the
surface � can be an arc of conic, not even locally.

We begin with the simplest case: γ1 is a circular orbit with radius R.
Assuming that γ1 is on the plane (X1,X2), then the surface � (which is
the ordinary torus) has parametric equations

⎧⎨
⎩

X1 = cosV (R +ρ cosφ)

X2 = sin V (R +ρ cosφ)

X3 =ρ sin φ

with parameters V,φ.
The plane π passing through the focus O, where the second orbit lies,

is defined by

AX1 +BX2 +CX3 =0

for some constants A,B,C ∈R. Assuming that this plane is not orthogonal
to the z axis gives us the relation A2 +B2 >0.

We select two vectors ê1, ê2 ∈ R
3 that generate a Cartesian reference

frame on the plane π . Choosing ê1 on the line where the two orbital planes
intersect we have

ê1 = (−B,A,0); ê2 = 1√
1+C2

(−CA,−CB,1);

with A2 +B2 =1.
Using Cartesian coordinates (ξ, η) on the plane π , we write the vector

equation

ξ ê1 +η ê2 = (X1,X2,X3)
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or, more explicitely
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ξ B −η
CA√
1+C2

= cosV (R +ρ cosφ)

ξ A−η
CB√
1+C2

= sin V (R +ρ cosφ)

η√
1+C2

=ρ sin φ

(16)

that are three equations in the four unknowns ξ, η,V ,φ.
We want to perform an elimination of variables and write only one

equation relating ξ and η. From the third equation in (16) we immediately
obtain7

sin φ = η

ρ
√

1+C2
; cos2 φ = 1

ρ2

[
ρ2 − η2

1+C2

]
; (17)

hence we can write sin φ, cosφ as functions of ξ, η. Squaring and summing
the first two equations in (16) we have

ξ 2 + C2η2

1+C2
= (R +ρ cosφ)2

and, by (17),

ξ 2 +η2 − (R2 +ρ2)=±2R

√
ρ2 − η2

1+C2
. (18)

The last equations can not represent an arc of a conic, not even locally,
as can be easily seen by using polar coordinates (r, θ) defined by ξ =
r cos θ, η= r sin θ . In fact if it were, from the general equation of a conic in
polar coordinates r =p/(1+ e cos θ), with eccentricity e and conic parame-
ter p, we would have

ξ = p − r

e
; η2 = e2r2 − (p − r)2

e2
; (19)

thus, substituting in (18), we would obtain the relation

r2 −C1 =±C2

√
C3 − e2r2 + (p − r)2 (20)

7ρ >0 otherwise the two orbital planes would coincide.
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for positive constants C1,C2,C3, that can not be true for each value of r

in an open interval.8

Then we have to show that also the case of a circular arc (r = constant)
is excluded. From (18) with constant r = r0 we obtain

r2
0 − (R2 +ρ2)=±2R

√
ρ2 − r2

0 sin2
θ

1+C2
,

that can not hold for θ in an open interval.
We study the case of two coincident orbital planes by passing to the

limit for C →+∞. Then (18) becomes

r2 − (R2 +ρ2)=±2Rρ ,

that gives the radius of two circular orbits, coplanar with γ1.
Now we shall consider the general case of a conic γ1 with equation in

polar coordinates (R,V )

R(V )= P

1+E cosV
; P =Q(1+E);

where P is the conic parameter, Q the pericenter distance and the eccen-
tricity E is assumed >0.

The surface � is defined by

⎧⎨
⎩

X1 =R(V ) cosV +ρ cos[α(V )] cosφ

X2 =R(V ) sin V +ρ sin[α(V )] cosφ

X3 =ρ sin φ

where

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cos[α(V )]= cosV +E√
1+2E cosV +E2

sin[α(V )]= sin V√
1+2E cosV +E2

8By squaring both sides of (20) we obtain a polynomial in the variable r.
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Following the same steps of the previous case we obtain the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ξ B −η
CA√
1+C2

=R(V ) cosV +ρ cos[α(V )] cosφ

ξ A−η
CB√
1+C2

=R(V ) sin V +ρ sin[α(V )] cosφ

η√
1+C2

=ρ sin φ

(21)

and, by squaring and summing the three equations in (21), we obtain

ξ 2 +η2 =R2(V )+ρ2 + 2Pρ cosφ

1+2E cosV +E2
(22)

where cosφ is given in terms of η by formula (17).
Note that we have not eliminated the dependence on V . We can com-

pute cosV as a function of ξ, η using the first equation in (21).
We complete the proof by contradiction: no arc of conic can satisfy

Equation (22), in fact if it were, using relations (19) we would obtain an
equation e(r) = 0 in the variable r that has at most a discrete number of
solutions. Actually, even if this equation is not as simple as (20), we can
write it by performing on some powers of r a finite number of sums, multi-
plications by constant and root extractions. The left hand side e(r) of such
equation is an analytic function of r as a complex variable, except for at
most a countable number of points.

As a result we obtain only discrete solutions for r and, if r is a con-
stant, the second orbit must be circular. Then we can apply a reciprocity
argument starting from this circular orbit and using the results previously
shown to prove that also the first orbit should be circular, that is a contra-
diction.

Also in this case we can deal with coincident orbital planes by passing
to the limit for C →+∞. From (21) it follows that

ρ =0 or sin φ =0.

If ρ ≡0 we have two coincident conics, otherwise sin φ =0, so that cosφ =
±1. We can exclude the last case again by contradiction: using an argument
similar to the previous one, we obtain an equation in the variable r that
can not be true for each value of r in an open interval.
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8. Numerical Experiments and Applications to Solar System Orbits

8.1. LARGE SCALE EXPERIMENTS

To make a large number of numerical experiments with different orbital
configurations we can take advantage of a set of elements depending only
on the mutual position of the two orbits.

Given two Keplerian orbits with a common focus and nonzero mutual
inclination, we define the cometary mutual elements

EM ={Q,E,q, e, iM,ω
(1)
M ,ω

(2)
M }

as follows: Q,E and q, e are the pericenter distance and the eccentricity
of the two orbits, iM is the mutual inclination between the two orbital
planes and ω

(1)
M ,ω

(2)
M are the angles between the ascending mutual node of

the second orbit with respect to the first one and the pericenters of the two
orbits.9

The map

� : (E1,E2)→EM

9These elements are defined by assigning an orientation to both orbits, i.e., a normal
vector Ni (i =1,2) to each orbital plane. The mutual inclination is the angle between N1

and N2, while the ascending mutual node corresponds to the pair of points of the orbits,
defined by the intersection of the two orbits with the mutual node line, that lies on the
same side with respect to the origin as the wedge product N1∧ N2 of the two orientation
vectors (see Figure 3).

M

ωM

ω

M

z

y

x

(1)

(2)

N

N2

1i

ascending mutual node

Figure 3. We draw some of the mutual elements for two orbits. Note the direction of the
orientation vectors N1, N2, that defines the mutual inclination iM and the mutual ascend-
ing node.
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from the ordinary cometary elements to the mutual elements, is not injec-
tive, actually there are infinitely many configurations that bring to the same
mutual position of the two orbits.10 We define an inverse of the map � by
selecting a set of elements (E1,E2) in each counter-image �−1 (EM):

E1 ={Q,E, i1,�1,ω1} ={Q,E,0,0,ω
(1)
M },

E2 ={q, e, i2,�2,ω2} ={q, e, iM,0,ω
(2)
M }.

(23)

Using the axial symmetry of conics we realize that the transformations{
ω

(1)
M →π −ω

(1)
M

ω
(2)
M →π −ω

(2)
M

{
ω

(1)
M →π +ω

(1)
M

ω
(2)
M →π +ω

(2)
M

{
ω

(1)
M →2π −ω

(1)
M

ω
(2)
M →2π −ω

(2)
M

give rise to the same critical values of the distance. Therefore we only need
to take into account the values of iM,ω

(1)
M ,ω

(2)
M in the following ranges:

iM ∈]0, π [; ω
(1)
M ∈ [0, π/2[; ω

(2)
M ∈ [0,2π [.

Furthermore the problem of the computation of the critical points of d2 is
invariant by homotheties with respect to the common focus of the conics,
therefore it is only important to know the ratio Q/q between the pericenter
distances, not their values separately.

Using mutual cometary elements and the map (23) we have been able to
perform a large number of numerical experiments with significantly differ-
ent orbital configurations, avoiding to compute the critical points of d2 for
configurations that give the same critical values. We have also identified
some cases with a high number of critical points.

In Figure 4 we show the level lines of the squared distance d2 for an
example with 10 critical points: note that one orbit is circular. The values
of the critical points, the corresponding values of d and the type of singu-
larity are displayed in Table I. This example could appear rather artificial,
but we can find cases with so many critical points even among the Near
Earth Asteroids: see for example the 10 critical points for the asteroid 2004
LG with respect to the Earth orbit on the NEODyS website.11

In Figure 5 we show the level lines of d2 for an example with 12 criti-
cal points, the maximal number of points that we have found within these
experiments: the values of the critical points, the corresponding values of d

and the type of singularity are displayed in Table II.

10E.g., we can rotate by the same angle both orbits around an axis passing through
the common focus without changing their mutual position.

11The Near Earth Asteroids Dynamic Site at the University of Pisa: web address
http://newton.dm.unipi.it/neodys
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Figure 4. Level curves of the squared distance for an example with 10 critical points: the
local extrema are marked with a plus while saddle points are marked with a cross.

TABLE I

An example with 10 critical points: in the table we write the corresponding values of the
true anomalies (in degrees), the values of the distance d and the type of singularity: note
that one of the two conics is a circle (see Table V).

V v Distance Type

164.70127 5.40234 0.51940 MINIMUM
3.18796 −141.16197 0.75687 MINIMUM

−39.54070 142.93388 0.86458 MINIMUM
60.52617 −92.83135 0.90461 SADDLE

−20.41060 175.23045 0.92827 SADDLE
−85.28388 104.70790 0.93224 SADDLE
−60.11674 −58.72173 1.44587 SADDLE

18.44302 57.90583 1.47347 SADDLE
−10.06618 15.74301 1.48171 MAXIMUM
162.29077 −179.41542 2.91897 MAXIMUM
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Figure 5. Level curves of the squared distance for an example with 12 critical points.

TABLE II

An example with 12 critical points.

V v Distance Type

120.68556 −9.33288 0.83357 MINIMUM
12.71196 −108.56712 0.86807 MINIMUM
59.69387 −70.40595 0.89802 SADDLE

−31.44700 107.56234 0.94700 MINIMUM
−127.41750 22.52194 0.95415 MINIMUM
−164.74517 10.89872 0.96957 SADDLE
−80.56016 65.78350 0.97555 SADDLE

29.32904 58.13570 1.03159 SADDLE
−54.54877 −27.88305 1.04803 SADDLE
−24.51761 3.34997 1.05248 MAXIMUM
−11.19971 178.71433 1.35307 SADDLE
176.16645 −179.01403 3.34646 MAXIMUM
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Figure 6. Level curves of the squared distance for an elliptic and a hyperbolic orbit: in
this case we find 2 minimum and 1 maximum points (see Table III).

In Figures 6, 7 we present two cases with an elliptic and a hyperbolic
orbit: we obtain in both cases 6 critical points, that is the largest number
that we have found with one unbounded orbit. In the second case we have
3 minimum, no maximum and 3 saddle points: this is possible only with
unbounded orbits because in this case the existence of a maximum point
is no more granted (the domain R × S1 is no more compact). The values
of the critical points, the corresponding values of d and the type of singu-
larity are given in Tables III and IV.

The mutual elements used for these 4 examples are given in Table V.
We also present in Table VI the results of the computation of the

MOID between asteroid orbits from the catalog of the ASTDyS website12

with absolute magnitude � 8 and semimajor axis � 10 AU : we write in
this table all the cases with MOID �0.001 AU . This kind of computations
gives a way to select in a short time pairs of asteroids suitable to be used

12The Asteroids Dynamic Site at the University of Pisa: web address http://ham-
ilton.dm.unipi.it/astdys
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Figure 7. Level curves of the squared distance for an elliptic and a hyperbolic orbit: in
this case we find three minimum and no maximum points (see Table IV). This is possible
only with unbounded orbits.

TABLE III

Critical points for the example in Figure 6.

V v Distance Type

−69.49877 −58.67705 0.34619 MINIMUM
76.74888 69.25935 0.81742 MINIMUM
46.83819 44.61670 0.83243 SADDLE

−169.88880 62.56604 4.94731 SADDLE
169.88879 −56.53012 5.00016 SADDLE
176.02598 −20.46019 5.00725 MAXIMUM

for the problem of mass determination. In fact we can use this algorithm
as a filter to select, among the orbits of all the asteroids, the ones with
low MOID with respect to the orbits of big asteroids; we can propagate
them forward in time and, if there are close approaches (possible only if the
MOID is small), we can study their deflection. Of course the computation
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TABLE IV

Critical points for the example in Figure 7.

V v Distance Type

−160.60362 66.66490 1.44214 MINIMUM
52.85975 −53.97302 1.48730 MINIMUM

138.66167 32.79549 1.50853 MINIMUM
160.43800 50.07380 1.51541 SADDLE
102.14938 −8.35202 1.52564 SADDLE
−73.55857 7.68511 2.18797 SADDLE

TABLE V

Mutual elements for the examples given in this section, with the number of the figures
they are referring to.

Figure number Q e1 q e2 iM ω
(1)

M ω
(2)

M

4 1.0 0.0 0.48 0.6 60.0◦ 16.0◦ 176.0◦

5 0.585 0.415 0.462 0.615 80.0◦ 8.0◦ 176.0◦

6 1.0 0.6 1.2 1.1 40.0◦ 73.0◦ 69.0◦

7 1.0 0.5 1.2 1.1 66.0◦ 4.0◦ 136.0◦

TABLE VI

The pairs of numbered asteroids with semimajor axis �10 and absolute magnitude H �8
such that the MOID of their orbits is �0.001 AU .

1st asteroid 2nd asteroid MOID (AU )
number H number H

10 5.360 48 6.920 0.0005346
7 5.460 20 6.400 0.0001038
7 5.460 115 7.470 0.0002608
6 5.660 43 7.600 0.0004686

532 5.880 511 6.170 0.0003827
16 5.910 324 6.850 0.0006213
39 6.050 61 7.510 0.0002160

9 6.210 804 7.720 0.0000740
14 6.270 144 7.880 0.0006550
52 6.270 579 7.710 0.0004601
52 6.270 211 7.720 0.0006535
20 6.400 55 7.630 0.0000689
11 6.480 13 6.690 0.0004247
11 6.480 17 7.510 0.0002454
31 6.660 416 7.620 0.0006301

471 6.680 230 7.290 0.0001094
471 6.680 194 7.550 0.0006347
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TABLE VI

Continued.

1st asteroid 2nd asteroid MOID (AU )
number H number H

57 6.730 104 7.970 0.0005222
324 6.850 104 7.970 0.0003598

27 6.890 116 7.710 0.0009039
130 6.950 100 7.500 0.0004337

28 6.960 17 7.510 0.0003593
216 6.970 179 7.940 0.0000599

23 6.970 702 7.240 0.0005057
192 7.050 849 7.920 0.0001213
202 7.060 674 7.240 0.0006416
250 7.270 595 7.810 0.0009579

51 7.290 287 8.000 0.0002824
128 7.310 110 7.600 0.0001421

37 7.320 85 7.450 0.0008676
42 7.340 145 7.950 0.0006918
96 7.480 55 7.630 0.0004209

148 7.500 152 7.990 0.0002459
194 7.550 154 7.640 0.0001583
194 7.550 779 7.830 0.0009616

54 7.640 579 7.710 0.0002502
76 7.770 595 7.810 0.0001334
76 7.770 168 7.830 0.0005114
59 7.910 762 7.960 0.0008442
70 7.960 152 7.990 0.0009790

of the MOID is only a first stage of a mass determination procedure; for
further details on this problem see for example (Kuzmanoski and Knežević,
1993).

9. Conclusions and Future Work

We have introduced an algebraic method to compute the critical points
of the distance function between two orbits: this algorithm can be effi-
ciently used to compute the MOID between two confocal orbits. We can
use the information given by the MOID for different purposes, for exam-
ple to measure the impact hazard of Near Earth Asteroids with the Earth.
The speed and robustness of this algorithm is such to allow also large scale
computations.
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Appendix

A1. ALGEBRAIC FORMULATION WITH THE ANGULAR SHIFTS

Using the variable change (13) and the relations

1+E cos(�+α)= 1
1+ z2

[
(1−E cosα)z2 −2zE sin α + (1+E cosα)

] ;
sin(�+α)= 1

1+ z2

[−z2 sin α +2z cosα + sin α
] ;

E + cos(�+α)= 1
1+ z2

[
(E − cosα)z2 −2z sin α + (E + cosα)

] ;
1+ e cos(ξ +β)= 1

1+w2

[
(1− e cosβ)w2 −2we sin β + (1+ e cosβ)

] ;
sin(ξ +β)= 1

1+w2

[−w2 sin β +2w cosβ + sin β
] ;

e+ cos(ξ +β)= 1
1+w2

[
(e− cosβ)w2 −2w sin β + (e+ cosβ)

] ;
we transform the problem (12) into the polynomial system

{
fα,β(z,w) = f4(w) z4 + f3(w) z3 + f2(w) z2 + f1(w) z+ f0(w)=0
gα,β(z,w) =g2(w) z2 +g1(w) z+g0(w)=0

(A1)

with

f0(w)=p(1+E cosα)
〈P sin α −Q(E + cosα), (1−w2)a+2wb

〉+EP sin α f β
e (w);

f1(w)=2p
〈
P [cosα +E(cos2 α − sin2

α)]+Q sin α(1+2E cosα +E2), (1−w2)a+2wb
〉

+2EP cosα f β
e (w);

f2(w)=−6pE sin α
〈P cosα +Q sin α, (1−w2)a+2wb

〉;
f3(w)=2p

〈
P [cosα −E(cos2 α − sin2

α)]+Q sin α(1−2E cosα +E2), (1−w2)a+2wb
〉

+2EP cosα f β
e (w);

f4(w)=−p(1−E cosα)
〈P sin α +Q(E − cosα), (1−w2)a+2wb

〉−EP sin α f β
e (w);

and

g0(w)=P f β
e (w)

〈
tβ
e (w),A〉+ ep(1+E cosα)(1+w2)

[− sin βw2 +2 cosβw + sin β
] ;

g1(w)=2P f β
e (w)

〈
tβ
e (w),B〉−2epE sin α(1+w2)

[− sin βw2 +2 cosβw + sin β
] ;

g2(w)=−P f β
e (w)

〈
tβ
e (w),A〉+ ep(1−E cosα)(1+w2)

[− sin βw2 +2 cosβw + sin β
]
.

where we have introduced the scalar factor

f β
e (w)= [(1− e cosβ)w2 −2we sin β + (1+ e cosβ)

]
,
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and the vector

tβe (w)=p
[−w2 sin β +2w cosβ + sin β

]
−q

[
(e+ cosβ)w2 −2w sin β + (e− cosβ)

]
.

Remark. By (13) we have sent to infinity the points with the V component
equal to π +α and the points with the v component equal to π +β.

A2. ELIMINATION OF THE VARIABLE Z AND FACTORIZATION

OF THE RESULTANT

The resultant Resα,β(w)=Res(fα,β(z,w),gα,β(z,w), z) is given by the deter-
minant of the Sylvester matrix

Sα,β(w)=

⎛
⎜⎜⎜⎜⎜⎜⎝

f4 0 g2 0 0 0
f3 f4 g1 g2 0 0
f2 f3 g0 g1 g2 0
f1 f2 0 g0 g1 g2

f0 f1 0 0 g0 g1

0 f0 0 0 0 g0

⎞
⎟⎟⎟⎟⎟⎟⎠

;

it is generically a 20th degree polynomial in the variable w.
We want to use the basic properties of the determinants to extract the

factor f
β
e (w) from the resultant. Let us define the following terms:

Aα
E = E sin α

1+E cosα
; Cα

E = E2 −1+E2 sin2
α

(1+E cosα)2
;

Bα
E = E sin α

1−E cosα
; Dα

E = E2 −1+E2 sin2
α

(1−E cosα)2
;

Eα
E = E sin α

(1+E cosα)3

[
3(E2 −1)+E2 sin2

α
]
;

Fα
E = E sin α

(1−E cosα)3

[
3(E2 −1)+E2 sin2

α
]
.

We perform these operations on the rows of Sα,β to factorize the resultant
Resα,β(w):

1. substitute the 3rd row with the linear combination

(3rd row)+Bα
E (2nd row)+Aα

E(4th row)+Dα
E(1st row)

+Cα
E (5th row)+Eα

E (6th row);
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2. substitute the 4th row with the linear combination

(4th row)+Bα
E (3rd row)+Aα

E (5th row)+Dα
E (2nd row)

+Cα
E (6th row)+Fα

E (1st row).

We obtain the matrix

S̃α,β(w)=

⎛
⎜⎜⎜⎜⎜⎜⎝

f4 0 g2 0 0 0
f3 f4 g1 g2 0 0

r3,1 r3,2 r3,3 r3,4 r3,5 r3,6

r4,1 r4,2 r4,3 r4,4 r4,5 r4,6

f0 f1 0 0 g0 g1

0 f0 0 0 0 g0

⎞
⎟⎟⎟⎟⎟⎟⎠

;

where

r3,1(w)= f2(w)+Bα
Ef3(w)+Aα

Ef1(w)+Dα
Ef4(w)+Cα

Ef0(w)=f β
e (w) r̃3,1;

r3,2(w)= f3(w)+Bα
Ef4(w)+Aα

Ef2(w)+Cα
Ef1(w)+Eα

Ef0(w)=f β
e (w) r̃3,2;

r3,3(w)=g0(w)+Bα
Eg1(w)+Dα

Eg2(w)=f β
e (w) r̃3,3(w);

r3,4(w)=g1(w)+Bα
Eg2(w)+Aα

Eg0(w)=f β
e (w) r̃3,4(w);

r3,5(w)=g2(w)+Aα
Eg1(w)+Cα

Eg0(w)=f β
e (w) r̃3,5(w);

r3,6(w)=Aα
Eg2(w)+Cα

Eg1(w)+Eα
Eg0(w)=f β

e (w) r̃3,6(w);
r4,1(w)= f1(w)+Bα

Ef2(w)+Aα
Ef0(w)+Dα

Ef3(w)+Fα
Ef4(w)=f β

e (w) r̃4,1;
r4,2(w)= r3,1(w);
r4,3(w)=Bα

Eg0(w)+Dα
Eg1(w)+Fα

Eg2(w)=f β
e (w) r̃4,3(w);

r4,4(w)= r3,3(w);
r4,5(w)= r3,4(w);
r4,6(w)= r3,5(w);

for some polynomials r̃i,j . It follows that

Resα,β(w)=det(S̃α,β(w))= [f β
e (w)

]2
det(Ŝα,β(t))

with

Ŝα,β(w)=

⎛
⎜⎜⎜⎜⎜⎜⎝

f4 0 g2 0 0 0
f3 f4 g1 g2 0 0

r̃3,1 r̃3,2 r̃3,3 r̃3,4 r̃3,5 r̃3,6

r̃4,1 r̃4,2 r̃4,3 r̃4,4 r̃4,5 r̃4,6

f0 f1 0 0 g0 g1

0 f0 0 0 0 g0

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Remark. The factor f
β
e (w) that can be collected with multiplicity 2 from

the resultant Resα,β(w), corresponds to the term 1 + e cos(ξ + β) in (12)
and has the roots

w1,2 = e sin β ±√
e2 −1

1− e cosβ
.

We can apply the strategy described in Subsections 4.3, 4.4 to compute the
roots of system (A1).

A3. SOME PARTICULAR CASES

Case e=0
The second equation in (12) gives us

〈
p sin(ξ +β)−q cos(ξ +β),A cos�+B sin �

〉
= 〈a sin ξ −b cos ξ,A cos�+B sin �

〉=0

so that, applying the variable change (13), we obtain

(w2 −1)
[〈b,A〉(1− z2)+2〈b,B〉z]+2w

[〈a,A〉(1− z2)+2〈a,B〉z]=0

whose degree in the variable w has decreased from 4 to 2 with respect to
the general case.

Case E =0
By a symmetry argument, applying (13) to the first equation in (12) we
obtain

(z2 −1)
[〈B,a〉(1−w2)+2〈B,b〉w]+2z

[〈A,a〉(1−w2)+2〈A,b〉w]=0

whose degree in the variable z has decreased from 4 to 2 with respect to
the general case.

Case e=1
The second equation in (12) can be written as

P [1+ cos(ξ +β)]
〈
p sin(ξ +β)−q [1+ cos(ξ +β)] ,A sin �+B cos�

〉
+p sin(ξ +β) [1+E cos(�+α)]=0.
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We observe that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1+ cos(ξ +β)= (1− cosβ)
(w −w+)2

1+w2

sin(ξ +β)=− sin β
(w −w+)(w −w−)

1+w2

where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w+ = cosβ +1
sin β

w− = cosβ −1
sin β

so that each of the terms g0(w),g1(w),g2(w) in (A1) has in this case a fac-
tor (w−w+). Applying the linear combinations used to compute the matrix
S̃α,β(w) we obtain a factor f

β

1 (w) = (1 − cosβ)(w − w+)2: thus, using the
basic properties of determinants, we can extract a factor (w − w+)8 from
the resultant Resα,β(w). These solutions have to be discarded because they
correspond to points at infinity on the parabolic orbit, as we can check
by passing to the limit for β → 0. Note that in this case the application
of the variable change (13) with β = 0 prevents from searching just these
points. After extracting the factor (w −w+)8 from Resα,β(w) we obtain a
12th degree polynomial, giving all the solutions for this case.

Case E =1
By a symmetry argument we can prove that the value of z corresponding
to

z+ = cosα +1
sin α

is a root with multiplicity 8 of Res∗
α,β(z)=Res(fα,β,gα,β,w)(z), that is the

resultant of the polynomials fα,β,gα,β with respect to the other variable w.
These roots have also to be discarded.

Note that using the angular shifts we can avoid a degenerate case discussed
before: we can select values α,β such that the degrees of fα,β,gα,β as poly-
nomials in the variable z are 4 and 2 respectively also for E=1. This allows
to compute Resα,β(w) as the determinant of the 6×6 matrix Sα,β(w) also
in this case.

A4. PAIRS OF REAL SOLUTIONS

We shall give a simple example of a polynomial system of two equations in
two variables, with real coefficients, such that the resultant computed with
respect to different variables gives a different number of real solutions. Let
us consider the system{

u(v2 +1)=0
v(u2 −1)=0

;
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the resultant with respect to v is

det

⎡
⎣u (u2 −1) 0

0 0 (u2 −1)

u 0 0

⎤
⎦=u(u2 −1)2,

while the resultant with respect to u is

det

⎡
⎣ v (v2 +1) 0

0 0 (v2 +1)

−v 0 0

⎤
⎦=−v(v2 +1)2 =0.

Thus we have 3 real solutions u=0,1,−1 (the last two with multiplicity 2
each) for the first equation, and only one real solution v=0 for the second
(the other solutions are v =±i with multiplicity 2 each).
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