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Abstract. The global regularizing transformations of the planar, circular restricted problem of three
bodies are studied. It is shown that all these transformations can be written in the same general form
which is the solution of a first order ordinary differential equation.
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1. Introduction

The equations of motion of the planar, circular restricted problem of three bodies
are (Szebehely, 1976)

ẍ − 2ẏ = �x, ÿ + 2ẋ = �y, (1)

where

� = 1

2

[
(1 − µ)r2

1 + µr2
2

] + 1 − µ

r1
+ µ

r2
,

r1 = [(x − µ)2 + y2]1/2, r2 = [(x + 1 − µ)2 + y2]1/2.

The configuration of the system is shown in Figure 1. Equations (1) determine
the motion of the third body P3 of negligible mass, the primaries P1 and P2 have
masses 1 − µ and µ, and coordinates (µ, 0), (µ − 1, 0), where µ is the mass
parameter (0 < µ� 0.5).

Equations (1) have one first integral, the Jacobian integral

ẋ2 + ẏ2 = 2� − C, (2)

where C is the Jacobian constant.
Equations (1) are singular for r1 = 0, r2 = 0, that is for collision of the third

body with either one of the primaries. Motion near or through collisions can be
studied only by using regularized equations of motion. There is an extended lit-
erature on regularization. Classical references can be found in Szebehely (1967),
and in Hagihara (1975). A recent treatment on regularization is given by Celletti
(2002).
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Figure 1. Configuration of the restricted three-body problem.

Regularization of the equations of motion can be achieved by coordinate and
time transformations. The time transformation is essential, the idea is to introduce
a new time scale in which the motion near singularity slows down. This can be
simply done by relating the new and old velocities in a way that we multiply the
old velocity by a variable which decreases towards the singularity thus balancing
the increasing velocity. Considering for simplicity a one dimensional motion

dx

dτ
= r

dx

dt
,

where τ is the new time variable, and r (= |x|) is the distance between the bodies.
From this

dt

dτ
= r, (3)

which is a special case of the Sundman type time transformation (Sundman, 1912).
Actually, other functions of r could be on the right hand side. It is good to remem-
ber that applying a time transformation the aim is to keep the regularized velocity
low, therefore the distances between the interested bodies should be present on the
right hand side of the equation of the time transformation.

It is convenient to write regularizing transformations in complex variables. In-
troducing z = x + iy (i = √−1), Equations (1) can be written as

z̈ + 2iż = �z, (4)

where �z = �x + i�y , and in � the distances are r1 = |z − µ|, r2 = |z + 1 − µ|.
A coordinate and time transformation can be written in a general form as

z = f (w),
dt

dτ
= g(w), (5)

where f is a complex and g a real function of the complex variable w = u + iv.
Assuming

g = h(w)h̄(w) = |h|2, (6)

where bar over h means complex conjugate, Equation (4) can be transformed into

w′′ +
(

f ∗∗

f ∗ − h∗

h

)
w′ 2 − h̄∗

h̄
|w′|2 + 2i|h|2w′ = |h|4

|f ∗|2 �w, (7)

where prime and star mean derivation according to τ and w, respectively.
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This equation can be simplified by eliminating the terms containing w′ 2 and
|w′|2. The term containing w′ 2 can be eliminated by assuming f ∗ = h. The price
of this is that the time transformation and the coordinate transformation are no
longer independent, but according to Equations (5) and (6)

z = f (w),
dt

dτ
= |f ∗|2. (8)

The term containing |w′|2 can be eliminated by using the Jacobian integral, which
in the new variables and already using the assumption f ∗ = h can be written as

|w′|2 = |f ∗|2(2� − C). (9)

After the simplification Equation (7) takes the form

w′′ + 2i|f ∗|2w′ = Uw, (10)

where

U = |f ∗|2(� − 1
2C). (11)

Equation (11) shows the essence of regularization: properly selecting the func-
tion f , which determines the time and coordinate transformations through Equa-
tions (8), the factor |f ∗|2 can simplify out the critical denominators r1 and r2 in the
potential function �.

2. Regularizing Transformations

Several regularizing transformations are known. The Levi-Civita (1906) parabolic
transformation

z = w2, (12)

can regularize a singularity in the origin of the coordinate system, and it is used to
regularize the planar case of the two-body problem. It can also be applied to the
restricted three-body problem, and for this it is enough to translate the origin of the
coordinate system to any one of the primaries. Thus

z = f (w) = w2 + µ,
dt

dτ
= |f ∗|2 = 4|w|2, (13)

regularize the equations of motion in P1. Since now r1 = |z − µ| = |w|2, thus
|f ∗|2 = 4r1, and this is the reason, why the singularity at P1 is transformed out.

Similarly,

z = f (w) = w2 − 1 + µ,
dt

dτ
= |f ∗|2 = 4|w|2, (14)
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regularize the equations of motion in P2. Now r2 = |z+1−µ| = |w|2, and |f ∗|2 =
4r2. The transformations (13) and (14) eliminate only one of the singularities,
therefore they are called local regularizations.

There are transformations, which can remove both singularities simultaneously.
These are called global regularizations (though mathematically they are local op-
erations). These transformations can be most conveniently given in a coordinate
system, where the primaries are located symmetrically with respect to the origin.
So we translate the origin of the coordinate system to the midpoint of the primaries
by the transformation

q = z + 1
2 − µ. (15)

Then the primaries will be located at q = ±1/2. The equation of motion (4)
changes to

q̈ + 2iq̇ = �q, (16)

where in � the distances are r1 = |q−(1/2)|, r2 = |q+(1/2)|. The transformations

q = f (w),
dt

dτ
= |f ∗|2, (17)

bring Equation (16) into Equation (10).
The Thiele–Burrau transformation, introduced by Thiele (1895) for µ = 0.5

and generalized by Burrau (1906) for arbitrary µ, is

q = 1
2 cos w. (18)

In this case |f ∗|2 = (1/4)| sin w|2, and since r1 = |(1/2) cos w − (1/2)|, r2 =
|(1/2) cos w + (1/2)|, thus |f ∗|2 = r1r2. Therefore the two critical denominators
r1 and r2 in the potential function � in Equation (11) are regularized together.

The Birkhoff (1915) transformation is

q = 1

4

(
2w + 1

2w

)
. (19)

It is easy to see that in this case |f ∗|2 = r1r2/|w|2. This function eliminates the
singularities at P1 and P2, however, it introduces a new singularity w = 0 in the
transformed plane. However, w = 0 corresponds to q = ∞ and thus all points in
the finite physical plane are regularized by this transformation.

Birkhoff’s transformation can be generalized to

q = 1

4

(
w2 + 1

w2

)
(20)

(Arenstorf, 1963; Deprit and Broucke, 1963). This transformation is called
Lemaître transformation due to its relation to the regularization of the general
problem of three bodies by Lemaître (1955). In this case |f ∗|2 = 4r1r2/|w|2.
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There are also other generalizations. Wintner (1930) generalized the Birkhoff
transformation, which in the midpoint coordinate system can be expressed as

q = 1

2

(w + (1/2))2n + (w − (1/2))2n

(w + (1/2))2n − (w − (1/2))2n
, (21)

where n is any positive integer.
Broucke (1965) generalized the Thiele–Burrau transformation to

q = 1
2 cos nw, (22)

and the Birkhoff transformation to

q = 1

4

(
wn + 1

wn

)
, (23)

where n is any nonzero real number.
The Thiele–Burrau, the Birkhoff, and the Lemaître transformations were in-

troduced at different times and by different reasonings. Therefore it is quite ex-
traordinary that all these transformations, and their generalizations as well, can be
written in the same general form

q = 1

4

[
h(w) + 1

h(w)

]
, (24)

where h(w) = eiw, 2w, w2, einw, wn for the Thiele–Burrau, the Birkhoff, the
Lemaître, and Broucke’s two transformations, while in the case of the Wintner
transformation

h = (w + (1/2))n + (w − (1/2))n

(w + (1/2))n − (w − (1/2))n
, (25)

as one can see.
It is an intriguing question, why all these transformations have the same general

form, and although Equation (24) is mentioned in Szebehely’s (1967) book in con-
nection with the Thiele–Burrau, Birkhoff and Lemaître transformations, however
there is no answer in the literature for this question.

3. Differential Equation of the Regularizing Transformations

Now we show that this interesting problem has a simple solution (Érdi, 1995). First
we note that in order to eliminate the singularities at r1 = 0, r2 = 0, it should be
that |f ∗|2 = γ (w)(r1r2)

n, where the unknown function γ (w) must be regular at the
singularities, and n is a nonzero integer. Considering n, if n > 1, then it follows
from Equation (11) that U = 0 at the singularities, and from Equations (9) and
(10) that also w′ = 0, w′′ = 0 at the singularities, that is a steady-state solution is
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obtained, where the third body P3 rests at the singularities, which can not be the
case. So necessarily it should be that n = 1.

Thus |f ∗|2 = γ (w)r1r2, and assuming that γ = |α(w)|2, where α(w) is un-
known, and considering that r1 = |q−(1/2)| = |f (w)−(1/2)|, r2 = |q+(1/2)| =
|f (w) + (1/2)|, the following first order differential equation can be obtained for
the function f (w), which determines the regularizing transformations (17)

df

dw
= α

√
f 2 − 1

4
. (26)

This equation can be integrated, giving

ln(2f +
√

4f 2 − 1) =
∫

α dw = β(w),

where β(w) is unknown, and the constant of integration may be set zero. Solving
this equation for f we obtain

f = 1

4

(
eβ + 1

eβ

)
. (27)

Taking the unknown function β(w) as β = ln h(w), where now h(w) is unknown,
Equation (27) leads to Equation (24)

q = f (w) = 1

4

[
h(w) + 1

h(w)

]
. (28)

Thus this equation represents the unique form of the global regularizing trans-
formations. It can be seen that

γ =
∣∣∣∣h

∗

h

∣∣∣∣
2

, (29)

thus for a regularizing function f (w) given by Equation (28), the critical multiplier
will be

|f ∗|2 =
∣∣∣∣h

∗

h

∣∣∣∣
2

r1r2, (30)

and here h(w) can be freely selected.
This gives a possibility to define global regularizing transformations, different

from the already known. The simplest case is when γ = 1. This can be achieved
for β = w, or β = iw. Actually, β = iw gives the Thiele–Burrau transformation,
while β = w results in f = (1/2) cosh w. Both transformations, written explicitly
in the coordinates, offer similar formalism of the equations of motion in elliptic
coordinates. Another example for γ = 1 is obtained for h = eiw/i, which results in
f = (1/2) sin w. All these transformations can be generalized to f = (1/2) cos nw
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(Broucke, 1965), f = (1/2) cosh nw, f = (1/2) sin nw, with γ = n2, where n is
any nonzero real number.

Considering Equation (28) it is natural to look for the simplest form of the
function h(w), and thus one may take a linear function h(w) = aw + b, with a,
b arbitrary constants. Among these transformations the only one which leaves the
primaries at their places is obtained for a = 2, b = 0, and this is the Birkhoff
transformation.

It seems that Equation (26) is not written in the literature. Interestingly, there are
similar kinds of equation in more general problems. In a four-body problem, where
three primaries of arbitrary masses move in circular orbits around their center of
mass in the Lagrangian equilateral configuration, and a fourth body of negligible
mass moves in their gravitational field, Giacaglia (1967) studied the following type
of equation in connection with global regularization∣∣∣∣df

dw

∣∣∣∣
2

= |α(w)|2|f − f1||f − f2||f − f3|.

For the global regularization of the magnetic-binary problem Mavraganis (1988)
solved the equation

∣∣∣∣df

dw

∣∣∣∣
2

= r3
1 r3

2 .

Other examples in more general cases can be found in Hagihara (1975).
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