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Abstract. Most asteroid discoveries consist of a few astrometric observations over a short
time span, and in many cases the amount of information is too limited to compute a full orbit

according to the least squares principle. We investigate whether such a Very Short Arc may
nonetheless contain significant orbit information, with predictive value, e.g., allowing to
compute useful ephemerides with a well defined uncertainty for some time in the future.
For short enough arcs, all the significant information is contained in an attributable, con-

sisting of two angles and two angular velocities for a given time; an apparent magnitude is also
often available. In this case, no information on the geocentric range r and range-rate _r is
available from the observations themselves. However, the values of ðr; _rÞ are constrained to a

compact subset, the admissible region, if we can assume that the discovered object belongs to
the Solar System, is not a satellite of the Earth and is not a shooting star (very small and very
close). We give a full algebraic description of the admissible region, including geometric

properties like the presence of either one or two connected components.
The admissible region can be sampled by selecting a finite number of points in the ðr; _rÞ

plane, each corresponding to a full set of six initial conditions (given the four component

attributable) for the asteroid orbit. Because the admissible region is a region in the plane, it
can be described by a triangulation with the selected points as nodes. We show that trian-
gulations with optimal properties, such as the Delaunay triangulations, can be generated by an
effective algorithm; however, the optimal triangulation depends upon the choice of a metric in

the ðr; _rÞ plane.
Each node of the triangulation is a Virtual Asteroid, for which it is possible to propagate the

orbit and predict ephemerides. Thus for each time there is an image triangulation on the

celestial sphere, and it can be used in a way similar to the use of the nominal ephemerides (with
their confidence regions) in the classical case of a full least square orbit.
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1. Introduction

In the last few years there has been an enormous increase in the rate of
asteroid discoveries. Most of this progress is due to the automated CCD
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surveys, such as Spacewatch, LINEAR, LONEOS, Catalina, NEAT. The
modes of operations of the automated surveys, although they may differ in
some details, are essentially the same. A number N of digital images of the
same area on the celestial sphere is taken within a short time span, typically
within a single night.1 Then the images are digitally blinked, that is a com-
puter program is run on this set of frames to identify all changes among
them. If an object is found to move along a straight line, with uniform
velocity, in all N frames, then it should be the detection of a real moving
object, provided the signal to noise ratio is large enough to make unlikely the
presence of exactly aligned spurious signals. If the image is found in less than
N frames it still can be a real object with marginal signal to noise, it could
have been covered by a star image in some of the frames, but it could also be
a spurious detection. Typically 3ONO5, and 2 hours is the time span be-
tween the first and the last observation. Such a detection is reported to the
Minor Planet Center (MPC) as a sequence of N observations; we shall call
such a sequence a Very Short Arc.

This operation mode is optimal for detecting moving objects of asteroidal
and cometary nature.2 Unfortunately, it is not at all optimal for determining
the orbit of the detected object: these arcs are, in most cases, too short for a full
orbit determination. When this is the case, we call the set of observations a
Too Short Arc (TSA). As it is well known from the theory of preliminary orbit
determination (Gauss, 1809; Danby, 1989), when three observations are used
to compute an orbit, the curvature of the arc appears as a divisor in the orbit
solution of Gauss’ method. The smaller is the curvature, the less accurate is
the orbit; taking into account the observational errors, in most cases it turns
out to be impossible to apply the usual computational algorithm, consisting of
a preliminary orbit determination by means of Gauss’ method followed by a
least squares fit (differential corrections). When starting from a TSA, either
Gauss’ method fails, or the differential correction procedure does not con-
verge. On the other hand, if the survey were to use longer intervals among the
individual frames, the curvature of the observed arc would be significant, and
this would enormously complicate the algorithms to detect from one frame to
another the moving images of the same object.

For this reason the TSAs are not considered discoveries, but just detec-
tions; this does not indicate that the observed object is fictitious, but just that
its nature cannot be determined. Indeed without an orbit it is not possible to
discriminate among different classes of objects, it is not possible to predict

1 This is why these short sequences of observations are called One Night Stand (ONS).
2 For transneptunian objects, with a much smaller proper motion, longer intervals of time

among the frames may be necessary to guarantee that the angular size of the observed arc

corresponds to a large enough number of pixels.
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ephemerides allowing for follow up and it is seldom possible to find an
identification with a known object with a reliable orbit. This has created a
complex tangle with discovery rights, accessibility of data, monopoly of
processing of non-public data, disagreement on the significance and value of
the ONS as the topics for hot and not always scientific discussions. We will
not enter into these discussions at all, but we want to find a positive scientific
solution to the problems created by the existence of large databases of TSAs.

Our research plan consists of several steps, of which only the first one is
complete and is presented in this paper; the basic idea is the following. A
TSA is recorded as a set of N observations, which means that a set of points
on a straight line is what is actually detected, with deviations from alignment
compatible with the random observational error. Thus from the TSA we can
compute the straight line, either by linear regression or by other fitting
procedure. Then a TSA is represented by an attributable,3 consisting of a
reference time (just the mean of the observing times), two average angular
coordinates and two corresponding angular rates for the reference time. An
attributable provides no information on the range (the radial distance) and
range rate at the reference epoch.

Our goal is to prove that attributables, and therefore TSAs, contain useful
information. They allow to extract information on the orbit of the object
being detected, as discussed in this paper, Sections 2 and 3; in fact, the range
and range rate are constrained if we assume that the object belongs to the
solar system, but not to the Earth–Moon system. The confidence region, as
defined in conventional orbit determination, is replaced by an admissible
region. An example of such region is shown in Section 4. How the admissible
regions can be efficiently sampled by Virtual Asteroids (VAs) is discussed in
Section 5; the VAs are not just a set of isolated points, but have a two
dimensional structure. The VAs allow to predict ephemerides in a generalized
sense, as discussed in Section 6.

The procedure to compute attributables may provide curvature information,
which can be used to decide which paradigm of orbit determination should be
used. Attributables can be used in identifications, not only in the attribution
case, but also to link together two TSAs with a preliminary orbit. They can be
used to detect Virtual Impactors (VIs), that is low probability future collisions
with our planet compatible with the TSA information. All this is, however, the
subject of ongoing research and will be reported in future papers.

Please note that we are not defining rigorously what a TSA is; that is, we
are not giving an upper bound on the number of observations and on the

3 The name attributable was introduced by Milani et al. (2001) with the intention of using
the same definition as a step for finding identifications with asteroids with known orbits; an

identification of this kind is called an attribution.
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length of the observed arc for a set of observations to be considered a TSA.
The reason is that only experience can tell us if the methods we are now
developing for one night arcs can be useful also for longer arcs; we suspect
that many two-night arcs could be conveniently processed with the method
we are developing for TSAs. Operationally, the definition is as follows: a
TSA is a set of observations for which the conventional orbit determination
process either fails, or does not provide useful information (i.e., the confi-
dence region is too large for practical use in whatever prediction).

We need to comment on the relationship between our work and results
already present in the literature. Virtanen et al. (2001) have introduced the
method of statistical ranging in a similar context, but there are significant
differences with respect to our approach. Instead of assuming the observation
of two angles and two angular rates at the same time, they assume the
observation of two angles at each one of two different epochs. Thus their
space of unknowns consists of the ranges at the two epochs, instead of the
range and range rate at the same epoch. Orbit determination can be per-
formed all the same, by solving a Lambert problem (see Danby, 1989,
Chapter 6). The disadvantage of their approach is that whenever two
observations are selected among the available ones they are both affected by
the random observational error. To take this error into account, they need to
sample the probability space of the observational error with a Monte Carlo
type method. An attributable is the result of a least squares fit to a line, thus
part of the accidental random error is already removed whenever there are
more than two observations. Moreover, Virtanen et al. sample at random
two ranges space to identify the admissible region without exploiting any a
priori geometric information on this region.

Tholen and Whiteley (submitted for publication) use a method in which
the space of the unknowns is explored with a regular grid. Although this is
more efficient than random sampling, it is less efficient than a sampling
adapted to the shape and geometric properties of the admissible region.
Anyway Virtanen et al. (2001) get to the main conclusion, on which we agree,
that ephemerides prediction is often possible, with an accuracy compatible
with, e.g., recovery planning, even when the conventional orbit determination
is impossible. In conclusion, we owe to these authors important insights
which have stimulated our research, but we are following a different ap-
proach.

2. The Admissible Region

We assume that at time t an asteroid A with heliocentric position P is ob-
served from the Earth, which is at the same time in P�.
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Let ðr; �; hÞ 2 Rþ � ½�p;pÞ � ð�p=2;p=2Þ be spherical coordinates for the
geocentric position P� P�.

DEFINITION 1. We shall call attributable a vector A ¼ ð�; h; _�; _hÞ 2
½�p;pÞ � ð�p=2;p=2Þ � R2, observed at a time t.

The reference system defining angles ð�; hÞ can be selected as necessary. We
almost always use an equatorial reference system (e.g., J2000), that is we use
the right ascension a for � and the declination d for h, but of course we could
use an ecliptic system without changing the equations in this paper.

Usually (although not always) the attributable also contains an average
apparent magnitude h if there is at least one measurement of the apparent
magnitude available.

Note that the geocentric distance r (the range) and the range rate _r are left
undetermined by the attributable.

The purpose of this section is to find conditions on r; _r under the
hypothesis that the object A belongs to the solar system, but not to the
Earth–Moon system. We use the following quantities:

Heliocentric two-body energy

E�ðr; _rÞ ¼
1

2
k _Pk2 � k2

1

kPk ; ð1Þ

where k ¼ 0:01720209895 is Gauss’ constant.

Geocentric two-body energy

E�ðr; _rÞ ¼
1

2
k _P� _P�k

2 � k2l�
1

kP� P�k
; ð2Þ

where l� is the ratio between the mass of the Earth and the mass of the Sun.

Radius of the sphere of influence of the Earth

RSI ¼ a�
l�
3

� �1=3

¼ 0:010044AU;

that is the distance from the Earth to the collinear Lagrangian point L2, apart
from terms of order l2=3� . Here a� is the semimajor axis of the orbit of the Earth.

Physical radius of the Earth

R� ’ 4:2� 10�5 AU

Note that we are using a system of units with 1 AU as unit of length and 1
ephemeris day as unit of time; we do not need to specify the unit of mass as
E�ðr; _rÞ and E�ðr; _rÞ are the energies per unit mass of the asteroid.
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Given an attributable A, the following four conditions have obvious
physical interpretation:

(A) D1 ¼ fðr; _rÞ : E�P0g (A is not a satellite of the Earth) ;
(B) D2 ¼ fðr; _rÞ : rPRSIg (the orbit of A is not controlled by the Earth) ;
(C) D3 ¼ fðr; _rÞ : E�O0g (A belongs to the Solar System) ;
(D) D4 ¼ fðr; _rÞ : rPR�g (A is outside the Earth).

DEFINITION 2. Given an attributable A, we define as admissible region the
domain

D ¼ D1 [ D2f g \ D3 \ D4:

Note that in setting the conditions (A)–(D) we have introduced the fol-
lowing assumptions:

1. The observer is assumed to be at the geocenter. This approximation could
be removed by replacing P�; _P� with the heliocentric position and velocity
of the observer (see Section 3.3), but then condition (D) should be mod-
ified.

2. The orbits of asteroids passing close to the Earth are affected by both the
attraction of the Sun and that of the Earth; taking into account a complete
three-body model would be very complicated. Thus conditions (A) and (B)
are approximate, and indeed there are objects in heliocentric orbit expe-
riencing temporary capture as satellites of the Earth, with E� < 0. How-
ever, this can happen only for very low relative velocities k _P� _P�k, and
the objects found in these conditions are often artificial, such as the upper
stages of interplanetary launch rockets (e.g. J002E34).

3. When the object is much farther away from the Earth than the Moon, that
is r >> 60 R�, we should use for l� the ratio between the mass of the
Earth–Moon system and the mass of the Sun.

4. In computing the radius of the sphere of influence we are neglecting the
eccentricity of the orbit of the Earth.

In spite of all these limitations, the conditions defining the admissible
region are a good approximation, and to find analytical formulae based on
definition 2 is a good starting point for further more accurate analysis.

2.1. EXCLUDING SATELLITES OF THE EARTH

We look for a simple analytical and geometric description of the region
satisfying condition (A).

4 http://planetary.org/html/news/articlearchive/headlines/2003/apollo12- debris.html.
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Spherical coordinates. The heliocentric position of A is given by

P ¼ P� þ r bR;
where bR is the unit vector in the observation direction. Using spherical
coordinates, the heliocentric velocity _P of A is

_P ¼ _P� þ _r bRþ r _� bR� þ r _h bRh;

where _P� is the heliocentric velocity of the Earth,

bR� ¼
@ bR
@�

; bRh ¼
@ bR
@h

:

Explicitly in coordinatesbR ¼ ðcos � cos h; sin � cos h; sin hÞ;bR� ¼ ð� sin � cos h; cos � cos h; 0Þ;bRh ¼ ð� cos � sin h;� sin � sin h; cos hÞ:
Furthermore we have

h bR; bR�i ¼ h bR; bRhi ¼ hr̂�; bRhi ¼ 0;

that is, the vectors bR, bR�, bRh define an orthogonal basis for R3. Note that
k bRk ¼ k bRhk ¼ 1 but k bR�k ¼ cos h, so that this basis is not orthonormal.

Geocentric energy. We shall use this formalism to compute the orbital
energies. For the geocentric energy (Equation (2)) we have

kP� P�k2 ¼ r2 ;

k _P� _P�k
2 ¼ _r2 þ r2 _�2 cos2 hþ r2 _h2 ¼ _r2 þ r2 g2;

where

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_�2 cos2 hþ _h2

q
is the proper motion. Condition (A) becomes

2E�ðr; _rÞ ¼ _r2 þ r2 g2 � 2k2l�
1

r
P 0;

that is

_r2P
2k2l�

r
� g2r2 :¼ GðrÞ;

where GðrÞ > 0 for

0 < r < r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2l�
g2

3

s
:

With regard to condition (B), if r0ORSI, the admissible region is defined by
_r2PGðrÞ; this occurs for
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r30 ¼
2k2l�
g2

OR3
SI ¼ a3�

l�
3

and, taking into account Kepler’s third law a3� n2� ¼ k2 (n� is the mean
motion of the Earth), we have

r0ORSI , gP
ffiffiffi
6

p
n�:

Otherwise, if r0 > RSI, the boundary of the region given by conditions (A),
(B) is formed by a segment of the straight line r ¼ RSI and two arcs of the
_r2 ¼ GðrÞ curve for 0 < r < RSI.

2.2. EXCLUDING INTERSTELLAR ORBITS

We look for the analytical and geometric description of the region satisfying
condition (C), in particular we would like to know if it is a connected region.
We will show it actually can have either one or two connected components.

Heliocentric energy. For the heliocentric energy (Equation (1)) we use the
heliocentric position and velocity in spherical coordinates:

kPk2 ¼ r2 þ 2rhP�; bRi þ kP�k2;

k _Pk2 ¼ _r2 þ 2 _rh _P�; bRi þ r2 _�2 cos2 hþ _h2
� �

þ 2rð_�h _P�; bR�i þ _hh _P�; bRhiÞ þ k _P�k
2
:

We introduce the notation:

c0 ¼ kP�k2; c3 ¼ _� c3;1 þ _h c3;2;

c1 ¼ 2h _P�; bRi; c4 ¼ k _P�k2;
c2 ¼ _�2 cos2 hþ _h2 ¼ g2; c5 ¼ 2hP�; bRi;

ð3Þ

where

c3;1 ¼ 2h _P�; bR�i;
c3;2 ¼ 2h _P�; bRhi;

so that

kPk2 ¼ r2 þ c5rþ c0 :¼ SðrÞ;
k _Pk2 ¼ 2T �ðr; _rÞ ¼ _r2 þ c1 _rþWðrÞ;
WðrÞ :¼ c2r

2 þ c3rþ c4:

By substituting in Equation (1), condition (C) reads

2E�ðr; _rÞ ¼ _r2 þ c1 _rþWðrÞ � 2k2ffiffiffiffiffiffiffiffiffi
SðrÞ

p O 0:
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Reality condition for the range rate. In order to have real solutions for _r, the
discriminant of E�, regarded as a degree 2 polynomial in _r, must be non-negative:

D�ðrÞ :¼
c21
4
�WðrÞ þ 2k2ffiffiffiffiffiffiffiffiffi

SðrÞ
p P 0:

Let us set c ¼ c4 � c21=4 (note that cP0), and define

PðrÞ :¼ c2r
2 þ c3rþ c;

then the energy condition (C) implies the following condition on r:
2k2ffiffiffiffiffiffiffiffiffi
SðrÞ

p PPðrÞ: ð4Þ

The degree 2 polynomial PðrÞ is non-negative for each r: it is the opposite of
the discriminant of the degree 2 polynomial T �ðr; _rÞ (regarded as a function of
_r). T � is a kinetic energy and is non-negative, thus its discriminant is non-
positive. Also SðrÞ is non-negative, thus we can square the left and right hand
side of (4) and obtain an inequality involving a polynomial of degree 6, namely

VðrÞ :¼ P2ðrÞSðrÞ ¼
X6
i¼0

Ai r
i; ð5Þ

with coefficients

A6 ¼ c22;

A5 ¼ c2ð2c3 þ c2c5Þ;
A4 ¼ c23 þ 2c2cþ 2c2c3c5 þ c0c

2
2;

A3 ¼ 2c3cþ c5ðc23 þ 2c2cÞ þ 2c0c2c3;

A2 ¼ c2 þ 2c3c5cþ c0ðc23 þ 2c2cÞ;
A1 ¼ c5c

2 þ 2c0c3c ;

A0 ¼ c0c
2:

After squaring, condition (4) becomes VðrÞO4k4.

Connected components of D3. The main result of this section is the following

THEOREM 1. The region D3, defined by condition (C), has at most two
connected components.

Proof. To prove the theorem we need the two following lemmas:

LEMMA 1 (Existence of solutions). If either g or c is positive,5 then there are
at least two solutions of

5 In the completely degenerate case g ¼ c ¼ 0 there are solutions for _r for all values of r. This
is a very strange situation, with both r̂ and the velocity of the asteroid parallel to the velocity of

the Earth.
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VðrÞ � 4k4 ¼ 0; ð6Þ
one positive and the other negative.

Proof. The value of the polynomial at the origin is

Vð0Þ � 4k4 ¼ c0 c
2 � 4k4Oc0 c

2
4 � 4k4

¼ kP�k2 k _P�k4 � 4k4

which is always strictly negative because the heliocentric orbital energy of the
Earth

1

2
k _P�k2 �

k2

kP�k
is strictly negative.6 The leading coefficient A6ð¼ g4Þ is non-negative. If it is
not zero, we have limr!�1 VðrÞ ¼ þ1 and we have at least one positive and
one negative real root.

If A6 vanishes, that is if c2 ¼ 0 (thus g ¼ _� ¼ _h ¼ c3 ¼ 0) and c > 0, then
VðrÞ � 4k4 is a degree 2 polynomial with two real roots, one positive and one
negative. (

LEMMA 2. The equation V 0ðrÞ ¼ 0 cannot have more than three distinct
solutions. If it has exactly three distinct real roots, then there cannot be any
root with multiplicity 2.

Proof. The derivative

V 0ðrÞ ¼ PðrÞ 2P0ðrÞSðrÞ þ PðrÞS0ðrÞ½ �:
is a degree 5 polynomial.

Note that PðrÞP0 for all r, thus it has either no real roots or just one
double real root.

In the first case, if PðrÞ > 0 then V 0ðrÞ=PðrÞ, being a degree 3 polynomial,
has at most three real roots, and so does V 0ðrÞ.

In the second case, if PðrÞ has a double root, then this is a root with
multiplicity three of V 0ðrÞ, and there are at most two other roots.

If V 0ðrÞ has three distinct real roots including a multiple one, then there is
one root �r of PðrÞ which must be at least a triple root of V 0ðrÞ; the other two
have to be simple. (

To conclude the proof of the theorem we observe that:

(i) by Rolle’s theorem, between two roots of Equation (6) there must be a
root of V 0ðrÞ;

6 The topocentric correction would not be enough to make the heliocentric energy of the

observer positive.
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(ii) there cannot be an odd number of real roots of Equation (6) (counted
with their multiplicity), as VðrÞ is a real polynomial with even degree;

(iii) at least two real roots of Equation (6) have odd multiplicity.

Using Lemma 1, Lemma 2 and the remarks above we are left only with the
following possibilities:

(i) four distinct and simple roots (see Figure 2);
(ii) three distinct roots, two simple and one with even multiplicity (the

component at large r reduces to a point);
(iii) two distinct roots, one simple and the other one with odd multiplicity

(the admissible region has only one component, see Figure 1). (

From the above arguments the theorem immediately follows.
In Figure 2 we show an example in which the region D3 has two connected

components: we have used for the attributable the value ð�; h; _�; _hÞ ¼
ð0; 0;�0:09; 0:01Þ, with �; h in degrees, _�; _h in degrees per day. We have
plotted also the level curves for small positive and small negative values of
E�, showing the qualitative change.

2.3. CLOSE APPROACHES

To understand the global structure of the admissible region D we need to find
possible intersections between the E� ¼ 0 curve and the E� ¼ 0 curve.
However, these intersections are physically meaningful only if they occur for
R� < r < RSI, that is, during a close approach to the Earth, but above its
physical surface. The following result indicates that these intersections occur

Figure 1. The qualitative features of the admissible region: if condition (A) or (B) are satisfied,
we obtain the domain D1 \ D2 drawn on the left. If we set also condition (C), we are left with

the domain sketched in the middle plot. Adding condition (D), we end up with the admissible
region D, sketched in the plot on the right. We stress that this figure is only qualitative and
that it refers to a case with only one connected component (see Section 2.2).
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only where it does not matter; it also implies that the admissible region does
not have more connected components than the region satisfying condition
(C).

THEOREM 2. For R�OrORSI the condition E�ðr; _rÞO0 implies E�ðr; _rÞO0.
Proof. By the triangular inequality, to prove that E�ðr; _rÞO0 it is enough

to prove that

k _P� _P�k þ k _P�k
� �2

O
2k2

kP� P�k þ kP�k
:

We observe that

E�ðr; _rÞO0 , k _P� _P�kO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2l�

kP� P�k

s
: ð7Þ

Using relation (7) we thus only have to prove that

2k2l�
r

þ k _P�k
2 þ 2k _P�k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2l�

r

r
O

2k2

rþ kP�k
for R�OrORSI. This is equivalent to prove that in this interval the function

FðrÞ ¼2k2l� rþ kP�kð Þ þ rðrþ kP�kÞk _P�k
2

þ 2k _P�k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2l�

q ffiffi
r

p
ðrþ kP�kÞ � 2k2r

is negative.
To describe the qualitative features of FðrÞ we start by decomposing the

derivative F 0ðrÞ as follows:

–4 –3.5 –3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1
–0.02

–0.015

–0.01

–0.005

0

0.005

0.01

0.015

0.02

0 2 4 6 8 10 12 14 16 18
–0.02

–0.015

–0.01

–0.005

0

0.005

0.01

0.015

0.02

Figure 2. We show an example with two connected components. On the left we plot three level

curves of E�, including the zero level curve, and E� ¼ 0 (dashed curve) in the plane ðr; _rÞ; on
the right we draw the same plot in the plane ðlog10ðrÞ; _rÞ. The dashed line denotes RSI.
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F 0ðrÞ ¼ g1ðrÞ þ g2ðrÞffiffi
r

p ;

where

g1ðrÞ ¼
ffiffi
r

p
½C þ 2k _P�k

2
r�;

g2ðrÞ ¼ k _P�k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2l�

q
½3rþ kP�k�;

with

C :¼ 2k2l� þ kP�kk _P�k
2 � 2k2;

note that CO� 2:8075� 10�4 < 0.
The second derivative g001ðrÞ is positive for each r > 0 so that, for convexity

reasons, the graphs of the functions g1 and �g2 can intersect at most twice for
r > 0.

Hence F 0ðrÞ has at most two zeros for r > 0. Taking also into account the
following:

lim
r!þ1

FðrÞ ¼ þ1; Fð0Þ ¼ 2k2l�kP�k > 0; lim
r!0þ

F 0ðrÞ ¼ þ1:

we conclude that FðrÞ cannot have more than two zeros for r > 0.
Finally, by using the estimates FðR�ÞO� 2:49� 10�10 < 0 and

FðRSIÞO� 2:6346� 10�6 < 0, we conclude that FðrÞ < 0 for R�OrORSI,
and this completes the proof of the theorem. (

Note that Theorem 2 applies only for particular values of the mass, radius
and orbital elements of the planet on which the observer is located. It is a
physical property of the Earth, not a general property of whatever planet; it
depends on the values of the parameters, which are detailed below. A larger
planet, such as Jupiter, can have satellites whose velocity would be hyperbolic
with respect to the Sun, if Jupiter was not controlling the orbit; the Earth can
not have satellites with this behavior.

Numerical values used in the estimates: l� ¼ 1=328900:5614; R� ¼ 4:24�
10�5; k ¼ 0:01720209895; a� ¼ 1:0; e� ¼ 0:0167.

From the expressions

kP�k ¼ a�ð1� e� cosðu�ÞÞ;

k _P�k2 ¼ k2
2

r�
� 1

a�

� �
;

it follows that

max kP�k ¼ 1:0167; max k _P�k ¼ 0:0175:
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We have obtained the upper bounds for FðR�Þ and FðRSIÞ by using the
maximum values of the length of the heliocentric position and velocity of the
Earth along an elliptic orbit with the osculating e�.

2.4. THE BOUNDARY OF THE ADMISSIBLE REGION

We can now give a complete description of the boundary of the admissible
region D. It consists of:

1. part of the algebraic curve E� ¼ 0 for r > 0. If Equation (6) has three
positive roots there is another component, consisting of a simple closed
curve, at larger values of r: this includes the case when this curve reduces
to a single point, if Equation (6) has a double positive root;

2. two segments of the straight line r ¼ R�;
3. two portions of the curve _r2 ¼ GðrÞ (corresponding to E� ¼ 0) and one

segment of the straight line r ¼ RSI if RSI < r0; if RSIPr0 the two portions
of the _r2 ¼ GðrÞ are joined at r ¼ r0.

Thus the admissible region consists of at most two connected components,
and it is compact being the inside of a finite number of closed continuous
curves.

2.5. A SIMPLIFIED CASE

Let us compute the admissible region in a simplified case, obtained assuming
the Earth on a circular orbit: e� ¼ 0. We also assume a� ¼ 1 and n� ¼ k,
that is we are neglecting the terms of the order of l� in the orbit of the Earth
and all other planetary perturbations.

Let us consider, for instance, coordinates �; h such that h is the ecliptic
latitude of A and � is the angle between the opposition and the projection of
A onto the ecliptic plane. These coordinates are singular for h ¼ �p=2, that is
for observations at the ecliptic pole.

Within these approximations P� ¼ ð1; 0; 0Þ and _P� ¼ ð0; k; 0Þ; thus
c0 ¼ 1; c3 ¼ 2kð_� cos � cos h� _h sin � sin hÞ;
c1 ¼ 2k sin � cos h; c4 ¼ k2;

c2 ¼ _�2 cos2 hþ _h2; c5 ¼ 2 cos h cos �:

ð8Þ

Note that c3=2k is the time derivative of the y coordinate of bR. The coeffi-
cients of the inequalities defining D3 are simpler than in the general case, but
still too complicated to extract information on the number of connected
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components for all �; h; the computation becomes simple only for some
special values of the angles.

Some special cases. For � ¼ �p=2 (at quadrature) we have c5 ¼ 0 and
c3 ¼ �2k dðcos hÞ=dt and the coefficients of VðrÞ are

A6 ¼ c22 > 0; A2 ¼ c2 þ c0ðc23 þ 2c2cÞ > 0;

A5 ¼ 2c2c3; A1 ¼ 2c0c3c;

A4 ¼ c23 þ 2c2cþ c0c
2
2 > 0; A0 ¼ c0c

2:

A3 ¼ 2c3cþ 2c0c2c3;

In this case sgnðA5Þ ¼ sgnðA3Þ ¼ sgnðA1Þ ¼ sgnðc3Þ. For c3P0 the number
of variations of signs in the sequence of the coefficients of VðrÞ � 4k4 is only
one and we have only one positive root, that is only one connected com-
ponent. Note that for h ¼ 0, at the exact quadratures, we have c3 ¼ 0, and
also in this case there is only one connected component.

For � ¼ 0 (at opposition) c5 ¼ 2 cos h > 0 and c3 ¼ 2k_� cos h. If c3P0,
that is _�P0 (non-retrograde proper motion), again the coefficients
Ai; i ¼ 1 . . . 6, are positive and there can be only one positive root of
VðrÞ ¼ 4k4. However, unlike the case of the quadratures, at the exact
opposition (� ¼ h ¼ 0) there could be two connected components, provided
the motion is retrograde.

If the computation is performed with a different coordinate system ðr;~�; ~hÞ
non-singular at the ecliptic poles, as an example such thatbR ¼ ðsin ~h; cos ~� cos ~h; sin ~� cos ~hÞ
then in the plane ~h ¼ 0 (orthogonal to the direction of the Sun) c5 ¼ 0 and
c3 ¼ �2k_~� sin~� ¼ �2kdðcos~�Þ=dt. By the same argument used above, for
c3P0 there can be only one connected component of the admissible region,
but this is not guaranteed for c3 < 0.

3. The Inner Boundary

The results of Section 2 provide a complete topological and analytical
description of the admissible region. From the metric point of view, the
results are not completely satisfactory, because the near edge is too close to
the observer. Actually, if the topocentric correction is taken into account, the
constraint (D): rPR� has no meaning and the admissible region always
extends down to an arbitrarily small distance from the observer. This is an
unpleasant, but rather intuitive result: an object very close and heading di-
rectly toward the observer can have an arbitrary proper motion, including a
very small one.
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Thus we are led to consider other ways to constrain from below the
distance from the observer. We are discussing in this section two conditions
defining the inner boundary, which could be used as a replacement for
condition (D).

3.1. SHOOTING STARS

An alternative condition giving a lower limit to the distance is that the object
is not a shooting star (very small and very close). We can assume that the size
is controlled by setting a maximum for the absolute magnitude H:

ðEÞ D5 ¼ fðr; _rÞ : HðrÞ OHmaxg:
If some value of the apparent magnitude is available, then the absolute

magnitude H can be computed from h, the average of the measured apparent
magnitudes:

H ¼ h� 5 log10 r� xðrÞ; ð9Þ
where the correction xðrÞ accounts for the distance from the Sun and the
phase effect (see the official IAU definition of absolute magnitude, Bowell
et al., 1989). However, for small r (e.g., r < 0:01 a.u.) the correction xðrÞ has a
negligible dependence upon r because the distance from the Sun is ’ 1 AU
and the phase is close to the angle between the direction bR and the opposition
direction. Thus we can approximate xðrÞ with the quantity x0 independent of
r. Moreover, we are using r, the distance at the reference time t, for all the
epochs of the observations including photometry; this is a fair approximation
unless the relative change of distance during the time span of the observed arc
is relevant, which can happen only for very small distances. In this approx-
imation, condition (E) becomes

Hmax PH ¼ h� 5 log10 r� x0

or, equivalently

log10 rP
h�Hmax � x0

5
:¼ log10 rH;

that is, given the apparent magnitude h, there is a minimum distance rH for
the object to be of significant size. If we use Hmax ¼ 30 (a few meters
diameter) then, for example, at opposition (where x0 ¼ 0):

h ¼ 20 ) rP 0:01AU; h ¼ 15 ) rP 0:001AU:

In any case, the absolute magnitude of the object is not a function of _r and
the region satisfying condition (E) is just a half plane rPrH. Provided rHPR�
(forHmax ¼ 30 this occurs for hP8:1) it is possible to use the same arguments
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of Section 2.3 to show that the geometry of the admissible region does not
become more complicated when condition (D) is replaced by condition (E).
On the contrary it is quite possible that this geometry becomes simpler. If
h > 20 the entire sphere of influence of the Earth is excluded by condition
(E), thus conditions (B) is implied by (E) and condition (A) becomes irrele-
vant.

3.2. IMMEDIATE IMPACTORS AND JUST LAUNCHED BODIES

We may exclude from the admissible region D the values of ðr; _rÞ such that an
object with proper motion g cannot avoid collision with the Earth within a
short time from the epoch of the attributable. In the same way we may
exclude the values of ðr; _rÞ leading to a contact with the Earth in the
immediate past, that is we are not considering objects just launched from our
planet. We assume that the motion is rectilinear, a valid approximation
provided the time is short enough. We also neglect the topocentric correction
(Figure 3).

This additional condition (F) can be expressed as

gr2

j _rj PR�: ð10Þ

This condition may be included in a more restrictive definition of
admissible region whenever we are not interested in a late warning system,

P

dr/dt

η  r

Earth

Figure 3. Immediate impact trajectory.
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monitoring for possible impacts within a day or so. In other cases we may be
interested also in the cases of orbits violating condition (F), at least for the
immediate impact case: as an example, we may be interested in discovering
fireballs before they enter the atmosphere. As it is clear by comparison with
condition (E), these immediately impacting objects need to be very small,
unless the detection is extremely bright. In practice condition (F) is, for most
attributables, less important than condition (E), unless Hmax is very large,
that is, unless we are searching for very small meteoroids.

3.3. MODIFIED ADMISSIBLE REGION

In the following we shall use a definition of the admissible region modified as
follows:

(1) condition (E) replaces condition (D);
(2) In the computation of condition (C), the topocentric correction is applied,

that is P� and _P� actually indicate the heliocentric position and velocity
of the observer;

(3) condition (C) is replaced by E�O � k2=ð2amaxÞ; this is done to exclude
comets with a long period, e.g. with amax ¼ 100 AU.

We are not using condition (F), and we are not applying the topocentric
correction for the computation of condition (A); these additional modifica-
tions would not be effective in defining a more realistic admissible region
while making its geometry much more complicated.

4. An Example

To provide an illustrative example, we have chosen the asteroid 2003 BH84,
discovered from the European Southern Observatory on 25 January 2003.
The four observations on that night span only 1 hour and 40 minutes in time,
and the proper motion was g ¼ 0:35� per day. We first computed the
attributable by a linear fit7 and then we computed the admissible region by
applying the algorithms described in the previous sections. The maximum
distance r compatible with the modified admissible region (that is, with a
semimajor axis a < 100AU) was 4:46AU.

Nevertheless the information contained in the attributable, computed by
using only the first night of observations, was enough to conclude that this

7 A quadratic fit was also computed, but the curvature was found not to be significant with

respect to the random observational errors.
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Figure 4. By using only the first night of observations of 2003 BH84 we have plotted in the
ðr; _rÞ plane: above, the level curves corresponding to a ¼ 1:2, 1.5, 2, 3, 4, 5.2, 10AU, e ¼ 0:2,
0.4, 0.6, 0.8, 1 and the inner boundary corresponding to the magnitude limit Hmax ¼ 22

(dashed vertical line); below, the level curves q ¼ 1, 1.3, 1.6, 2, 4AU (solid), Q ¼ 2, 3, 5, 10,
30AU (dashed) and I ¼ 10�, 20�, 30�, 60�, 90�, 120� (solid).
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object could be neither a main belt asteroid nor a Hungaria. For a fine grid of
points in the ðr; _rÞ plane we compute a set of orbital elements, uniquely
determined by the values of ða; d; _a; _d; r; _rÞ.8 We then plot the contour lines
of ða; e; IÞ on Figure 4, and find that a moderate value of e is possible for
either a low value of a (e.g., an Athen type orbit) or for I > 120. By also
inspecting the level curves of q ¼ að1� eÞ, Q ¼ að1þ eÞ and in the same
figure we can conclude that the most likely interpretation of the first night of
data is that the object is a Near Earth Asteroid (NEA), with q < 1:3, the
other possibilities being a retrograde orbit and an object whose orbit is close
to that of Mars. The crosses in the two plots mark the actual values of r, _r as
determined a posteriori, after the asteroid was recovered.

5. Sampling the Admissible Region

The admissible region is anyway an infinite set, thus we cannot proceed with
computations (e.g., of ephemerides) for all points. We need to sample the
admissible region with a finite, and not too large, subset of points. In order to
sample we define an algorithm to triangulate the admissible region: the nodes
of the triangulation will give us a sample, the edges joining them and the
triangles provide additional structure. First we select a number of points on
the boundary and produce an initial triangulation using these boundary
points as nodes. Then we add nodes inside the admissible region and change
the edges to achieve a triangulation with the optimal properties described
below.

5.1. SAMPLING OF THE BOUNDARY

The boundary of the admissible region has an outer part, given by arcs of the
curve E�ðr; _rÞ ¼ 0 (symmetric with respect to the line _r ¼ �c1=2); the curve
E� ¼ �k2=ð2amaxÞ used as outer boundary of the modified admissible region
is also symmetric. The boundary also has an inner part consisting of some
combination of arcs of the curve E�ðr; _rÞ ¼ 0 (symmetric with respect _r ¼ 0)
and of segments of the lines r ¼ rH; r ¼ rSI.

The symmetry with respect to the line _r ¼ �c1=2 allows us to perform the
computations only for the lower region ( _rO� c1=2) of the exterior boundary,
from r ¼ rH to the maximum value rmax such that the discriminant D�ðrÞ
vanishes. Then we perform the sampling of the inner boundary, using the
symmetry with respect to _r ¼ 0 of the E� ¼ 0 curve.

8 These quantities define a set of initial conditions for the asteroid orbit at epoch t� dt,
where dt ¼ r=c is the light travel time.
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The intersection points among the lines and the curves are always included
in the boundary sampling, unless there are some too close: in this case we
simplify the boundary by using a shortcut, at the price of including in the
triangulation a small portion outside of the admissible region.

The admissible region may sometimes have two connected components
when the discriminant D�ðrÞ has three positive roots. In this case we perform
a separate sampling of the boundaries of the two components.

In addition we would like to select points that are equispaced on the
boundary, that is, if the boundary is parameterized by the arc length s, then
the distance of each couple of consecutive points corresponds to a fixed
increment of s.

To avoid the computation of the arc length parameter we use the fol-
lowing idea. We choose a large number of points, equispaced in the abscissa
and then we use an elimination rule to be iterated until we are left with a
desired number of points. It can be shown (see the Appendix) that the
remaining points are close to the ideal distribution, equispaced in arc length.

The number of points used to sample the boundary has to be limited for
practical reasons, because, as will be shown in the following subsection, the
final number of Virtual Asteroids is proportional to the number of boundary
points, and the computational cost of whatever prediction depends upon the
number of VAs.

5.2. OPTIMAL TRIANGULATION

Let us consider the domain eD � D, defined by connecting with edges the
boundary points of the admissible region: we shall define a method to tri-
angulate eD. Let us start with some definitions.

A triangulation of the polygonal domain eD is a pair ðP; sÞ, where
P ¼ fP1; . . . ;PNg is a set of points (the nodes) of the domain, and
s ¼ fT1; . . . ;Tkg is a set of triangles with vertices in P.

We shall use Ti also for the convex hull of the points in Ti. With this
notation we search for a triangulation with the following properties:

(i)
S

i¼1;k Ti ¼ eD;
(ii) for each i 6¼ j the set Ti \ Tj is either the empty set or a vertex or an edge of

a triangle.

To each triangulation ðP; sÞ we can associate the minimum angle, that is the
minimum among the angles of all the triangles Ti.
Among all possible triangulations of a convex domain, there is a well-known
construction, called the Delaunay triangulation (see Bern and Eppstein, 1992),
characterized by the following properties:
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(i) it maximizes the minimum angle;
(ii) it minimizes the maximum circumcircle;
(iii) for each triangle Ti, the interior part of its circumcircle does not contain

any nodes of the triangulation (Risler, 1991).

The above properties are equivalent if the domain is convex.
If the domain is a convex quadrangle whose vertexes P are not on the

same circle, then there exist two possible triangulations ðP; s1Þ, ðP; s2Þ: by
property (iii), only one of these is Delaunay’s (see Figure 5). In this case the
Delaunay triangulation can be obtained from the other one by an edge-
flipping technique, which consists of substituting the diagonal P1P3 (not-
Delaunay edge) of the quadrangle, corresponding to the common edge, with
the diagonal P2P4 (Delaunay edge). Note that the edge-flipping also results in
an increase of the minimum angle.

If, in addition to the set of pointsP, we give as input also some edges PiPj,
for example the boundary edges as we do for eD, we refer to this input as
planar straight line graph, and to the corresponding triangulation containing
the prescribed edges as a constrained triangulation.

Note that the domain eD is in general not convex: in this case we can give as
input the edges along the boundary. Then there still exists a constrained tri-
angulation that maximizes the minimum angle (also minimizes the maximum
circumcircles, that is with properties (i) and (ii)), called constrained Delaunay
triangulation (Bern and Eppstein, 1992) but property (iii) is not guaranteed.

Figure 5 suggests how to transform any triangulation of eD into a con-
strained Delaunay: for each triangle Ti, we iterate a procedure over the
adjacent triangles; if the common edge with an adjacent triangle is not a
Delaunay, we apply the edge-flipping technique. Repeating this procedure

P1 P1

T

T
T

T1

1
2

2

P
P

P4

P2

P3

P4

2

3

(A) (B)

Figure 5. Possible triangulations of the quadrangle P1P2P3P4: the one in (A) is a Delaunay

triangulation. We mark in both cases the minimum angle and we draw the circumcircles
corresponding to triangle P2P3P4 (left plot) and to triangle P1P2P3 (right plot).
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until all edges of the triangulation are Delaunay’s or edges of the boundary ofeD, at each step the minimum angle increases and at the end we obtain the
triangulation that maximizes the minimum angle (Delaunay, 1934).

The procedure adopted to triangulate our domain uses as input the sam-
pling of the boundary described in Section 5.1 and the polygon formed by
these boundary points. The first phase is to generate a constrained Delaunay’s
triangulation ðP0; s0Þ with these boundary points and boundary edges.

Once the initial triangulation is obtained, the second phase is to refine it by
adding new points, internal to the domain, keeping at each insertion the
Delaunay property. At each step we add a new point extending to the internal
part of the domain the discrete density defined on the boundary points by the
quantities9

qðPjÞ ¼ min
l 6¼j

dðPl � PjÞ;

where d is some distance (see Section 5.3). Let Gi be the barycenters of the
triangles Ti; we define the corresponding densities

~qðGiÞ ¼
1

3

X3
m¼1

qðPimÞ

(Pim ;m ¼ 1 . . . 3, belongs to the same triangle Ti) and we add as new point the
barycenter G�k that maximizes the minimum distance (weighted with its
density qðG�kÞ) from the nodes of the triangulation. Then we eliminate the
corresponding triangle T�k and we add to s the triangles obtained joining the
edges of T�k with the new point (keeping at each triangle insertion the Del-
aunay’s optimal property by means of the edge–flipping technique). We
iterate this insertion procedure while

max
Gi

min
j

dðGi;PjÞ
~qðGiÞ

� 	
 �
> r; ð11Þ

where r is a fixed small parameter. In (de’ Michieli Vitturi, 2004) it is shown
that, if we denote with n0 the number of points on the boundary of length
lð@ eDÞ, the following results holds:

THEOREM3.The algorithm converges and the final number of triangles is less than

lð@ eDÞ n0ffiffiffi
3

p
r

:

When no new points need to be added, either because some maximum
number has been reached, or because the convergence criterion (11) has been
reached, we begin the third phase of the procedure.

We apply to the triangulation obtained as above a mesh improvement tech-
nique, generalizing the Laplacian smoothing (seeWinslow, 1964; Field, 1988). We

9 q
Pj
is indeed an approximation of the inverse of a density function.
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move every internal point Pj of the triangulation to the center of mass (weighted
with the density defined above) of the polygon formed by all its neighboring
points (i.e. the ones connected to Pj by an edge), if it lies inside the polygon.

This technique improves the quality of the triangulation, but it can pro-
duce a triangulation that is not Delaunay’s, so that we apply again the edge-
flipping technique at the end of the smoothing algorithm.

The final result is a triangulation optimal from the point of view of
property (i), that is avoiding as much as possible ‘flattened’ triangles.

5.3. SELECTION OF A METRIC

The definition of Delaunay triangulation uses distances and angles, thus it
depends on the metric selected for the space ðr; _rÞ, in fact its own definition is
based on computations of distances and angles. In particular we can select a
strictly increasing function fðrÞ and perform the triangulation of the admis-
sible region with the metric

ds2 ¼ dfðrÞ2 þ d _r2;

in other words, we can work in the plane ðfðrÞ; _rÞ endowed with the Euclidean
metric.

In our work we have selected an adaptive metric, defined by the function

fðrÞ ¼ 1� exp � r2

2 s2


 �
; ð12Þ

Since f0ðrÞ is maximum at r ¼ s, by choosing the parameter s we select which
part of the admissible region should be more densely sampled. Currently we
use s ¼ rmax, the largest root of the discriminant D�ðrÞ, because with this
choice we enhance the portion of the space ðr; _rÞ close to r ¼ rmax. If our
purpose is to search for objects in a particular portion of the ðr; _rÞ space (e.g.
NEAs or MBs or TNOs), then we can use a metric selected ad hoc, like using
a smaller s to enhance the region near the Earth for NEA.

6. Triangulated Ephemerides

As first example of how to use the admissible region and its triangulation, we
shall discuss the generation of ephemerides. If the orbit of an asteroid has
been determined according to the least squares principle, the ephemerides at
some time t1 different from t are the predicted values of the angles a; d with a
confidence region on the celestial sphere. When the available observational
data are not enough to compute a full least squares orbit (e.g., if there are
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only two observations, or if the observed arc is very short), the notion of
ephemerides has to be redefined as the set of values for the angles a, d at time
t1 which is compatible with the data.

If we can assume the object satisfies the conditions defining the admissible
region, that is, if we can exclude interstellar orbits, satellites of the Earth and
shooting stars, then there is a set of admissible values for a, d at time t1 which
is, by continuity, a compact subset of the celestial sphere with at most two
connected components. In practice, however, there is no known algorithm to
compute explicitly this subset. The goal we can achieve is to sample this set
by triangulation. Given a triangulation of the admissible region, computed
from the attributable representing the observations available, we can com-
pute the predicted observation at time t1 for each node of the triangulation.
Indeed, each node corresponds to a choice of the values of ðr; _rÞ at the time t,
and together with the four component attributable this provides a set of six
initial conditions, that is a set of orbital elements at the epoch t (to be
corrected for light travel time).

The problem is how dense the triangulation needs to be, that is how many
orbits have to be propagated from time t to time t1, to sample the ephe-
merides in a useful way, that is with distances among the sampling points
comparable to the field of view of the telescope to be used. We have no
rigorous answer to this question, but it is clear that a regular triangulation of
the admissible region is a strategy to optimize this procedure, provided the
selection of the metric (discussed in Section 5.3) is appropriate.

We conclude by providing an example. For the same object 2003 BH84

discussed in Section 4, we have computed the triangulation of the admissible
region with the metric defined by Equation (12). The inner boundary of this
example is defined using Hmax ¼ 22 as maximum value for the absolute
magnitude. In Figure 6 (above) we are showing the admissible region and its
triangulation; we also mark with + the value of ðr; _rÞ obtained in hindsight,
that is resulting from the orbit determined by using also the recovery
observations of 30 January and 6 February 2003.

Next, we have attempted to predict the recovery on 6 February by using
the 25 January attributable only. The triangulated ephemerides are shown in
Figure 6 (below), the actual recovery observation being marked with a circled
asterisk. Note that the HmaxO22 condition is important to reduce the size of
the recovery search area.

7. Conclusions and Future Work

When observations are available only over a very short time span, to the
point that all the meaningful information can be summarized in an
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Figure 6. For the asteroid 2003 BH84, the admissible region for the 25 January attributable
and its triangulation (above); the actual value, as determined a posteriori, is marked with +.

The image of the triangulation on the plane of the ephemerides for 6 February, with the actual
observation marked with a circled asterisk (below).
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attributable (with no significant curvature), it is not possible to perform an
orbit determination in the usual sense.

We have introduced the concept of an attributable to summarize the
available information, provided from the observations, in a four-dimensional
vector. Given an attributable, a full orbit with six parameters cannot be
computed, and the missing information can be represented by unknown
range and range rate. We have shown that these two unknowns are however
constrained to a compact subset, the admissible region, in the hypothesis that
the object being observed has a solar system orbit.

Some orbital information is anyway available from the attributable: it can
be exploited to assess the relevance of the discovery; as an example, it is
possible to decide that a given attributable does not belong to a main
belt asteroid, and this can be the case even when the proper motion is
moderate.

The information contained in an attributable is enough to constrain the
future observations: the admissible region can be mapped into the celestial
sphere at some other time. To be able to approximate this map with finite
computations we need to sample the admissible region in an efficient way,
adjusted to its shape and size. This we have achieved by using an optimized
triangulation of the admissible region. In this way, by propagating only the
nodes of the triangulation, we can predict ephemerides, e.g., for the purpose
of planning the recovery of the same object.

The next question is how this information can be combined with addi-
tional observations to provide an orbit. As an example, we can try to com-
bine information from two attributables, that is eight scalar conditions, to
compute a full 6-parameter orbit. This is discussed in a paper in preparation.
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Appendix A. Uniform sampling of a curve

Given n points on a rectifiable curve c, with unitary length, we study the
problem of selecting m among them ðm < nÞ such that the distance along the
curve between two consecutive points is as close as possible to 1=ðm� 1Þ. We
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search for an approximation of the solution of this problem avoiding to
compute the arc length.

Without loss of generality we can assume that c is the unit interval
½0; 1� � R. Let ðPkÞk¼1...n be a set of ordered points in ½0; 1�, with
P1 ¼ 0;Pn ¼ 1, and let ðQjÞj¼1;m be the sequence of equispaced ideal points,
with

Qjþ1 �Qj ¼
1

m� 1
¼ h ðideal stepÞ:

We define dk ¼ Pk � Pk�1 and dk;j ¼ jQj � Pkj; note that for each Pk there
exists an ideal point Qj such that dk;jOh=2. We introduce an elimination rule
in order to discard a point from the set ðPkÞk¼1...n:

ELIMINATION RULE: skip the point P�k such that �k minimizes the function

fðkÞ ¼ minfdk; dkþ1g
1þminj¼1...m dk;j

; k ¼ 2 . . . n� 1: ð13Þ

We apply ðn�mÞ times the previous rule: note that at each step the values of
dk may change, due to the elimination of points in the set ðPkÞk¼1...n. We shall
call ð bPjÞj¼1...m the subset of the points selected in ðPkÞk¼1...n. Now we prove
that the above algorithm selects the ideal points if these are contained in the
initial set ðPkÞk¼1...n.

PROPOSITION 1. If the condition

ðQjÞj¼1...m � ðPkÞk¼1...n ð14Þ

holds, then bPj ¼ Qj for each j ¼ 1 . . .m.
Proof. If fð�kÞOfðkÞ for each k, we shall prove that for n > m

(i) fð�kÞ < h;
(ii) P�k j2ðQjÞj¼1...m.

We observe that we cannot have fð�kÞ > h because, for each k, fðkÞO
minfdk; dkþ1g by definition, and dkOh by (14). We exclude also fð�kÞ ¼ h
because n > m implies that there are two points whose mutual distance is less
than h, and the first property is proven.

If by contradiction P�k ¼ Qj for some index j 2 1 . . .m, then we show that
there exists an index k 6¼ �k in which the function f assumes a smaller value.
Note that fð�kÞ ¼ minfd�k; d�kþ1g as the denominator in (13) reduces to 1.
Assume that d�k ¼ minfd�k; d�kþ1g, then minfd�k�1; d�kgOd�k and, by property (i),
d�k < h, so that P�k�1 is different from each Qj. This implies d�k�1;j > 0 for each
j, thus fð�k� 1Þ < fð�kÞ. The case fð�kþ 1Þ ¼ minfd�k; d�kþ1g is similar.

The skipped points are never ideal points, thus after n�m steps the
remaining points are the ideal points Qj. (
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In the general case, when starting from points selected with a non optimal
procedure, the remaining points will not be the ideal ones, exactly equi-
spaced, but they will anyway be a better approximation.
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