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Abstract. In this paper the authors provide a study of the phenomenon of the gravitational capture
by using the models of the circular and elliptic restricted three-body problem. In the first part the
inadequacy of the circular restricted three-body problem in the study of the phenomenon of the
capture in the case of NEAs is shown. In the model of the spatial elliptic restricted three-body
problem criteria of the capture are deduced by using the pulsating Hill-regions.
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1. Introduction

Gravitational capture of small bodies by major planets is an interesting phenom-
enon in planetary systems, having applications to the study of comets, asteroids and
moons, and it can be studied by using different models of the celestial mechanics.

Several authors studied this problem, introducing different concepts of capture,
like weak capture (Belbruno and Marsden, 1997; Belbruno, 1999), temporary cap-
ture (Brunini, 1996), longest capture (Vieira and Winter, 2001), resonant capture
(Yu and Tremaine, 2001), etc. Brunini et al. (1996) studied the conditions of the
capture in the restricted three-body problem. Murison (1989) pointed out connec-
tions between the gravitational capture and chaotic motions. An exciting study
has been dedicated recently to the capture of irregular moons – with non-circular
orbits – by giant planets (Astakhov et al., 2003). The authors confirmed with three-
dimensional Monte Carlo simulations that irregular satellites are captured in a thin
spatial region, where orbits are chaotic and that the resulting orbit is either prograde
or retrograde depending on the initial energy.

In this paper we give some necessary conditions of the gravitational capture by
using the Hill-regions in the spatial elliptic restricted three-body problem. We point
out that the Hill-regions are invariant in the circular restricted three-body problem
which does not happen in the case of the motion of real bodies, such as Near Earth
Asteroids. The variation of the Hill-regions can be modeled in the spatial elliptic
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restricted three-body problem. By using this model a more adequate description of
the gravitational capture can be given.

2. Hill-Regions and Capture in the CRTBP

In this part of our study we demonstrate that the circular restricted three-body prob-
lem (CRTBP) is inadequate to study the phenomenon of capture in some concrete
cases. We illustrate this by using the Hill-regions and the trajectory of the asteroid
2002MN.

On 14 June 2002, an asteroid with a diameter between 50 and 120 m made one
of the closest ever-recorded approaches to Earth. Astronomers working on Lincoln
Near Earth Asteroid Research (LINEAR) search program first detected the giant
rock on 17 June 2002.

A natural question arises: can the Earth capture such an asteroid? The simplest
model possible to use in the study of the phenomenon of the capture is the CRTBP.
This problem deals with the motion of a massless particle subjected to the grav-
itational attraction of two massive primaries, with masses m1 and m2, (m2 <m1)
revolving around their common center of mass in circular orbits, under the influ-
ence of their mutual gravitational attraction. In the synodic system – using the
standard canonical system of units associated with this model: the unit of distance
is the distance between the two primaries and the unit of time is chosen such that
the period of the motion of m2 around m1 is 2π – the equations of motion of the
third body are (Szebehely, 1967):

ẍ − 2ẏ = ∂�◦

∂x
, ÿ + 2ẋ = ∂�◦

∂y
, z̈ = ∂�◦

∂z
, (1)

where �◦ is the pseudo-potential function given by

�◦ = 1

2
(x2 + y2) + 1 − µ

r1
+ µ

r2
+ 1

2
µ(1 − µ), (2)

where

r1 =
√

(x + µ)2 + y2 + z2, r2 =
√

(x + µ − 1)2 + y2 + z2, (3)

and

µ = m2

m1 + m2
. (4)

The Hill-regions, where the motion of the massless particle is possible are
bounded by the zero velocity surfaces of equation

2�◦ = C, (5)
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Figure 1. The Hill-zones for different value of C.

with constant C. The shape of the Hill-zones depends on the value of constant C

(Figure 1). Each system of primaries is characterized by five critical values

Ci = 2�◦(Li), i = 1, . . . , 5, (6)

where Li are the Lagrange-points. For these constants we have

3 = C4 = C5 � C3 � C1 � C2 � 4.25

in generally, and in the case of the Sun–Earth system the critical value for L2

between the two primaries is

C2 = 3.000893278,

and in L1, the Lagrange-point outside of the Earth the critical value is

C1 = 3.000889276.

For C >C2 the zero velocity surfaces delimit three regions where the motion of
the small body is possible. Two of these regions are closed around the primaries, the
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Figure 2. The variation of C in case of the asteroid 2002MN.

third one is the exterior of the cylinder. Between these regions the communication
is impossible.

Using the asteroid 2002MN data from Digital Ephemeris 403 (DE403) at the
date 2000. January 01.5, and transforming these data in the rotating coordinate
system, we found for that moment

C > C2.

This means that the asteroid cannot approach the Earth. The Hill-zones for this
value are closed and the asteroid at this moment was outside of the external Hill-
cylinder. Using then a fourth order Wisdom–Holman (Wisdom and Holman, 1991,
1992) n-body integrator we found that the value of C decrease with time (Figure 2),
and the asteroid become closer to the Earth – the corresponding Hill-regions open-
ing in time.

This phenomenon shows us that the model of the CRTBP is not adequate to
study the eventually capture of the Near Earth Asteroids. It is necessary to have a
such a model, which permits the change of the type of Hill-regions in time.

Such a model, which gives us the possibility to study the real motion of the Near
Earth Asteroids is the spatial elliptic restricted three-body problem.

3. The Hill-Regions in the ERTBP

In the elliptic restricted three-body problem (ERTBP) the two massive primaries,
with masses m1 and m2 revolve on elliptical orbits under their mutual gravitational
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attraction and the motion of a third, massless body is studied. The orbit of m2

around m1, in an inertial system is

r = a(1 − e2)

1 + e cos f
, (7)

where r is the mutual distance, a and e are the semimajor axis and the eccentricity
of the elliptical orbit, and f is the true anomaly.

There are several systems of reference that can be used to describe the elliptic
restricted three-body problem. In our study a non-uniformly rotating and pulsating
coordinate system is used. In this system of reference the origin is in the center of
mass of the two massive primaries (e.g., Sun and Earth), and the ξ̃ axis is directed
towards m2. The ξ̃ η̃ coordinate-plane rotates with variable angular velocity, in such
a way, that the two massive primaries are always on the ξ̃ axis, and the period of the
rotation is 2π . Besides the rotation, the system also pulsates, to keep the primaries
in fixed positions (ξ̃1 = −µ, η̃1 = ζ̃1 = 0, ξ̃2 = 1 − µ, η̃2 = ζ̃2 = 0). In this
system the equations of motion of the third massless particle are

ξ̃ ′′ − 2η̃′ = ∂ω

∂ξ̃
, η̃′′ + 2ξ̃ ′ = ∂ω

∂η̃
, ζ̃ ′′ = ∂ω

∂ζ̃
, (8)

where the derivatives are taken with respect to the true anomaly f , and

ω = (1 + e cos f )−1�,

with

� = 1

2
(ξ̃ 2 + η̃2 − eζ̃ 2 cos f ) + 1 − µ√

(ξ̃ + µ)2 + η̃2 + ζ̃ 2
+

+ µ√
(ξ̃ − 1 + µ)2 + η̃2 + ζ̃ 2

+ 1

2
µ(1 − µ). (9)

Performing the same operations, which in the RTBP leads to the Jacobi-integral,
in the case of the spatial ERTBP we obtain an invariant relation of the form:(

dξ̃

df

)2

+
(

dη̃

df

)2

+
(

dζ̃

df

)2

= 2ω − e

∫ f

0

ζ̃ 2 sin h

1 + e cos h
dh −

− 2e

∫ f

0

� sin h

(1 + e cos h)2
dh − C. (10)

This is the generalization of Szebehely’s invariant relation (Szebehely, 1967, pp.
595) for the spatial ERTBP. Assuming that the eccentricity e > 0 is small (as it is
in the case of the Sun–Earth system, e = 0.017), the sum of the two integrals in
Equation (10) is smaller than the term 2ω (In the case of the Sun–Earth system see
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Figure 3. The integral terms in the Sun–Earth system.

Figure 3). Neglecting these small terms, we have the approximate equation of the
surfaces of zero velocity

2� − C (1 + e cos f ) = 0, (11)

or

2� − C∗ = 0, (12)

for each fixed value of f . Geometrically it means that at every time – or at every
value of the true anomaly f – a different set of surfaces of zero velocity are to be
constructed. The shape and dimension of these zero velocity surfaces vary in time.
This variation is governed by

C∗ = C(1 + e cos f ) (13)

and therefore we might speak about pulsating surfaces of zero velocity.

4. Necessary Conditions of the Capture

To give necessary conditions of the capture, we approximate the zero velocity
surfaces (12) with the equations

2�◦(ξ̃ , η̃, ζ̃ ) = C∗. (14)

This approximation is possible when e is small, and the third body moves near to
the plane of the primaries. In this case the term eζ̃ 2 cos f in (9) may be neglected,
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and we can write � = �◦. Equations (13) and (14) show that the zero velocity
surfaces pulsate, and so an do the Hill-zones delimited by them.

Suppose that, for f = f0 the position and velocity of the third body is given,
and

C∗ = C∗
0 = C (1 + e cos f0) . (15)

Then, from (13) and (15) we have

C∗(f ) = C∗
0

1 + e cos f

1 + e cos f0
. (16)

As we have seen in Section 2, as time as

C2 < C∗,
the third body can not near to m2 if initially is not inside of the Hill-region sur-
rounding m2. By using this property we are able to give a necessary condition to
the close approach of one of the primaries by the massless body.

If the massless body in the moment corresponding to f0 was not in the Hill-zone
surrounding m2, and satisfied the condition

C2 < C∗
0

1 − e

1 + e cos f0
(17)

then it never enter in this zone, and it can not be captured by m2.
An other condition can be formulated in the next form:
If the massless body in the moment corresponding to f0 is in the exterior of the

cylinder, and satisfies the condition

C1 < C∗
0

1 − e

1 + e cos f0
(18)

then it never enter in the Hill-zone around m2.
The advantage of this conditions consist in fact that is not necessary the in-

tegration of the equations of motion of the third-body, a simple evaluation of the
expression (17) or (18) is only necessary.
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