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Abstract. Relative motion of objects moving in a close satellite formation is studied. The
relative motion is expressed in the satellite reference frame RKB defined by orthogonal unit

vectors in the radial, transverse and normal directions. Differential perturbations in orbital
elements, satellite positions as well as in the radial, transverse and normal components of the
radius vector are defined. Differential perturbations due to geopotential coefficients and luni-

solar attraction are analysed for some exemplary satellites orbits. Results of a numerical
analysis of motion have shown that the geopotential coefficients up to high degree and order as
well as lunisolar effects have to be included into the applied force model to save the meter or
centimeter level of accuracy in the description of the relative satellite motion.
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1. Introduction

It is planned that many future space missions will utilize satellite constel-
lations or formation flying. Satellite formation is a cluster of distributed
small cooperative units performing the function of a single complex sa-
tellite. These clusters of satellites usually work together and fly in a precise
formation. Increased productivity and reduced mission launch costs are
important benefits of the use of satellite formation as opposed to single
large spacecraft.

One of the first formations was the Landsat7-Earth Observing-1. On the
17 of May 2001 the Earth Observing-1 was inserted into a 705 km circular,
sun-synchronous orbit at a 98.7� inclination, so that it was flying in forma-
tion 1 min behind Landsat 7 in the same ground track. Similar formation is
made by two satellites realizing the Gravity Recovery and Climate Experi-
ment(GRACE) mission.

Satellite constellations and formation flying is planned to be used in a
number of varied scientific, military, and satellite service operations. For
example the Darwin and Terrestrial Planet Finder(TPF) missions will be
realized as satellite formations consisting of a number of components.

Another example of a mission that will use formation flying (to study
atmospheric phenomena) is the Leonardo-BRDF mission. For Leonardo the
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satellite formation includes one chief (on the orbit I ¼ 5�; e ¼ 0;
h ¼ 400 km) and six deputy microsatellites.

To meet the mission goals, the shape of the formation and relative dis-
tances between the formation units have to be preserved to an appropriate
accuracy. For some missions (e.g., space interferometry) the accuracy
requirements are very high(centimeters or even millimeters). On the other
hand, in geodetic missions like GRACE the satellite-to-satellite (SST) range
and range-rate data are used to improve the Earth gravity field with high
resolution. These data measure the difference between the position pertur-
bations of two satellites to a very high accuracy (on a micrometer level). To
fully exploit the geopotential information contained in the range and range-
rate data, an accurate theory is necessary for understanding the nature of the
gravitational perturbation spectrum for the SST measurements (Cheng,
2002). Dynamical aspects of formation flying are then a crucial issue.

Dynamics of spacecrafts flying in a precise formation was a subject of
numerous papers in the last few years. In most cases, the authors of these
papers have used the classical Hill equations for description of the relative
motion of the deputy and chief satellites. These equations assume that the
Earth is spherically symmetric and the chief reference orbit is circular. In
more precise descriptions of a relative satellite motion the effect of eccentric
spacecraft trajectories and the influence of J2 are considered as the main
perturbation factors (Alfriend et al., 2000; Gim and Alfriend, 2000, 2005).
Thus, the perturbation force model in the relative motion is commonly re-
stricted to the second zonal harmonic J2.

However, the neglected disturbing forces, may produce significant per-
turbation effects. Sabol et al., (2001) analyzed the influence of different
perturbation factors on the stability of four types of satellite formation de-
signs. They took into account circular or near circular orbits of the same
values of the mean semi-major axis of all satellites in a given formation.
Starting from the mean orbital elements and using the Draper Semianalytic
Satellite Theory (Neelson et al., 1998) the authors propagated the mean
orbital elements of the formation’s units over a given time span. A distance
between satellites was relatively stable only in the in-plane and in-track
formations. For the out-of-plane formations significant secular changes in
the separation between the formation units were observed.

For large aperture formations (e.g., circular formations) some satellites
perform out-of-plane motion relative to the reference orbit. This out-of-plane
motion is achieved by some combination of changes in the inclination and the
longitude of ascending node. Differences in these orbital elements result in
different values of secular perturbations and different amplitudes of periodic
and resonance perturbations. Precise description of the relative motion of
satellites orbiting in a cluster should take into regard, besides J2, also the
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influence of other geopotential harmonic coefficients, atmospheric drag, solar
radiation pressure and luni-solar effects.

Analytical perturbation theory for intersatellite range and range-rate
measurements between two satellites has been recently published by Cheng
(2002). This theory includes perturbations due to geopotential and the Earth
tides and takes into account only the in-plane motion. Here, we study the
relative satellite motion without any restriction as to the plane of the satellite
orbits as well as their eccentricity and inclination. In our analysis we take into
account the influence of geopotential and luni-solar perturbations.

The numerical results presented in this paper were obtained by numerical
integration of the equations of motions of individual members of a forma-
tion. As opposed to Sabol et al., (2001) we used osculating orbital elements
to calculate the starting values of the satellite positions and velocities. The
osculating elements are more useful in practice than the mean elements. On
the one hand, they are determined directly from observations of satellite
positions and they are used in calculations of relative positions of the for-
mation units in the space.

An application of the mean elements in a description of the relative mo-
tion in a formation needs very precise algorithm of the transformation be-
tween the osculating and the mean elements. The transformation as well as
an analytical theory of relative satellite motion that takes into account all
important perturbations will be a subject of separate papers.

2. Differential Perturbations

We consider the relative motion of two satellites S1 and S2. Let e1nðtÞ and
e2nðtÞ; n ¼ 1; 2; . . . ; 6 represent six osculating orbital elements of S1 and S2,
respectively at the time moment t. Then DenðtÞ ¼ e2nðtÞ � e1nðtÞ; i ¼ 1; 2; are
differences between the osculating orbital elements of these two satellites. The
positions and velocities in the geocentric reference frame corresponding to
the elements einðtÞ are represented by~r iðtÞ and _~r iðtÞ: The separation between
two satellites is then given by

D~rðtÞ ¼~r 2ðtÞ �~r 1ðtÞ: ð1Þ
Let now ei0;n; i ¼ 1; 2; n ¼ 1; 2; . . . ; 6 represent six orbital elements of the
unperturbed orbits of satellites S1 and S2 and ~r i0ðtÞ and ~r

i
0ðtÞ are positions

and velocities of S1 and S2 on the unperturbed orbits at the moment t. Then

d~einðtÞ ¼~e
i
nðtÞ �~e

i
0;nðtÞ ð2Þ

are perturbations in the orbital elements, and

d~r iðtÞ ¼~r iðtÞ �~r i0ðtÞ ð3Þ
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are perturbations in the satellite positions. Differences

DðdeðtÞÞ ¼ de1nðtÞ � de2nðtÞ ð4Þ
and

Dðd~rðtÞÞ ¼ d~r 1ðtÞ � d~r 2ðtÞ ð5Þ
are the differential perturbations in the orbital elements and in the satellite
positions, respectively.

3. Perturbations in Radial, Transverse and Normal Components

The relative motion of two satellites S1 and S2 may be expressed in the
satellite orbital reference frame RKB (Figure 1) defined by orthogonal unit
vectors in the radial r, transverse (along-track) k and normal (cross-track) b
directions. Denote the unit vectors in these three directions for the ith satellite
as~ei1(radial),~e

i
2 (transversal) and~e

i
3 (normal), i ¼ 1; 2: The unit vectors~eik can

be expressed in terms of the orbital elements: inclination I, ascending node X
and the argument of latitude u ¼ xþ f (Taff, 1985):

~e1¼½cosXcosu�sinXsinucosI; sinXcosuþcosXsinucosI; sinusinI�T;
~e2¼½�cosXsinu�sinXcosucosI; �sinXsinuþcosXcosucosI; cosusinI�T;
~e3¼½sinXsinI; �cosXsinI; cosI�T: ð6Þ

Denote the direction cosines of the unit vectors for the ith satellite in the RKB
frame of the jth satellite as aij

aij ¼~e1i �~e
2
j : ð7Þ

In general, the direction cosines are functions of orbital elements of both
satellites and can be expressed in terms of dI ¼ I2 � I1; dX ¼ X2 � X1 and/or
du ¼ u2 � u1. Formula for aij for arbitary values of dI; dX and du are given in

r 1
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Figure 1. Unit vectors in the RKB frame.
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Appendix A.1. For coplanar orbits of S1 and S2, when dI ¼ 0; dX ¼ 0 and du
is of an arbitary value, the formulas for aij are given in Appendix A.2.

And finally, when the satellites move, in general, on orbits with different
values of the inclination I and the ascending node X , but the differences
dI; dX and du are small enough to meet the following conditions:

sin di ¼ di; sin dX ¼ dX; sin du ¼ du;

cos di ¼ 1; cos dX ¼ 1; cos du ¼ 1: ð8Þ
with the accuracy e that is sufficient in calculations, the formulas for the
direction cosines are very simple (see Appendix A.3). The above conditions
mean that we consider the satellite formation with individual units moving
on slightly different orbits and/or slightly different positions on the same
orbit. The last formulas for the direction cosines are very useful in an
analytical description of the relative satellite motion, particularly when the
direction cosine matrix is applied in a transformation of perturbations from
the reference frame of the satellite S1 to the reference frame of satellite S2

(see Equation (13)). In this case the accuracy e ¼ 10�6 is sufficient. The
results of the calculations presented in the next paragraph were obtained by
numerical integration with the use of the general form of the direction
cosines (Appendix A.1). Note however, that for the orbits of satellites used
in these calculations, when the differences of the angular orbital elements of
two satellites in a given pair are 0.05�, the conditions (8) are kept with the
accuracy e better than 10�6. In this case the approximated formulas for
direction cosines given in Appendix A.3 introduce an error on a level lower
than 10�9 in Equation (13), which may be neglected in the calculations.

The satellite positions and perturbations in the satellite position in the
orbital reference frame RKB may be expressed in the following form:

~r i ¼ ri~e i1; ð9Þ
d~r i ¼ dri~e i1 þ dk~e i2 þ dbi~e i3; ð10Þ

where ri ¼ j~r ij; and dri; dki; dbi are the radial, transverse and normal com-
ponents of the perturbations in the ith satellite position.

The analytical formulas for perturbations in the radial, transverse and
normal components as functions of the true anomaly f have the following
form (e.g., Casotto, 1993):

dr ¼ r

a
da� ade cos fþ ae

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2
p dM sin f;

dk ¼ rðdX cos Iþ d xÞ þ a

r
a
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2
p

dMþ ade
1

1� e2
r

a
þ 1

� �

sin f;

db ¼ rðdI sinðfþ xÞÞ � dX sin I cos ðfþ xÞ: ð11Þ
where da; de; dM; dX; dx; dI are perturbations in the Keplerian elements.

THE RELATIVE MOTION OF EARTH ORBITING SATELLITES 377



Differential perturbations in satellite positions can be expressed in terms
of the reference frame RKB of the satellite S1 in the following form:

Dðd~rðtÞÞ ¼ d~r 1 � d~r 2 ¼ Dr1~e 11 þ Dk1~e
1
2 þ Db1~e

1
3 ; ð12Þ

where

Dr1 ¼ dr1 � dr2a11 � dk2a12 � db2a13;

Dk1 ¼ dk1 � dr2a21 � dk2a22 � db2a23;

Db1 ¼ db1 � dr2a31 � dk2a32 � db2a33; ð13Þ
where Dr;Dk and Db are differential perturbations in the radial, transverse
and normal components of the radius vector.

Here, for the calculations of the differential perturbations components, we
applied the following relations:

dr ¼ dx~ix �~e1 þ dy~iy �~e1 þ dz~iz �~e1;
dk ¼ dx~ix �~e2 þ dy~iy �~e2 þ dz~iz �~e2;
db ¼ dx~ix �~e3 þ dy~iy �~e3 þ dz~iz �~e3; ð14Þ

where ~ix;~iy;~iz are the unit versors of the Oxyz reference frame, ~e1;~e2;~e3 are
given by Equation(6), and dx; dy; dz are perturbations in the x; y; z coordi-
nates obtained from Equation (3) with the use of numerical integration of
equations of motion of the satellites S1 and S2. Then applying Equation (13),
we calculated the differential perturbations in the radial, transverse and
normal components.

4. Influence of Geopotential and Luni-Solar Perturbations on the Relative

Motion of Satellites

When separation requirements among members of a formation are hundreds
of meters or kilometers, it is sufficient to include in the perturbation model
only the main perturbation factors. Usually, in these cases the perturbation
model is restricted to the second zonal harmonic coefficient J2 only. How-
ever, when relative positions between satellites have to be maintained to a
very high accuracy level (meters or centimeters), other forces acting on the
satellites cannot be neglected.

A few examples given below illustrate the influence of geopotential and
luni-solar perturbations on the relative orbits of two satellites. The orbital
elements of the satellites used in the exemplary calculations are given in
Table I. The orbits of the first pair of the satellites are similar to the Leo-
nardo-BFDF formation orbits of the altitude 400 km and 5� inclination. The
second pair of satellites move on the 1400 km altitude orbits with the
eccentricity equal 0.05 and the inclination of 85�.
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In order to estimate the influence of a given disturbing factor on dif-
ferential perturbations in orbits of two satellites S1 and S2 we calculated
these perturbations with the use of two perturbation models: mod1 and
mod2 that differ from each other by the disturbing factor considered. The
differential perturbations in positions of both satellites (Equation (5)) were
obtained by numerical integration of the equations of motion in rectangular
coordinates. The initial values of position and velocities at the time t0 were
calculated from the orbital elements given in Table I. Starting with the
same initial conditions for the perturbation models mod1 and mod2, we
integrated the orbits of satellites S1 and S2 and calculated the differential
perturbations for both models. Next, by comparison of these differential
perturbations Dðd~rðtÞÞmodel1 �Dðd~rðtÞÞmodel2 we estimated the influence of
the perturbation factor on the value of the differential perturbation. First,
we estimated the influence of the second zonal harmonic on the relative
positions of satellites S1 and S2. We integrated numerically the motion of
these satellites over 10 day time span with the use of the following two
force models: (1) Keplerian – without any perturbation effects and (2) J2-
model – the influence of the second zonal harmonic was included. Results
are presented in Figures 2 and 3. For pair I the differences in the differ-
ential perturbations after 10 days are of the order of 14 km, and for pair II
these differences are of the order of 20 km. Secular and periodic effects are
observed for both pairs. Figures 4 and 5 present differences in the differ-
ential perturbations for pairs I and II, respectively, obtained within the
following two force models: (1) J2-model and (2) 15�15 model including all
zonal and tesseral harmonic coefficients up to degree and order 15.
Therefore, these differences represent the differential perturbation effect due
to the zonal harmonics Jn; 2 < n < 15 and the tesseral harmonics up to
order and degree 15. After 10 day time span the differences are on the level
of 150 m and 40 m for the pairs I and II, respectively. Again, secular and
periodic effects are observed for both pairs of satellites.

TABLE I
Orbital elements of satellites.

Pair Satellite a (km) e I(�) x(�) W(�) M (�) Initial
separation

(m)

I 1 6778 0.001 5.00 60 0.00 0.0 7640

I 2 6778 0.001 5.05 60 0.05 0.0 7640
II 1 7800 0.05 85.00 60 0.00 0.0 2444
II 2 7800 0.05 85.05 60 0.05 0.0 2444
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Note, however, that the differences in the differential perturbations
strongly depend on the initial conditions. Figure 6 shows the differences in
the differential perturbations for pair I for the two following cases:(1) the
mean anomaly M was changed from 0� to 60� and (2) the mean anomaly M
was changed from 0� to 80�. Comparing the results from Figure 6 with those
from Figure 4 (where M ¼ 0�Þ one may observe significant differences.
Therefore, the numerical analysis presented in this paper only indicates an
order of the perturbations effects. For a specific formation mission orbits one
has to make detailed analysis of perturbation effects taking into account the
real initial conditions.
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Figure 2. Differences in differential perturbations for pair I of satellites calculated with the use
of following force models: (1) unperturbted Keplerian and (2) J2-model.

 0

 5000

 10000

 15000

 20000

 25000

 0  2  4  6  8  10

D
iff

er
en

ce
 (

m
et

er
s)

Time (days)

Figure 3.Differences in differential perturbations for pair II of satellites calculated with the use

of the following forcer models: (1) unperturbed Keplerian and (2) J2 model.
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In the second step of the numerical analysis of the differential geopo-
tential perturbations we tried to answer the following question: what is the
maximum order and degree of geopotential harmonic coefficients that have
to be included into the force model to save a given accuracy level. To this
end we calculated numerically the differential perturbations taking into
account all geopotential coefficients Clm and Slm with a given order m and
all possible (in the applied geopotential model) degrees l. The values of
differential perturbation for pairs I and II are shown in Figures 7 and 8,
respectively. For pair I the differential perturbation effects are on a level of
100 m for harmonic orders up to 6 and all coefficients up to at least order
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Figure 5.Differences in differential perturbations for pair II of satellites calculated with the use

of following force models: (1) J2-model and (2) 15� 15 model.
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Figure 4. Differences in differential perturbations for pair I of satellites calculated with the use

of following force models: (1) J2-model and (2) 15� 15 model.
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70 have to be taken into account to save the 10 cm accuracy in the
determination of the relative satellite positions in this case. For higher
orbits of satellites in pair II (1400 km altitude) it is sufficient to include
geopotential coefficients up to the order 40 to save the 1 cm accuracy
(Figure 8).

Next, the total values of differential perturbations due to individual har-
monic orders presented in Figures 7 and 8 were decomposed into the radial,
transverse and normal components with the use of Equations (13) and (15).
Figures 9 and 10 present values of the components of the differential per-
turbations for satellites in pairs I and II, respectively. For both pairs the
transverse components of the differential perturbations are much higher than
the radial and normal components.

Finally, we estimated values of differential perturbations due to lunisolar
effects. Tables II–IV presents values of lunar, solar and combined luni-solar
differential perturbations obtained by numerical integration of satellite
motion on a 10 day time span. For low altitude orbits of pair I these
perturbations are on a level of 2 m. For pair II the differential perturbations
due to luni-solar effects are higher and can reach 3.5 m. Note, that the values
of the luni-solar differential perturbations increase with the increasing
semi-major axis of satellites moving in a formation. The maximum value of
total luni-solar differential perturbations over 10 days time span for satellites
at the 20000 km and 36000 km altitude is on the level of 40 and 150 m
respectively.

The results presented in this paragraph were obtained by numerical
integration of equations of perturbed satellite motion with the use of
initial conditions (positions and velocities at the time t0) calculated directly
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Figure 6. Differences in differential perturbations for the pair I of satellites with initial value of

the mean anomaly M changed to 60� and 80�.
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from orbital elements given in Table I. This means that we treated the
initial orbital elements as osculating. In each pair, the satellites S1 and S2

have the same values of the osculating semi-major axis and eccentricity.
However, the mean values of semi-major axis and the values of the mean
motion as well as the mean values of other elements of both satellites in a
given pair may differ. Therefore, the differential perturbations obtained by
numerical integration depend not only on perturbing forces acing on the
satellites, but also on the choice of the initial orbital elements. To reduce
the growth of magnitude of a separation between satellites due to the
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Figure 8. Maximum values of differential perturbations in the motion of the satellites from the
pair II due to geopotential spherical coefficients Clm;Slm of the individual orders m calculated

over 10 day span.
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Figure 7. Maximum values of differential perturbations in the motion of the satellites from the
pair I due to geopotential spherical coefficients Clm;Slm of the individual orders m calculated

over 10 day span.
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differential perturbations one has to choose the initial osculating elements
of satellites in a given formation in such a way that the corresponding
mean elements have the same values of the semi-major axis of all satellites
in the formation. To this end a transformation between the osculating and
mean orbital elements on an appropriate high accuracy level is needed.
Sabol et al. (2001) used the mean orbital elements and the semi-analytical
theory in their analysis of the influence of different perturbing factors
on the stability of the separation between satellites in some types of
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Figure 10. Maximum values of the radial, transverse and normal components of differential
perturbations in the motion of pair II satellites due to geopotential coefficients Clm;Slm of the

individual orders m calculated over 10 day span.
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Figure 9. Maximum values of the radial, transverse and normal components of differential
perturbations in the motion of pair I satelllites due to geopotential spherical coefficients

Clm;Slm of the individual orders m calculated over 10 day span.
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formations. We recalculated the examples presented by Sabol et al. using
our method presented above and we obtained comparable results. The
initial osculating elements used in these calculations were obtained from
the mean orbital elements given by Sabol et al. with the use of the
transformation from mean to osculating elements based on the second
order analytical theory of perturbations (Wnuk, 1995).

5. Conclusion

The results of the numerical analysis of differential perturbations in the orbits
of satellites moving in a close formation presented in this paper were ob-
tained by numerical integration. The analysis has been made taking into
account only the luni-solar and geopotential perturbations due to arbitrary
degree and order of spherical harmonics. The results show that for the precise
(on meter or centimeter accuracy level) description of a relative satellite

TABLE IV
Maximum values of differential luni-solar perturbations in meters over a 10 day span.

Satellite pair Total perturbations Radial
perturbations

Transverse
perturbations

Normal
perturbations

I 2.28 0.63 2.21 0.30

II 3.61 0.50 3.59 0.36

TABLE II
Maximum values of differential lunar perturbations in meters over a 10 day span.

Satellite
pair

Total
perturbations

Radial
perturbations

Transverse
perturbations

Normal
perturbations

I 1.73 0.52 1.64 0.34
II 2.11 0.30 2.07 0.39

TABLE III
Maximum values of differential solar perturbations in meters over a 10 day span.

Satellite pair Total
perturbations

Radial
perturbations

Transverse
perturbations

Normal
perturbations

I 0.59 0.11 0.57 0.19

II 1.52 0.21 1.52 0.28
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motion one has to take into account a force model that includes other effects
besides the second zonal harmonic J2. For very low altitude orbits and for the
case when the relative positions of formation members have to be known
with the meter or centimeter accuracy, the force model should include the
influence of all zonal and tesseral harmonic coefficients of a geopotential
model up to 70 degree and order. The values of the luni-solar differential
perturbations are small (about 2–3 m or less after 10 days), but they increase
with increasing semi-major axis of the satellites orbits. Note, that the per-
turbations effects due to atmospheric drag and solar radiation pressure ne-
glected in this paper for some formations may produce differential
perturbations on a level comparable with luni-solar and higher degree and
order geopotential harmonic effects.

The numerical results presented in this paper show only an order of dif-
ferential perturbation effects. For given satellite formation orbits more de-
tailed analysis has to be done.

The force model adopted in the calculations of the differential perturba-
tions depends on the formation accuracy requirements. For example, for
geodetic formations like GRACE, when very precise (on a level of millime-
ters) relative range and range--rate measurements are analyzed, the descrip-
tion of the relative satellite motion has to include differential perturbations
with all possible effects (with high order and degree geopotential harmonics
included). On the other hand, in the case of formations when the accuracy
requirements concerning the relative positions of individual units are lower
e.g., on a meter level, the model of the differential perturbations may be
restricted in the appropriate way including, for example only a few important
geopotential harmonics.

The differential perturbations strongly depend on the initial orbital ele-
ments of all satellites moving in a formation. The proper choice of the initial
osculating orbital elements of the individual formation units may signifi-
cantly reduce the magnitude of differential perturbations. This choice may be
done only on the basis of the analytical transformation between the oscu-
lating and mean orbital elements that includes all perturbations taken to the
appropriate accuracy.
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Appendix A. The Direction Cosines

A.1. Direction cosines aij for arbitrary values of dI; dX and du.

a11 ¼~e11 �~e
2
1 ¼ð1=2 sin 2I1 sin dIþ cos dI sin2 I1Þ sin u1 sin u2
þ sin dXðcos I1 cos u2 sin u1 � cosðdIþ I2Þ cos u1 sin u2Þ
þ cos dXðcos u1 cos u2 þ cos dI cos 2 I1 sin u1 sin u2

� 1=2 sin 2I1 sin dI sin u1 sin u2Þ;

a12 ¼~e11 �~e
2
2 ¼ð1=2 sin 2I1 sin dIþ cos dI sin 2 I1Þ sin u1 cos u2

� sin dX ðcos ðdIþ I1Þ cos u1 cos u2 þ cos I1 sin u1 sin u2Þ
þ cos dXðcos dI cos 2 I1 sin u1 cos u2

� 1=2 sin dI sin 2I1 sin u1 cos u2 � cos u2 sin u2Þ;

a13 ¼~e11 �~e
2
3 ¼ sin dX cos u1 sin ðdIþ I1Þ þ 1=2 cos dI sin 2II sin u1

� cos dX sin u1ðsin dI cos 2 I1 þ 1=2 cos dI sin 2I1Þ
� sin dI sin2 I1 sin u1;

a21 ¼~e12 �~e
2
1 ¼ð1=2 sin 2I1 sin dIþ cos dI sin2 I1Þ cos u1 sin u2

þ sin dXðcos I1 cos u1 cos u2 þ cos ðdIþ I1Þ sin u1 sin u2Þ
þ cos dXðcos dI cos 2 I1 cos u1 sin u2

� 1=2 sin 2I1dI cos u1 sin u2 � sin u1 cos u2Þ;

a22 ¼~e12 �~e
2
2 ¼ð1=2 sin 2I1 sin dIþ cos dI sin2 I1Þ cos u1 cos u2
þ sin dX ðcos ðdIþ I1Þ cos u2 sin u1 � cos I1 cos u1 sin u2Þ
þ cos dXðsin u1 sin u2 þ cos dI cos2 I1 cos u1 sin u2

� 1=2 sin dI1 sin 2I1 cos u1 cos u2Þ;

a23 ¼~e12 �~e
2
3 ¼ð1=2 cos dI1 sin 2I1 cos u1

� sin dI sin2 I1 cos u1 � sin dX sin ðdIþ I1Þ sin u1

� cos dX cos u1 ðcos2 I1 sin dIþ 1=2 cos dI sin 2I1Þ;

a31 ¼~e13 �~e
2
1 ¼� sin dX cos u2 sin I1 þ cos2 I1 sin dI sin u2

� cos dX sin u2ð1=2 cos dI sin 2I1 � sin dI sin2 I1Þ
þ 1=2 cos dI sin 2I1 sin u2;
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a32 ¼~e13 �~e
2
2 ¼ cos2 I1 sin dI cos u2 þ 1=2 cos dI sin 2I1 cos u2

� 1=2 cos dI sin 2I1 cos dX cos u2

þ sin dI sin2 I1 cos dX cos u2 þ sin dX sin I1 sin u2;

a33 ¼~e13 �~e
2
3 ¼ cos dIðcos2 I1 þ sin2 I1 cos dXÞ
þ 1=2 sin dI sin 2I1ðcos dX� 1Þ:

A.2. Direction cosines aij for coplanar orbits

a11 ¼~e11 �~e
2
1 ¼ cos du; a12 ¼~e11 �~e

2
2 ¼ � sin du; a13 ¼~e11 �~e

2
3 ¼ 0;

a21 ¼~e12 �~e
2
1 ¼ sin du a22 ¼~e12 �~e

2
2 ¼ cos du a23 ¼~e12 �~e

2
3 ¼ 0;

a31 ¼~e13 �~e
2
1 ¼ 0; a32 ¼~e13 �~e

2
2 ¼ 0; a33 ¼~e13 �~e

2
3 ¼ 1:

A.3. Direction cosines aij for non-zero but small values of dI; dX and du.

a11 ¼~e11 �~e
2
1 ¼ 1;

a12 ¼~e11 �~e
2
2 ¼ �du� dX cos I;

a13 ¼~e11 �~e
2
3 ¼ dX sin I cos u� dI sin u;

a21 ¼~e12 �~e
2
1 ¼ duþ dX cos I;

a22 ¼~e12 �~e
2
2 ¼ 1;

a23 ¼~e12 �~e
2
3 ¼ �dI cos u� dX sin I sin u;

a31 ¼~e13 �~e
2
1 ¼ �dX sin I cos uþ dI sin u;

a32 ¼~e13 �~e
2
2 ¼ dI cos uþ dX sin I sin u;

a33 ¼~e13 �~e
2
3 ¼ 1:
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