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Abstract. We detect and measure diffusion along resonances in a quasi-integrable symplectic
map for different values of the perturbation parameter. As in a previously studied Hamiltonian

case (Lega et al., 2003) results agree with the prediction of the Nekhoroshev theorem. More-
over, for values of the perturbation parameter slightly below the critical value of the transition
between Nekhoroshev and Chirikov regime we have also found a diffusion of some orbits along

macroscopic portions of the phase space. Such a diffusion follows in a spectacular way the
peculiar structure of resonant lines.
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1. Introduction

In order to highlight the possibility of a drift of the actions along a resonance
in an Hamiltonian quasi-integrable system. Arnold (1964) built an ad hoc
model showing the existence of a very slow diffusion. This kind of diffusion is
very difficult to detect numerically.

Within the framework of Nekhoroshev’s (1977) theorem, one expects an
exponentially slow drift of the actions along resonant lines. Moreover, the
speed of the diffusion decreases as the order of the resonance increases
(Morbidelli and Giorgilli, 1995; Giorgilli and Morbidelli, 1997).

In a previous work (Lega et al., 2003), using a time dependent Hamiltonian
system with two degrees of freedom, we have provided numerical evidence for
the existence of diffusive orbits along resonances as well as numerical estimate
of the diffusion coefficient as a function of the perturbing parameter. The
decreasing of the diffusion coefficient with the perturbing parameter is
stronger than a power law, typical of Chirikov (1979) diffusion, and is com-
patible with an exponential law as expected in the Nekhoroshev regime.

In this paper, we perform the same kind of numerical experiments on a
quasi-integrable symplectic mapping T of dimension four with a non inte-
grable part analogous to that of the Hamiltonian used in Lega et al. (2003).
Initial conditions were taken in the chaotic zone of a selected resonance. Such
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orbits were chosen using the fast Lyapunov indicator (FLI, Froeschlé and
Lega, 2000), which allows to have a detailed knowledge of the topology of
the resonances.

The use of the FLI allows to determine (Guzzo et al., 2002) both for
slightly perturbed Hamiltonian systems and for weakly coupled symplectic
mappings, the critical value of the perturbing parameter that corresponds to
the transition from a Chirikov regime to the Nekhoroshev one. Therefore,
chaotic initial conditions were taken for values of the coupling parameter still
in the Nekhoroshev regime but relatively close to such a critical value.

The same procedure is applied in the present paper to the detection of the
diffusion in the mapping T. The results obtained for the mapping are both
qualitatively and quantitatively similar to those obtained for the Hamiltonian
system in agreement with recent proofs of the Nekhoroshev theorem for
nearly integrable symplectic maps (Kuksin and Pöschel, 1994; Guzzo, 2004).
Moreover, thanks to the rapid computation of the mapping, which allows to
explore much longer integration times with respect to the Hamiltonian sys-
tem we have observed that Arnold’s diffusion is relevant for global diffusion
(Guzzo et al., 2005). More precisely, for a suitable choice of the perturbation
parameter we show that a global diffusion occurs along the peculiar set of
resonances forming the Arnold’s web.

The paper is organized as follows. We recall in Section 2 the definition of
the FLI and we give an application to the symplectic 4 dimensional map. We
provide in Section 3 the evidence of the diffusion along resonant lines. The
numerical estimate of the diffusion coefficient will be given in Section 4.
Section 5 is devoted to the phenomenon of global Arnold’s diffusion. Con-
clusions are provided in Section 6.

2. The FLI Revisited

When computing the Lyapunov characteristics indicators (LCI), the attention
is focused on the length of time necessary to get a reliable value of their limit,
but very little importance is given to the first part of the computation. In fact,
this part is considered as a kind of transitory regime depending, among other
factors, on the choice of an initial vector of the tangent manifold.

Already Froeschlé et al. (1997) have remarked that the intermediate value
of the LCI (which was called FLI), taken at equal times for chaotic (even
slow chaotic) and ordered motion, allows to distinguish between them. It
turns out that the FLI allows also to distinguish among ordered motions of
different origins, like resonant and non-resonant motions (Guzzo et al.,
2002), despite the fact that in both cases the largest LCI tends to zero when
time goes to infinity.
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2.1. DEFINITION OF THE FLI

Given a mapping M from Rn to Rn an initial condition ~xð0Þ 2 Rn, and an
initial vector ~vð0Þ 2 Rn of norm 1 (we remark that in this particular case the
manifold and the tangent manifold are both Rn), let us define the FLI
function Fð~xð0Þ;~vð0Þ; sÞ; s belonging to Zþ, as:

Fð~xð0Þ;~vð0Þ; sÞ ¼ sup
0<tOs

log k~vðtÞk ð1Þ

where vðtÞ is given by the system:

~xðtþ 1Þ ¼M~xðtÞ
~vðtþ 1Þ ¼ @M

@~x ð~xðtÞÞ~vðtÞ

�
ð2Þ

Let us remark that this definition has replaced, since Froeschlé et al.(2000),
the first one given in Froeschlé et al. (1997). With the actual definition we
could get rid of unnecessary complications and the introduction of the su-
premum of the norm has the same advantage of an averaging procedure
easier to handle. Moreover the present definition is especially suited to the
analysis of the neighborhood of a periodic orbit (Froeschlé and Lega, 2005).

2.2. A FOUR DIMENSIONAL MAP AS A MODEL PROBLEM

In previous papers (Froeschlé et al., 2000; Guzzo et al., 2002; Lega et al.,
2003) we used the FLI to describe the geometry of the resonances of the
Hamiltonian system:

H ¼ I21
2
þ I22

2
þ I3 þ �

1

cosð/1Þ þ cosð/2Þ þ cosð/3Þ þ 4
ð3Þ

where I1; I2; I3 2 R and /1;/2;/3 2 T are canonically conjugate and � is a
small parameter.

In this paper we use the FLI for the same kind of studies, for a symplectic
mapping obtained through the leap-frog discretization (which ensures the
symplecticity of the mapping) of the equations of motion of Equation (3):

T ¼

xjþ1 ¼ xj � � sinðxjþyjÞ
ðcosðxjþyjÞþcosðzjþtjÞþ4Þ2

yjþ1 ¼ yj þ xj ðmod2pÞ
zjþ1 ¼ zj � � sinðzjþtjÞ

ðcosðxjþyjÞþcosðzjþtjÞþ4Þ2

tjþ1 ¼ zj þ tj ðmod2pÞ

8>>>>><
>>>>>:

ð4Þ
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We still have a quasi-integrable system with the usual advantage of map-
pings: we can integrate for times longer than in the continuous case and this
fact is crucial when dealing with the diffusion for small values of �.

Figure 1 shows the variation of the FLI with time for three different kinds
of orbits of T (indicated by arrows in Figure 2) with � ¼ 0:6. The upper
curve, with initial conditions in a chaotic zone in Figure 2: ðx ¼ 2:07;
y ¼ 0; z ¼ 2:1; t ¼ 0Þ shows an exponential increase of the FLI with time. The
intermediate curve corresponds to a regular invariant torus of initial condi-
tions ðx ¼ 1:8; y ¼ 0; z ¼ 1:2; t ¼ 0Þ and the lowest one corresponds to a
regular resonant curve of initial conditions ðx ¼ 1:67; y ¼ 0; z ¼ 0:91; t ¼ 0Þ:
Although the largest Lyapunov exponent of the two regular curves above is
zero, the FLI, as shown in Figure l, distinguishes between resonant and non
resonant regular motions. More precisely, although the two curves exhibit
essentially the same behavior they are parallel but distinct. At the origin of
the different values of the FLI for regular non resonant and resonant motion
there is the differential rotation which is not the same for the two dynamics.
The FLI behavior has been extensively studied both numerically and ana-
lytically in (Guzzo et al., 2002).

Figure 2 shows, at s ¼ 1000; the FLI for a grid of 500 � 500 initial
conditions regularly spaced on x; z: The other initial conditions are
y ¼ 0; t ¼ 0; and the initial vector is ~vð0Þ ¼ ð0:5ð

ffiffiffi
3
p
� 1Þ; 1; 1; 1Þ: The FLI is

reported with a grey scale: the dark strips correspond to regular resonant

Figure 1. Variation of the FLI as a function of time for three orbits of the standard map T with

� ¼ 0:6: The upper curve is for a chaotic orbit with initial conditions (x = 2.07, y= 0, z=2.1 ,
t=0) the middle one is for a regular non resonant orbit with (x = 1.8, y=0, z=1.2, t=0) and
the lowest one is for a regular resonant orbit with (x = 1.67, y = 0, z = 0.91, t = 0).
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motions while the white lines represent both chaotic resonant motions or the
vicinity of a separatrix. The orbits having an FLI value of about logðsÞ
constitute the background of KAM tori. Let us remark that for the Hamil-
tonian of Equation (3), when � ¼ 0 the frequencies are strictly equal to the
actions, therefore the FLI charts are nothing but frequencies charts, which
display a very well detailed Arnold’s web.

As far as the mapping is concerned, the same occurs when considering the
variables xðjÞ and zðjÞ which are the frequencies of the unperturbed mapping
Tð� ¼ 0Þ: Again, the FLI chart in the plane r–z (Figure 2) shows very clearly
the Arnold’s web.

3. Diffusion Along Resonances: Qualitative Aspects

For the four dimensional symplectic mapping T we have computed the FLI
charts for different values of the perturbing parameter and we have selected a
low order resonance. In order to compare the results obtained in the case of
the Hamiltonian system of Equation 3 we have considered the same unper-
turbed resonance x = 2z.

Figure 2. Geography of resonances in the plane x� z for the mapping T with � ¼ 0:6: The
computation has been done for a set of 500 � 500 initial conditions regularly spaced on x; z:
The other initial conditions are y ¼ 0; t ¼ 0; and the initial vector is~v ¼ ð0:5ð

ffiffiffi
3
p
� 1Þ; 1; 1; 1; Þ:

The grey scale ranges from black ðFLIO2Þ to white ðFLIP4Þ.
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Using the method of the FLI charts described in Froeschlé et al. (2000)
and in Guzzo et al. (2002) we found that the critical perturbation parameter
for the transition between the Nekhoroshev and the Chirikov regime is in the
interval 0:8<�<1:

Starting from an upper bound of � ¼ 0:7, we have looked for diffusive
orbits in the Nekhoroshev regime.

Figure 3 shows the FLI charts of the actions space for successive zoom
around x ¼ 1:7, z ¼ 0:8 for different values of �. In these pictures the region
between the two white lines is the resonant strip approximated by
x� 2z<

ffiffi
�
p

, and the two white lines correspond to its hyperbolic border
where diffusion is confined. These charts provide us the possibility of
choosing initial conditions in the hyperbolic border. Then, we can also follow
the evolution of the corresponding orbits on the FLI charts by plotting the
points which intersect the double section r ¼ jyj þ jtjO0:005: Let us remark,
that in such a way we minimize all projection effects and fast quasi-periodic
movements. What remains is a very slow drift along the border of the
resonance.

We have taken a set of 100 initial conditions corresponding to orbits of the
FLI charts having FLI values larger than 1:5 logðsÞ, i.e., to chaotic orbits at
the border of the resonance, far from the more stable crossing with other
resonances. We have plotted on the FLI charts all the points in the double
section described above. We remark that such points will appear on both side
of the resonance (in fact the two white lines are connected by an hyperbolic
region in the 4 dimensional phase space).

We show for � ¼ 0:6; the evolution of the 100 orbits up to j ¼ 6� 106

Figure 3 (top, left) and up to j ¼ 3� 108 Figure 3(top, right). The diffusion
along the resonance appears clearly, although the higher order resonances
intersecting the main one become evident, and consequently the region of
diffusion extends a little also on the direction transversal to the resonance.

When decreasing the perturbation, � ¼ 0:2; the diffusion along the resonant
line is more clear. In Figure 3 (middle) we have plotted again the intersections
of the 100 orbits with the double section r on the FLI chart after respectively
j ¼ 3� 108 (middle. left) and j ¼ 2� 1010 (middle, right). The phenomenon
still appears very clearly even for � ¼ 0:07; Figure 3 (bottom). i.e., an order of
magnitude lower than the threshold of transition between the two regimes. We
have observed the phenomenon down to � ¼ 0:03.

4. Diffusion Along Resonances: Quantitative Aspects

In order to measure the diffusion coefficient we have considered the phe-
nomenon as if it was a Brownian motion, since we do not have yet an analytic
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Figure 3. Diffusion along the resonant line x ¼ 2z of the mapping T for � ¼ 0:6 (top), � ¼ 0:2
(middle), � ¼ 0:07 (bottom) for a set of 100 initial conditions taken in the chaotic border of the
resonance. The figure in the middle and in the bottom correspond to the zone of the phase space
contained in the square plotted respectively in the figure at top, left and in the figure at middle,

left. The black points are the intersections of the orbits with the double section jyj þ jtjO 0:005:
The number of iterations on the set of orbits are respectively: j ¼ 6� 106(top, left).
j ¼ 3 � 108 (top, right). 3 � 108 (middle, left). 2 � 1010 (middle, right). 2� 109 (bottom,

left). 2:5 � 1010 (bottom, right). The grey scale ranges from black to white.
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model for a diffusion like the one we observed. We look therefore for a linear
increase with time of the mean square distance from the initial conditions.
We are aware that this is a very crude assumption and that for systems like
the standard map diffusion can be anomalous for very high values of the
perturbation parameter Zaslavski and Edelman (2000), where no invariant
curves remain. Instead, our computations concern quasi-integrable cases.
This is a very interesting problem which goes behind the purpose of the
present paper, mostly because we are submitted to computational limitations:
we can’t take a very large number of initial conditions which would require
very long CPU times.

Notwithstanding these difficulties, we observed indeed an averaged linear
increase with time of the mean squared distance from the initial conditions.
Moreover, in order to reduce the contributions due to fast motion, we have
only taken into account the points on the double section. More precisely,
denoting with xið0Þ and zið0Þ; i ¼ 1; . . . ;N the initial conditions of a set of N
orbits, with xiðjÞ and ziðjÞ the corresponding values at time j, and choosing a
fraction t� of the total integration time, we considered the quantity:

Sðnt�Þ ¼ 1

Mn

X
i:ðjyiðjÞjþjtiðjÞjÞ<0:005

½ðziðjÞ � 2xiðjÞÞ � ðzið0Þ � 2xið0ÞÞ�2 ð5Þ

where Mn is the number of points on the double section for j in the interval
ðn� 1Þt�O jO nt�:We observe (Figure 4) a linear increase with time of S and
we estimate the diffusion coefficient D as the slope of the regression line.

Figure 4. Evolution of the quantity �Sðnt�Þ (see text) with t� ¼ 5� 108, for 100 orbits of the
mapping T with � ¼ 0:05: The slope of the regression line gives the diffusion coefficient
D ¼ 5� 10�20:
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Following Zaslavski and Edelman (2001), we could have diffusion, more
precisely anomalous diffusion, driven by orbits with zero Lyapunov expo-
nent. Moreover, since the initial conditions were chosen using the FLI
computed on a relatively short time we have checked the chaotic character of
some of the selected orbits by computing the largest Lyapunov exponent.
More precisely, we computed the Lyapunov indicators. i.e. the truncated
values of the Lyapunov exponents which are defined by a limit for time going
to infinity.

Figure 5 shows the evolution with time of the largest Lyapunov indi-
cator of three orbits for � ¼ 0:05: The orbits have been chosen considering
the FLI distribution of the 100 initial conditions: the first one has the
lowest FLI (6.00), the second has an FLI in the middle of the distribution
(6.75) while the third has the largest FLI value (16.58). We recall that the
FLI chart for � ¼ 0:05 was computed on s ¼ 104 iterations and that the
orbits are considered chaotic when they have FLIP 1:5 log s; i.e., FLIP 6 in
the considered case. For the three-test orbits the largest Lyapunov indicator
is small but positive (Figure 5) ensuring that we are following very weak
chaotic motions. This kind of test comforts our confidence in using FLI
method for distinguishing the dynamical character of the orbits on times
which may be even some order of magnitude shorter than the time needed
for the Lyapunov indicators to stop to decrease and to stabilize at a
positive value.

Figure 5. Evolution of the largest Lyapunov indicator with time for three orbits of the
standard map T with � ¼ 0:05: The initial conditions are x ¼ 1:67209489949749 y ¼ 0:
z ¼ 0:809297781072027 t ¼ 0ðFLI ¼ 6:0Þ; x ¼ 1:67192854271357 y ¼ 0: z ¼ 0:809236608877722
t ¼ 0:ðFLI ¼ 6:75Þ; x ¼ 1:67203944723618 y ¼ 0: z ¼ 0:809286279229481 t ¼ 0:ðFLI ¼ 16:58Þ:
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The estimates of lnðDÞ versus lnð1=�Þ are reported in Figure 6. We have
defined three sets of data, performing a local regression for each of them of
the form lnðDÞ ¼ aþm lnð1=�Þ; and found three different slopes. The first set
contains the values of D for lnð1=�ÞO 0:92; the second for
1:17O lnð1=�ÞO 2:28 and the third for lnð1=�ÞP 2:43; and the corresponding
slopes are respectively m1 ¼ �4:2; m2 ¼ �8:5 and m3 ¼ �13:3: Such changes
of slope comfort the expected exponential decrease of D, as for the
Hamiltonian case reported in (Lega et al., 2003).

It would be natural at this point to check if the exponential upper bound
D< exp�ð1=�Þb expected from Nekhoroshev theorem can be seen from our
data, and in particular if one can obtain a numerical estimation of b.
Indeed, an exponential fit of our data would give the value b ¼ 0:28
(Figure 6) with apparently very good correlation coefficient of about 0.99.
However, how much this computation is meaningful is a delicate matter:
the apparently good correlation coefficient is due mainly to the small
interval in � used for the exponential fit (Figure 6): there are not theoretical
predictions to compare to the detected value: numerical studies (Benettin
and Fassó, 1999) have shown that the exponential upper bounds found by
perturbation theories are indeed only upper bounds, while the true ex-
change of energy among the different degrees of freedom with respect to a
perturbing parameter typically follows more complicated functional laws.
For these reasons, we think it is necessary in the future to perform more
numerical studies of the problem.

Figure 6. The logarithm of diffusion coefficient is plotted as a function of lnð1=�Þ: The change
of slope of the three power law fits is in agreement with the expected exponential decrease of
D.
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5. Global Diffusion

In the previous sections we have clearly showed the phenomenon of Arnold’s
diffusion occurring along a resonant line. It is clearly a phenomenon of local
diffusion. When dealing with global diffusion we immediately think to the
well known Chirikov’s diffusion, due to the overlapping of resonances. Is it
the only mechanism for global diffusion? At this purpose we have repeated
the previous experiments for a given value of the perturbation parameter,
close to the transition to the Chirikov regime, on a very long interval of time.
We have considered twenty initial conditions in the vicinity of the point
ðx; zÞ ¼ ð1:71; 0:81Þ for the symplectic map. Then, we computed numerically
the map up to 1011 iterations.

The results are reported in Figure 7. Figure 7a shows only the location
of initial conditions (inside the circles), on the FLI map of the action plane
ðx; zÞ, Figure 7a shows that we are in the Nekhoroshev regime since the
resonances do not overlap and the majority of the orbits, i.e. dark grey
and black zones in the FLI-chart, are regular. In Figure 7b we plotted as
black dots all points of the orbits which have returned after some time on
the section jyj þ jtjO 0:005: We observe that the orbits filled a macroscopic
region of the action plane whose structure is clearly that of the Arnold
web (Guzzo et al., 2005). The orbits have moved along the single reso-
nances, and avoided the center of the main resonance crossings, in
agreement with the theoretical results which predict longer stability times
for motions in these regions. The larger resonances (which correspond to
the smaller orders) are practically all visited, while this is not the case for
the thiner ones (which correspond to the higher orders). This is in agree-
ment with the theoretical results of (Morbidelli and Giorgilli, 1995;
Giorgilli and Morbidelli, 1997), which predict that the speed of diffusion
on each resonance becomes smaller for resonances of high order. There-
fore, the possibility of visiting all possible resonances is necessarily limited
by finite computational time.

The described diffusion phenomenon is very different from Chirikov dif-
fusion which is illustrated in Figure 7c, where the overlapping of resonances
appears clearly since, except for the large strip of regular resonant zones
corresponding to x ¼ 0 and to z ¼ 0, almost all regular orbits have disap-
peared. In the FLI-chart we observe a large white sea with small dark grey or
black islands. In this case the diffusion for 20 initial conditions located in the
circle of Figure 7c occurs in the same macroscopic region of Figure 7b of the
phase space in a much shorter time scales (only 2·107 iterations) and without
apparent peculiar topological properties of the stochastic region, i.e. the
whole chaotic sea is densely visited.
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6. Conclusion

By using a sensitive tool, the FLI, to detect the geography of resonances, we
have been able to choose and follow orbits which exhibit diffusive behavior
along resonant lines on a 4 dimensional symplectic map. We do not have an
analytic model for such a diffusion, thus we make the hypothesis that it
behaves as a Brownian motion. Under this hypothesis we measured a

Figure 7. Panels (a) and (c) correspond to the FLI map of the action plane ðx; zÞ for the map
T for � ¼ 0:6ðaÞ and � ¼ 1:7: The white region correspond to the chaotic part of the Arnold

web. We marked with a circle the location of the twenty initial conditions chosen in the vicinity
of the point ðx; zÞ ¼ ð1:71; 0:81Þ: In panels (b) and (d) we marked with a black dot all points of
the twenty orbits which have returned after some time on the section jyj þ jtj<0:005: We

consider 1011 iterations for panel (b) and 2 � 107 iterations for panel (d).
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diffusion coefficient and showed that the dependence of the diffusion coeffi-
cient on the perturbing parameter does not follow a power law, and in the
explored range is in agreement with the exponential decay predicted by
Nekhoroshev theory. Results agree with those previously obtained for an
Hamiltonian system (Lega et al., 2003). Moreover, we have shown that the
phenomenon of Arnold’s diffusion may also play an important role in the
long-term evolution of quasi-integrable systems. More precisely the orbits
can diffuse in a macroscopic portion of the phase space following in a
spectacular way the peculiar structure of resonant lines.

References

Arnold, V. I.: 1964, ‘Instability of dynamical systems with several degrees of freedom’, Sov.
Math. Dokl. 6, 581–585.
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