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Abstract. We consider some questions on central configurations of five bodies in space. In the
first one, we get a general result of symmetry for the restricted problem of n + 1 bodies in
dimension n — 1. After that, we made the calculation of all c.c. for n = 4. In our second result,
we extend a theorem of symmetry due to [Albouy, A. and Libre, 1.: 2002, Contemporary Math.
292, 1-16] on non-convex central configurations with 4 unit masses and an infinite central
mass. We obtain similar results in the case of a big, but finite central mass. Finally, we
continue the study by [Schmidt, D.S.: 1988, Contemporary Math. 81] of the bifurcations of the
configuration with four unit masses located at the vertices of a equilateral tetrahedron and a
variable mass at the barycenter. Using Liapunov—Schmidt reduction and a result on bifur-
cation equations, which appear in [Golubitsley, M., Stewart, L. and Schaeffer, D.: 1988,
Singularties and Groups in Bifurcation Theory, Vol. 11, Springer-Verlag, New York], we show
that there exist indeed seven families of central configurations close to a regular tetrahedron
parameterized by the value of central mass.
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1. Introduction

The properties and role that central configurations play in the dynamics of
the n body problem are explained in countless articles about the subject (see
for example Albouy, 2004; Saari, 1980). We intend to show the symmetry of
central configurations with n particles in dimension n — 2, the so called
Dziobek configurations and, in some cases, to calculate them. The approach
is well known from references (Albouy, 1997; 2004).

Let ¢ = (q1,...,q.) € (RY)" be a configuration of n particles with positive
masses mj, ..., m, in an Euclidean space. Let ¢ be the center of mass of the
particles.
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DEFINITION 1.1. We say that ¢ is a central configuration if there exists a
constant A € R such that

> “mjllg; — qil**(q: — ;) = A(q; — g6) forany i€ {1,...,n} (1.1)

JF
The exponent «a is taken in the range (—oo, —1). Newton’s problem refers to
exponent a = —3/2.
Substituting gg by its expression, the equation (1.1) take the form
A
Z”@'(SZ'—M)(%—%'):O (1.2)
JF

where M =) m; and s;; = ||q; — qj||2. .
We define the function ¢(s) = —s* +4; and the variables S;; by
Sip = @(s)-
We present as in Albouy (1997) an important estimate originally due to
Moeckel: defining the quantities

1
Eij = (mi + le)S,'j + E Z mk(Sik + Sjk)
k#i,j
we have that if ¢ is a central configuration then X; <0. The arithmetic mean
satisfies

_ 2 1
2:72 Yo . 1S < 1.
n(n—1) i E (mi 4 m;)S;< 0 (1.3)

i<j i<j

DEFINITION 1.2. We call g a Dziobek configuration if there exist constants
A,n € R and a non-zero vector A € R" such that

> A=0 and ) Aig=0 (1.4)
j=1 j=1
and
. A )
_SU+M: ]’]didj'7 Wlth dl' :A,-/m,- (15)

It’s easy to see that Dziobek’s configurations are central configurations with
dimension at most n — 2.
The following lemma is trivial

LEMMA 1.3. If q is a configuration of dimension exactly n — 2 then there
exists, up to a factor, a unique A € R" satisfying (1.4).

PROPOSITION 1.4. If q is a central configuration of dimension exactly n — 2
then q is a Dziobek’s configuration.
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Proof. See Albouy, 2004. L]

The next result is a consequence of Moeckel’s inequality.

PROPOSITION 1.5. If q is a Dziobek configuration then n > 0.
Proof. We have that

n 1 n AZ
0= A di=> (Adi+Ady) +2Aidi:EZ(mi+m/)Sij+Z?
i<j =1 i<j =11
and by (1.3)
n 2
_ | A°
Y= — <0.
n—1 ; m; -
The constant n can be normalized in the computation.
PROPOSITION 1.6. If q is a Dziobek configuration then
(A= A)(di—dj) =0 (1.6)
Proof. Substituting S;; = nd;d; in the expression of X; one has that
—n
2y = (A= A)(d;— d) < 0. 0

DEFINITION 1.7. A Dziobek configuration of dimension n — 2 is said
convex if at the least two of the A;’s are positive and at the least two of the
A;’s are negative. If one of the A;’s is negative and the others are positive then
the configuration is called non-convex.

Roughly speaking, a configuration is convex if none of the particles ¢; is
strictly inside the convex hull of the others. When the configuration is non-
convex with A; <0 and A; >0 (j > 1), ¢; 1s inside the convex hull of the
particles ¢;.

PROPOSITION 1.8. If g € (Rd)n is a configuration then the equations (1.4)

are equivalent to the system
n

ZA/(S,-/( = Z AkS/k and Z Ak =0 (17)

kFi k#j k=1
forany 1 <i < j < n
Proof. Suppose that (1.4) holds. Deriving the quantity 7, =3 Ay
lgx — ¢||* with respect to the vector ¢ we find

~2) " Aclgr—q) =0
pm
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by (1.4). Then, 7, does not depend on ¢ and so 7, = 1.
Now, substituting si; = (gx — qj, g« — ¢;) in the first of (1.7) we have

n

Z(Ak(qk—qj),q,-—qj> =0, for all i,j € {1,...,n}.
k=1

Fixed j, the equation above says that the vector > Ar(qx — ¢;) is orthogonal
to all generators of the linear space in which it lives. Thus

> Algr—gq) =0
and thereby > Axgqx = 0. O

Let’s define #; = ) | Arsi. By taking # = 1 and 1 = 1 the search of Dziobek
configurations consists in solving the system of n(n + 1)/2 equations and
n(n+ 1)/2 variables

li=1; (18)
> A=0 (1.9)
k=1

1 AA
st — = 1<i<j<n (1.10)

Y M m,-mj’

In addition, (1.8) furnishes the following necessary conditions for a con-
figuration be a Dziobek’s one:

I 1 1
Qi=|t t t|=0 (1.11)
A A A

The sign of each of these determinants is invariant by the transformations
s Es+pu, E>0and peR.

2. Dziobek Configurations of n + 1 Bodies

Let my,...,m, be fixed positive masses and ¢(myg,my,..., m,) a Dziobek
configuration which varies continuously with the mass m. Assume that, as
my goes to zero, g(my,...,m,) tends to a well-defined, collision-free config-
uration ¢ where ¢(my,...,m,) is n — 1 dimensional. The limit ¢ is what we
call a Dziobek configuration of n+ 1 bodies.
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2.1. THE SYMMETRY

The variables s; and A; are continuous functions of the mass my. Passing to
the limit, Equation (1.2) becomes

> miSy(g;— ) =0, i#0.
Jj=1

As the configuration {§,,...,q,} is n — 1 dimensional the set of n — 1 vectors
{4, — ¢}, i # 0 being fixed, is linearly independent. Then

1
L

Sj=0 = 5zy'=So=<M> forall 0<i<j<n.

This means that the n massive particles form a regular » — 1 dimensional
simplex. For n = 3 we have an equilateral triangle (Lagrange) and forn =4 a
regular tetrahedron (Lehmann—Filhés). The nullity of m, implies that of the
A;’s. Indeed, according to relations (1.10) for all i,j # 0 the products A;A;
tend to zero as my — 0. On the other hand, the limit Sy, exists and is finite,
which gives

ANy = mom;So; — 0 as  my — 0.

One multiplies > A; = 0 by A; and this shows that A; — 0 as my — 0 for all
0<i<n.

PROPOSITION 2.1. If 0;; = S;;/myg for 0 < i < j<n then lim 0; exists and is
finite.

Proof. Fix i # 0 and let j # i,0. The limiting configuration {g,,...,q,}
being n — 1 dimensional and ¢(my,...,m,) being a continuous function of
mo, {q1,...,qs} 1s also n — 1 dimensional for sufficiently small values of m;.
Now, from equation

> miSi(g;—qi) =0
=0

we see that the coordinates of the vector —Sy;(go — ¢;) with respect to the basis
{49/ — 4i} 00, are mymyg I'S;;. Because the linear independence is preserved at the
limit, one sees that the coordinates have a well defined and finite limit. [

Let’s call
S Sy
9,’/ = lim —l]
’ my—0 11

We now rescale the vector A making

A = (Viigh, - . ., /oA (2.1)
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PROPOSITION 2.2. With the normalization (2.1), lim A; exists for all i.
Proof. We substitute the components of A in the equations (1.10) to get
mm;S;; = moA;A;  and  m;So; = Ao/,
By the proposition (2.1) and the definition of Dziobek configuration of n + 1
bodies, we have the limits

lim Al’Aj = m,m]éy and lim A()A,‘ = m,-§0,-.

ny—0 my—0

As above, this implies that Aiz, and thus, by continuity, A;, have a well defined
limit as my goes to zero. ]

We denote them by
A; = lim A

my—0

REMARK 2.3. The limit Ao cannot be zero for, otherwise, the dimension of
the configuration should be n, which contradicts the hypothesis.

Again, the continuity hypothesis says that the s; and A; satisfy the
equations (1.8). Recording that §5;; = Sy for all 7, j # 0 the necessary conditions
(1.11) for a Dziobek configuration take the form

1 1 1
Qifk = 501 S:Ol, 570/1 =0
miSoi  m;So;  MSok

where we put ZOA,- = m,-§0,-.

THEOREM 2.4 (symmetry). All Dziobek configurations in the n+ 1 body
problem with equal masses possess a symmetry.

Proof. We know that

Sij = ¢(sy)
where ¢ has the properties ¢’ >0 and ¢” <0. Let 0 <i<j<k<n. If
A; < Aj < Ay then Sp; < So; < Sok. The convexity of ¢ implies that

1 1 1
Qijk = | Soi 50 Sok | <0
@(Sor)  @(So7) @ (Sox)

what is impossible for a Dziobek configuration. Thus, we must have

Al‘ = ZJ or AJ = Ak or Al‘ = Al'. [l

REMARK 2.5. For n = 3 the configuration has a symmetry axis. For n = 4
the configuration can admit a symmetry axis (A; = A, = A3) or a symmetry
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plane A; = A, and A; = A4). For n>4 we note the variables A; (i # 0)
assume no more than two different values in the case of equal masses.

2.2. THE DZIOBEK CONFIGURATIONS OF 4 + | BODY WITH EQUAL MASSES

We follow the strategy presented in [Albouy and Llibre, 2002]. We are going
to search Dziobek configurations with the following symmetries

A=A, and A3 =A; two planes of symmetry (2.2)
A; = Ay = A; one axis of symmetry (2.3)

For this end, we take A = M and a = —3/2 (Newton’s case). Calculation
consists in determining the coordinates so; with i € {1,2,3,4}.

SYMMETRY (2.2). In this case we have so; = 5o and so3 = so4. Put
Ay =6(1+7r) and A3 = 5(—1 + ) so that by (1.4) Ag = —4or.

The equation (1.8) become the system
(So1 — S03)r = —3
. 2.4
{ —(143r)so1 + (1 = r)sos =52 (2.4)
while So; = s5,"> + 1 gives us
5513/2:14-/)(14-1’) 2.5
=y (2.5)
Sp3 =1+ p(=1+7)

with the notation p = 46°r. We must solve this system of four equations and
four unknowns subject to the following constraints

rZ0, 14+p(1+r)>0, 14p(=1+r)>0. (2.6)
The first one express that the dimension of the configuration is three and the

other two that si; > 0.
Solving (2.4) for s9; and so3 we get

32 —2r + 1 37 +2r+1
So1 = T and 503 = T . (27)
To avoid the fractional exponent we square the equations (2.5)
_ 2
S013:(1 +p(1+71)) ) (2.8)
so3 = (L+p(=1+71)

Now, in order to extract an expression of p as a function of r we multiply the
first one by (1 — r)* and second one by (1 + r)?. After that, we subtract the
first one from the second and substitute in the expressions (2.7) to get

(P —1p=K-r (2.9)
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where
B 102477 (7% — 217 — 1)
(Br2—2r+ 1’32 +2r +1)°

Clearly one can see that r = +1 does not solve the system (2.4) and (2.5). We
assume then r # 41 and thus, by (2.9), p has a well defined expression in
terms of r.

We now insert p in the first of the equations (2.8) and, making the sim-
plifications, the final equation is equivalent to the polynomial equation

10077696r°° — 531441r** — 53208556r>* +- 297180941 + 11588260r'® —2955215r'¢

—524376r' 4 18944472 4 3440810 + 4577/* — 188r° — 114r* — 12/ — 1 = 0.
Sturm’s algorithm indicates six roots +ry, +r,, and +r;. One verifies that
r; is not compatible with the constraints (2.6). Thus we have four Dziobek
configurations with symmetry of type (2.2). Using a computer program for
numerical calculations we find that the admissible values for r are
r = £0.3872384014 . .. r3 = £1.370862272 . ..

which produces

Ay = +1.235570806. ..
So1 = 0.562994176. ..

Fp A} = —1.106573666. ..
so3 = 1.854188433 ...

Az = 40.488788263 ...

Ayp = +3.9011371610. ..
so1 = 0.2591484536. ..
"3 A} = —1.6867228570. ..

So3 = 0.6238823954 . ..
Az = —0.2638457233. ..

The other two are obtained by symmetry, interchanging the indices 1+—3.

Figure 1. Planar type symmetry.
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SYMMETRY (2.3). We have sog; = so2 = so3. Let’s make Ay = rA; so that
Ao = —(3 + r)A;. The equations ¢y = #; = 4 are equivalent to

{ (—=so1 +S04)3+r)=1—r

(6 4 r)so1 + rsos =2+ r (2.10)

On the other hand, Sy; = —s&.}/ 211 gives

sor = (14 p)°
{S&? 1t (2.11)

where we put p = (3 + r)A%. The constraints over the variables sg;, 1, p are

r#-=3, 1+p>0, 14+rp>0. (2.12)
Solving (2.10) in s¢; and so4 we get
P +2r+3 6
S0l = ———>5— 503 = —— (2.13)
3+7r) 3+r)
Now, we multiply the first equation (2.11) by *> and deduct the second getting
r? 1
= — 5= —1)(r+1+2rp) (2.14)
Sor - So4

The value r = 1 corresponds to the situation where the body of mass zero is
located at the barycenter of the tetrahedron. One assumes r # 1 and inserts
(2.13) into (2.14) to write p as a function of r

K—r—1
. 2.15
p > (2.15)
where
. 1 (r—1)(* + 8 4 36r + 108r +27)(3 4 r)°

216 (r2 +2r+3)°

The expression (2.15) combined with (2.11) and (2.13) becomes an equation
whose polynomial form is
191850201 + 25647342661 + 75707313397 4 2940246540r° — 2386010657714
—56617690230r° — 64508407371r° — 425504003047 — 13108660758r° +43934934601°
+8201201886r'° + 5687558856, +2676120174r'2 +957915396r'3 + 2722813384
+ 6254280013 + 11647341716 + 1744434717 +206119¢'8 + 1857211
+1203r%0 45072 412 =0.
Again, Sturm’s algorithm indicates eight roots among which 5 are ruled out

by the constraints (2.12). Using a computer program for numerical calcula-
tion we find the following values for r
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ri=1, rp=-7.494424564..., r3=-1.332058078..., rs=0.4692200276...

Such values correspond to the following solutions

1
3 A=—c 16vV6 —9

6
re: So1 = S02 = 8503 = S04 = 5
8 2
A0=+§\/16\/5—9

A, = +0.392051847 . ..
so = 2187023453 . . 1=+
ry 0297031877 Ay = —2.938202992 . ..
S = U. e
04 Ag = +1.762047451 . ..

Ay = —0.5549600183 ...
sor =0.758533292... '
ry > 1s6cogang . 4= 107392389753 .
S04 = <. N
o Ao = +0.9256410797 ...

Ay = —1.0634589110 . .
— 0.3455287919 ...
L Ay = —0.4989962196 . ..

= 0.4985257098 . ..
S04 Ay = +3.6893729530. ..

The configurations with symmetry of type (2.2) are those where the null mass
is on the three straight lines that join the middle points of opposing edges in
the tetrahedron. In each of these symmetry axes we have four possible
positions totalizing twelve central configurations with planar type symmetry.
In the Dziobek configurations of type (2.3) the null mass is located in the axis
of symmetry of the tetrahedron that passes through a vertex and crosses the
opposing face perpendicularly. There are four axes and four positions for the
null mass on each one, such that the barycenter of the tetrahedron is common
to the four axes. We have, therefore, thirteen central configurations with axis
type symmetry. Now, we can state the

Figure 2. Axis type symmetry.
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THEOREM 2.6. The spatial restricted problem of 4 + 1 body with equal
masses has 25 central configurations among which 12 are non-convex.

3. Symmetry of Central Configurations in the Spatial Five Body Problem

3.1. INTRODUCTION

In his article with J. Llibre (Albouy and Libre, 2002), A. Albouy proved that
in the spatial restricted problem of 1 + 4 bodies all central configuration has
a plane of symmetry. Central configurations of 1 + 4 bodies are configura-
tions without collision that are a limit of central configurations of five bodies
when one of the masses tends to +oo. In part 2, with the simplex method (see
Albouy, 1997) adjusted to the situation, we got the same result of symmetry
in the restricted problem of 4 4+ 1 bodies.

When I was his PhD student, Albouy asked me if the result of symmetry in
the 1 + 4 body problem could be extended to the case of four equal masses
and a much bigger, but finite mass.

A negative reply would give us a warning of that the simplex method is not
useful for showing symmetries of non-convex central configurations of five
bodies with equal masses. However, we succeeded in proving that the answer
to the question raised by Albouy is positive.

3.2. SYMMETRY OF CENTRAL CONFIGURATIONS IN A PROBLEM OF FIVE BODIES

One considers the problem of five bodies in a three-dimensional configura-
tion with four particles with equal mass m and a fifth unitary mass located in
the convex hull of those.

We are going to prove the following

m

Figure 3. 1 + 4 three-dimensional configuration.
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THEOREM 3.1. If 0 <m < % then every central configuration of this prob-
lem has a plane of symmetry.

Proof. We will use the theory of Dziobek configurations and a strategy
to show the incompatibility between the equations Q;x =0 and the as-
symmetry of the configurations through the simplex method (for more
details about the construction of the simplex see (Albouy, 1997)). We will
adopt m; =1 as being the unitary central mass and mp =m; = my =
ms = m as being the bodies around m;. Let (q1,...,gs) be a non-convex
assymmetrical Dziobek configuration. The first (definition 1.7) means that
Ay <0 and A; > 0 for 2<i<5 while the absence of symmetry implies that
the variables A; are distinct. So, up to reordering, they satisfy the
inequalities

A A A A
A<0< 2B 25
m m m m

(3.1)

which imply that

S5 < Sis < S35 < Sz <0< S35 < Sy < Sr5 < S35 < S35 < Sy

~— M~ =~ =~ ~ o M = =~
M S S3 Sy Ss Se 87 Sg Soy S1o
(3.2)

or

~— N = =~ ~ o T = =~
S S> S3 Sy S’ S6 S7 A\ Sy N
(3.3)
A,
where S = m,-m,/,- .
Given the 10 numbers S; we define the subset of R!°
{(s1,...,s10)/ there exists a convex increasing function ¥ s.t. s, = ¥/(S;) }
Note that the list of 10 variables s; = ||¢; — ¢;||> which characterize the cen-
tral configuration (qi,...,qs) belongs to this subset. To see this take
=9
On this set we can define the linear forms given by the determinants
I 1 1
Q= |t 4
A A A
which are null when (sy,...,s)0) is a central configuration and whose sign is

invariant by the transformations s — &s+ 5, € >0 and 5 € R. Identifying
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(81,...,810) to all the (&s; +1,...,Es10+ 1) with & > 0 we define a quotient
affine space of dimension 8. In this space the simplex with 9 vertices

A1(070707070707070707 1) B2(587S8>S87S87S87S87S87S87S97S10)
B3(S7aS77S77S77$7aS77S77S8,S93S10) B4(S(,,S(),S(,,SG,S(,,S{,,S7,SS,SQ,Sl())

Bg(S>,55,83,84,855,S6,57,5%,59,510) Bo(S1,52,53,84,55,56,57,58,59,S10)

contains in its interior the central configuration (...,sj,...).

REMARK 3.2. The numbers S; appearing as coordinates of the vertices
Ay, By, ... are those listed in the inequalities (3.2) and (3.3). Note that the
linear forms Qi and the simplex are parameterized by the five numbers A;.
We will now show that, for m in a given interval, at the least one hyperplane,
defined by an equation Q; = 0, does not have intersection with the interior
of the simplex. This is made by evaluating the form Q;; on the vertices of the
simplex and showing that Qyi(B;) have the same sign for all 1<i<9 and
consequently on any interior point of the simplex. Thus we conclude that the
configurations that correspond to interior points of the simplex do not realize
the necessary conditions to be a central configuration which are Q; = 0 for
all 1<i<j<k<5. Itis a contradiction. Then, for m in a given interval of
mass, the Dziobek configurations of this problem must have A; = A; for some
pair 1<i,j<5.

Since the 1-form Q>3 does not depend on s45, we can discard the variable
Sio in the vertices coordinates. In this way, we deal with a simplex of
dimension 7 defined by 8 vertices.

A= (0a07070707070707 1) By, = (S7,S7,S7,S7,S7,S7,S7,Sg,S9)
B3 =(S6,S6,S6,56,56,56,57,5%,59)  Bs=(Ss,S5,55,S5,S5,S6,57, %, 59)

B;=(52,5,,53,54,S5,56,57,58,59,) Bg=(S1,52,853,854,55,56,57,58,59)

Taking the order (3.2), in which S7; = S5 and Sg = S34, we evaluate the sign
of the 1-form Qi3 on the 8 vertices above by substituting s;; in the expres-
sions of #; by the coordinates of the vertices. For example, to get Q123(B7) we
make 515 = Sy, 514 = 52, 513 = S3 and so on. To make the simplifications we
use a program of formal calculus as Maple. We got
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O123(A41) = —As(Ax — Ay)
(287 + Az + Ay + As) [As(AsAs — ArAs) + A3(A; — A)]

0123(By) = — >
(As — Ay)(AgAsAy + AJA; — AJA, — A2A))
B — —
0123(B3) —
O (Bs) = — (As — A2)(AyAsAy 4+ AsAsAs — AZA| — AZA))
m
Ay — Ay))[mRs + P Az — A))[mRg + P
0123(Bs) = G 2)n[1 s+ 7] Q123(Bs) = (4 227[1 6+ Pl
As — Ay)[mRy + P As — Ay)[mRs + P
O123(B7) = C 2)n[1 ! ] Q123(Bg) = _ (& 2277 8 ]
where

P = (A2 = MA3) (A4 A3) + (AL — AyA3) (Mg 4+ Ay + Ay + As) + A (Ag + As) >0
Rs=—2A3(As+As+As+As)* <0
Re=—A1 (AT — A5 — A3 — AsAy— AsAs) >0
Ry=—A1(A] = A5 — A —AAs— A7) >0
Ry=—A (A=A —A—A2—AY) >0
Under the conditions Y A;=0, A <0<A;<A;<As4<As and
ArAs < A3A4 one verifies that the linear form Q1,3 is negative, for any value

of m, on all the vertices, except, perhaps, on Bs.
So, let us consider the function f': ([R+)4 — R given by

flahed) =— Lt
2a(a+b+c+d)
Under the restriction 0 < a<b<c<d we have the estimate
fabed)>-22 > L =g
) ) ) 2a(4d>2 16 ) ) )

Thus, if 0 < m < fy we have
P .
mRs + P = —Rs (—m — R) > —Rs(—fo +f(A2,A3,A4,As5)) >0
5

from which Q23(Bs) < 0.

The calculations show that if 0 < m < f; then the configurations inside the
simplex, all non-symmetrical of the type (3.2), present Q>3 < 0 and so they
cannot be central configurations.

We take now, the order (3.3), in the which S§7 = S34 and Sg = S»5. By
evaluating the sign of the 1-form Q53 on the vertices we get
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As(Az — A)(—A1As + A3Ay)

Ois(Ad1) = —As(Ay— A1) Qix3(By) =—

m
Qi23(B3) = — (A3 = 82) (AoAsls + Ay — AJAL = ASA)
m
0123(Bay) = — (As — A)) (AyA3AL + AsAsAs — AJA| — AZA))
m
Oun(Bs) = — By =M)mRs + P ) oy (A5 = Ao)mRs + P
n m
__(A3—A2)mR7+P] __(As—Az)ng+P}
Q123(B7) = " QO123(Bg) = —

By the same way, one verifies that if 0 < m < f; one has Q23(4;) < 0 and
Q123(B,') < 0 for all .

This shows that if 0 < m < f there do not exist Dziobek configurations
without symmetry, that is, with A| <0 < Ay < A3 < A4 < As. In this case,
A, = Az is a necessary, but not sufficient, condition for a Dziobek configu-
ration. So the Dziobek configurations have at the least one plane of sym-
metry. ]

Following Albouy and Libre (2002), we can consider non-convex config-
urations with A; < 0 < Ay = A3 < A4 < As, which gives us

S15 < S14 < S13 <0 < 833 < 834 < S35 < Sys.
Now, the simplex is defined by the vertices

S15 0 S14 0 S13 S12 823 S24 834 S35 845
Ay 0 0 0 0 0 0 0 0 1
B : Sz Sz S Sz Sz S S S35 Sss
Bs: S33 833 833 833 S3z S S S35 Sus
By : Sz Siz Siz Sz S S Sy S350 Sss
Bs : Sia S1ia Siz Sz Sz S S S35 Sss
B : Sis Sia Siz Si3 Sz S S S35 Sss

Making A, = Az in Q)34 and evaluating it on the 6 vertices above we get

Q134(4)) =As(A] —A3) Q134(B) _As(Ag—A3)(A1As — AsAy)

m
(A3 — Ag)(6A3F +3AsAT+2A5 (A3 — A]) + AsAs(As — A3) + A2)
m

Q134(Bs) =

0134(B3) =

(A3 —A4)[WZT4 +J] (A3—A4)[W1T5 +J]

m
(A3 AV [}’VZT6 —i—.]]
m

0134(Bs) =

Q134(Bs) =
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where
J=AsAg(As — A3) + (A2 — A4AT) +2A5(AZ — A}) + A3 (As — Ag) +2A3 > 2A3
Ty =—2A3(2A3+ Ay +As)* <0
Ts=—A1(A] —2A3 — A] — AsAg) >0
Ts=—A1(AT—2A3— AL —A2) >0

Except on By, the sign of Qj34 is negative on all vertices. As before,
consider the function g: (R, )’ — R given by

N 23
g(a,b,c)—bc(c a) +2a

B 2a(2a + b +¢)’
On the domain 0 < a<b<c¢ we have two estimates, to know
bc? 1 c
abc)z—>— ifa<=
sl b > e 6 2
2¢ 1 c
abc)>— 8 > __— ifa> -
Sab ) by ef s 128 2

By restricting 0 < m < go we will have
J
mTy+J= —T4<—m —?> > —T4(—g() +g(A3,A4,A5)) >0
4

from which Qi34(B4) < 0.

These last calculations show that a non-convex configuration with
0 < A3 < A4 cannot be central. By adding this to the previous result we have
the

PROPOSITION 3.3. Under the same hypothesis as Theorem (3.1), if
0<m < 1/128 then the central configurations have an axis of symmetry.

REMARK 3.4. Note that 1/128 is not a sharp value for estimating the
symmetry of the configuration. We must remember that m is the ratio be-
tween the external mass and the central mass.

4. Bifurcation of the Regular Tetrahedron

4.1. SOME CONCEPTS AND RESULTS ON BIFURCATION THEORY WITH SYMMETRY

The best reference for what follows below is (Golubitsky et al., 1998). Let I
be a Lie Group and V a finite dimensional vector space.
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DEFINITION 4.1. We say that I" acts linearly on V if there is a continuous
mapping
I'xV -V
(7, ¥) =y
such that
(i) ify;,7, € Tthen py - (y2-v) = (91 - 72) -V
(ii) for each y € I' the mapping p,: V — V defined by p,(v) =7V is
linear.

The mapping p : I' — GL(V) is called a representation of T on V.

EXAMPLE 4.2. The action of the permutation group S, on R" is given by
0 (X1, X2,y Xn) = (X (1)5 X(2)s - - - 5 Xo(n))

Such action is linear and p,, is represented by an elementary matrix obtained
from the identity matrix exchanging the rows according to ¢. For example, in
the action of S; on R’

. 2 3 0 0 1
=13 [ > < p,=|(1 0 0
0 1 0
In what follows, we consider that the action of I on V is always linear.

DEFINITION 4.3. if ¥ is a subgroup of I" then we define
Fix(Z) ={ve V/ov=vforall ¢ € X} (4.1)

DEFINITION 4.4. The isotropy subgroup of v € V is the set
S,={yel': 9yv=v} (4.2)

DEFINITION 4.5. A subspace W C V is called I'-invariant if yw € W for
allwe Wand y € T.

PROPOSITION 4.6. Let I be a compact Lie group acting on /. Then there
exists an inner product ( , ) on \ such that for all y € T', p, is orthogonal.

EXAMPLE 4.7. If I' = S, then (, )y = (, ) is the canonical inner product
on R".

PROPOSITION 4.8. If I is a compact group acting on N and if W is I'-
invariant subspace then there exists a I-invariant complementary subspace U
such that

V=WeUuU
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DEFINITION 4.9. The action of I' on V is irreducible if there is no
I-invariant subspaces except {0} and V. A subspace W C V is said to be
I'-irreducible if W is I'-invariant and the action of I' on W is irreducible.

DEFINITION 4.10. A mapping g:V — V is called T-equivariant if
g(yv) =yg(v) forallyeT'and ve V.

LEMMA 4.11. Let A:R" — R" be a S,-equivariant linear map. Then the
matrix of A with respect to canonical basis of R" has the form

X py ...y
yox y

A=|". : (4.3)
Yy y e X nxn

Proof. Indeed, by labelling (64),;= b; and (4c);= c; we have
bij = dg(j); and Cij = dig-1(})

So, the equation 4 = cAs~! implies that a; = Aq(i)s(j)- Making the index i, j
run over {1,2,...,n} and the permutation ¢ over S, one see that 4 has the
form (4.3). O

By induction on 7 it’s easy to prove that the determinant of A is

det(4) = (x+ (n — 1)y)(x — )" (4.4)

DEFINITION 4.12. A representation of a group I' on a vector space V is
absolutely irreducible if the only I'-equivariant linear mappings on V are
scalar multiples of the identity.

PROPOSITION 4.13. If T is compact and the T'-action on V is absolutely
irreducible then it is irreducible.

EXAMPLE 4.14. The action of S; on R®: let us consider R® ~ W c R*
where W is the Sy-invariant linear subspace

W= {xeR": ) x=0}

The isomorphism is given by
R} — W

1,32,¥3) = Z)’j“j
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where
ul:(_1711_1a1)7 uzz(—h—]’],l)’ ll3:(1,—1,—1,1)

form an orthogonal basis 3 for W. With respect to this basis the action of Sy
on W is given by multiplying the column vectors [u]; by matrices of the type

01 0 0 0 -1 -1 0 0
1 oo, o -1 o], 0 -1 0, et...
00 1 1 0 0 0 0 1

that is, 3 x 3 matrices whose rows are permutations of those of the identity
matrix changing two signs or none. This action is absolutely irreducible.
Indeed, the 3 x 3 matrix which commutes with the elements of S5 C S4 are of
the type

a b b
b a b (4.5)
b b a

By requiring that this matrix commutes with, for example,
0 -1 0
1 0 O (4.6)
0 0 -1

we have that b = —b.

LEMMA 4.15. Let g:V — V be a I'-equivariant mapping. If T C T is a
subgroup then

¢(Fix(Z)) C Fix(Z) (4.7)

PROPOSITION 4.16. If x € Fix(I') and g is a T-equivariant mapping then

(a) Dg(x) is a T-equivariant linear mapping,
(b) ker{Dg(x)} and Im{Dg(x)} are I'-invariant subspaces.

The main result in this section is the equivariant branching lemma which we
will discuss now. First, let g: V x R — V be a I'-equivariant mapping such
that

2(0,e) =0 and Dxg(0,0)=0 (4.8)
If I' is a Lie group acting absolutely irreducibly on V then by (4.16a) we have
that

Dyg(0,¢) = ¢(e)ld
and, by (4.8), ¢(0) = 0.
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THEOREM 4.17. (Vanderbauwhede — 1980). Under the hypothesis above, if
2 C I is an isotropy subgroup satisfying
dim(Fix(X)) =1
and ' (0) # 0 then there exists a unique smooth solution branch to g(x,e) =0
such that y = X.
The proof can be found in (Golubitsky et al., 1988). It shows that the
solution branch is given in the form (x, €(x)).

4.2. THE PROBLEM

Let g(m, 1,1, 1, 1) be a spatial configuration consisting of four unitary masses
located at the vertices of a regular tetrahedron and one variable mass located
at the barycenter.
Such a configuration is Dziobek for any value of m and it’s described by
the coordinates
sij=s, forl<qi<j<4
so;=s', for 1<j<4 (4.9)
A=o(m)(—4,1,1,1,1)

where

s' 3 _ (B—1)m i ~ (3
S=g and 5(m)_\/(4+m)(ﬁM+4) . ﬁ‘@

REMARK 4.18. The fraction 3/8 is given by the geometry of ¢ while the
expression for é(m) is calculated by substituting s; given for (1.10) into the
fraction s'/s = 3/8.

Now, we transform the equations (1.8), (1.9) and (1.10) into a 4 x 4 system
which describes all spatial Dziobek configurations with four equal masses. By
labelling x; = A; for i = 1,...,4 and defining

1

Figure 4. Configuration g(m, 1,1,1,1).
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v = (s )

we rewrite the four equations 7y — 7, Kk = 1,...,4, in the form

filx,m) = fjx_,»{w(%) “ W)} o () (@10)

=
j#k

where we have put xo = —x; — X — X3 — X4.
So, if F: R* x R, — R*is given by F = (fi,/5,/3,/4) then the equation
F(x1,x2,x3,x4,m) = (0,0,0,0) (4.11)

defines the Dziobek configurations for the masses (m,1,1,1,1).

PROPOSITION 4.19. The mapping F is Sy equivariant.
Proof. Let g € S4. Being o - X = (Xq(1), X4(2); X4(3), Xo(4)) fOr X € R*, we
write
X0Xo())
m

) = (oot %) |+ oty = 2000

xOxa(k))
m

B ; g {"D <@> — ¥ (¥o0) } + (Xo(k) = X0)¥ (?%f;(k)) = otk (X, m)

j#o(k)
from where F(o - x,m) = o - F(x,m). ]
The vector X = (d(m), 6(m), d(m), 6(m)) is a solution of the system (4.11),

contained in Fix(S4). According to (4.16a), the Jacobian matrix has the
structure presented in (4.11), so that the determinant of D, F(x(m), m) is

det(DxF(X(m),m)) = (n; + 3m)(n; — m)’

Where m= Dxlfl (}_(,Wl) 'cll’ld M, = Dx1f2(i>m)'
After a brief calculation one see that

6(f = 1)(4+ mp)

JE— 2 —
=S lp(a(m) ) <0 forall a<-1 (4.12)
mp(a—2+2p)+6(f—1)+4ap )
= 4.1
=1 AT v (o(m)’) (4.13)
So, the determinant is zero if, and only if,
m=m, = 0 6P —4ap (4.14)

(a—2+2p)p
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REMARK 4.20. Using derivatives with respect to ¢, one can see that the
numerator and the denominator of m, are both positive for « < —1. For

Newton’s case where ¢ = —3/2 we have
10368 + 1701v/6
m, — 10368 + 17016 (4.15)
54952

found by Schmidt (1988).

Calling e = m — m,, the problem is posed as a bifurcation problem with
symmetry

F(x,e) =0 (4.16)
where Fis Ss-equivariant and X(e) € Fix(S4) is a non-degenerate solution for
all € # 0. Note that, if L = DyxF(x(0),0) then

ker{L} ={x€R*: > x;=0} and Im{L}={(x,xx,x): KR}
To make the Liapunov-Schmidt reduction, consider the change of variables
X — y given by

4
X = Zy,u,- (4.17)
i=1

where uy, uy,u3 are exhibited in the example (4.14) and uwy = (1,1,1,1). In
substituting (4.17) into (4.16), the new equations, labelled by G(y,e) =0,
have y(e) = (0,0,0,5(¢)) as a trivial solution. Let P: R* — Im{L} be the
canonical projection. Then, the equations G(y,e¢) = 0 are equivalent to the
system

PG(y,e) = ((1,1,1,1),G(y,¢€)) - (1,1,1,1) = (0,0,0,0) (4.18)

3

(Id — P)G(y, ) = Y (u;, G(y,€))u; = (0,0,0,0) (4.19)
i=1

The equation (4.18) can be solved for y4 in terms of (yi,y2,y3,€) in a
neighborhood of (0,0,0,0). We write y4 = W(y1, y2, 3, €) and insert it in the
equations (4.19) to get the Sy-equivariant bifurcation problem
gi(J’l7J’27Y3;€) - <ui7G(y17y27y37 W(y17y27y376)76)> - 07 i = 17273
(4.20)
with  £;(0,0,0,¢) =0 and Dyg(0,0,0,0)=0. From now, we set
Y= (y17y27y3)-

REMARK 4.21. Considering the S; action on R® given in the example
(4.14), the function W(y,e€) is Ss-invariant, that is, W(o -y, e) = W(y,¢) for
all 0 € S4. Thus

DyW(0,¢€) € Fix(Ss) = {(0,0,0)}.
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Since the Sq action on R? is absolutely irreducible the matrix Dyg(0, €) is a
multiple of Ids.3. The derivative of g at the solution (0,¢€) is given by the
product matrix

-1 1 =11 M M My M -1 -1 1 1 100
1 2 M M Mo I -1 -11

1 1 1 1 010
. N My My M -1 -11

1 1 -1 1 001
M My My M 1 1 11

which results in D,g(0, €) = 4(n; — #,)Id33. The function c(e) = 4(n; — 1,) is
given by (4.13) with m = e + m,. Its derivative with respect to € at e = 0 is

_ 2B(a—2+2p) <1 (a—2+2p)

0 =~ T (2T ) #© fora a< -l

The hypotheses of the equivariant branching lemma are fully satisfied, so for
each isotropy subgroup of S; whose subspace fixed is one-dimensional there
exists only one solution of the bifurcation problem g(y, ¢) = 0 contained in its
fixed subspace. This gives us

THEOREM 4.22. If gq(m,1,1,1,1) is the tetrahedral non-convex central
configuration of five bodies then there exists a value m. > 0, which depends on
the exponent a, such that the configuration is non-degenerate for any m # m.
Furthermore, defined for m near m., there are at least seven families of central
configurations which bifurcate from the trivial solution q(m,1,1,1,1). Among
them, four present an axis type symmetry and three present a planar type
symmetry.
Proof. The Sy-action on R has seven isotropy subgroups. The first four
0 Z-l-11) Z(=Li-1) Z(1,-1,-1) (4.21)

produce solutions with planar type symmetry (A; = A, = A; for example)
and the last three

2000 2010  Z(00,1) (4.22)
produce solutions with axis type symmetry (A; = A, and A; = A4 for
example). O

The relation between the solutions of g(y,e) = 0 and F(x,¢) = 0 is made
explicit below:
Axis type symmetry

»yy) € Fix(Zaay) = (xx,x,z) (4.23)
(=y, =y, y) e Fix(Z1-11)) = (z,x,x,X) (4.24)
(_y’yv _y) € FiX<2(*171,*1)> = (x7 X, Z, X) (425)
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(ya - _y) € FiX(Z(1771’71)) = (X,Z,X,X) (426)
Planar type symmetry

(y,0,0) € FiX(Z(]’Oﬂo)) — (}", S, V,S) (427)
(ana O) € FiX(Z(O,l,O)) = (}", r,s, S) (428)
(07 Ovy) S FiX(Z(O,O,l)) = (S7 r, V,S) (429)

4.3. COMPUTATION OF THE BIFURCATION
4.3.1. Axis Type Symmetry

We suppose the solutions have y as formal power series of e.

y(€) = be + O(e?) (4.30)
Expanding each equation g; = 0 in power series and substituting y; = y(e) we
obtain

gi((e),e) =(p-b+q-b)E+0O() =0
from where the non-trivial solutions have the first order coefficient b = —1—;.
The computations show that

1 ab \/(6—6/3—4a/3)(a—2+2ﬂ)5(4ﬁ_3)
245(&) (ﬂ— 1)3(1 —261)

where
E(a) = a® — 8B + 10a*p — 5a% — 8af* + 9af — a + 8 — 4B° — 4

4.3.2. Planar Type Symmetry

Writing the possible solutions as a formal power series in terms of €, we only
obtain the solutions with axis type symmetry. According the proof of theo-
rem (4.17), the solutions are given as (X, ¢(x)) with x € Fix(Z) which is a one
dimensional vector space. In view of this, one cannot hope that the solution
with planar type symmetry arise as a series in powers of €’ withn € Z,. So we
look for solutions (4.27)—(4.29) where

v(e) = d(—¢)'* + O(((—e)'*)?) (4.31)
with € < 0, that is, m < m,.

Now we expand g in power series until the third order. Substituting
((€),0,0) in g1,g> and g3 we have that g, and g3 vanish fully while

81(2(6),0,0,¢) = y(e)((p — dq)e +...)
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Thus, g; = 0 until the third order if

\/ \/3a2ﬁ6 6 — dap)(a — 2+ 25)*(4f — 3)
(1 —=2a)(p—1){(a)

where

{(a) =96 +36a—432af +32a° f* — 30a® + 120a> — 4084>f — 124° B+

484° B* — 80a* f* + 8> f* + 3244 B* + 324af* 4 1080ap? + 964> > — 3847+
780> f* 4 27a* — 6a° — 1008ap’> — 324° B* — 424° B — 8164% B> + 964 B —
18a*B+96* + 576> — 24a* B> — 64a° > — 384p

REMARK 4.23. We have {(a) < 0 for all a < —1. In effect, {(a) is a poly-
nomial in ¢ and f. Expanding it in Taylor series at the point ¢ = —1 and next
writing the coefficients in terms of § as a Taylor series at the point f =2 we
have

{(a) = —(357+660(f —2)+468(f—2)% +192(f—2)° +24(f—2)*)
+[2156 4 4494( — 2) +3408(f —2)* + 1264(f —2)* + 180( —2)*] - (a+1)
— [4668 + 10846 (8 —2) +9156(f —2)* +3504(f —2)* +500(f —2)*] - (a+1)*
+[4230+10662(f —2) +9888(S —2)* +4128(f—2)° +648(f —2)"] - (a+1)°
— (1427 +3702(f — 2) +3528(f — 2)* + 1504(B — 2)* +-240(f —2)*] - (a + 1)*
+[162+436(8—2) +432(f—2)> +192(f —2)* +32(f —2)*|(a+1)°
which is clearly negative for ¢ < —1. (Remember that f = (%)a> 2 for all
a<—1))

To close the question it would be enough to prove the uniqueness of these
seven bifurcations. Up to now, we did not succeed in this task.
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