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Abstract. We consider some questions on central configurations of five bodies in space. In the
first one, we get a general result of symmetry for the restricted problem of nþ 1 bodies in
dimension n� 1. After that, we made the calculation of all c.c. for n ¼ 4. In our second result,
we extend a theorem of symmetry due to [Albouy, A. and Libre, I.: 2002, Contemporary Math.

292, 1–16] on non-convex central configurations with 4 unit masses and an infinite central
mass. We obtain similar results in the case of a big, but finite central mass. Finally, we
continue the study by [Schmidt, D.S.: 1988, Contemporary Math. 81] of the bifurcations of the

configuration with four unit masses located at the vertices of a equilateral tetrahedron and a
variable mass at the barycenter. Using Liapunov–Schmidt reduction and a result on bifur-
cation equations, which appear in [Golubitsley, M., Stewart, L. and Schaeffer, D.: 1988,

Singularties and Groups in Bifurcation Theory, Vol. II, Springer-Verlag, New York], we show
that there exist indeed seven families of central configurations close to a regular tetrahedron
parameterized by the value of central mass.
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1. Introduction

The properties and role that central configurations play in the dynamics of
the n body problem are explained in countless articles about the subject (see
for example Albouy, 2004; Saari, 1980). We intend to show the symmetry of
central configurations with n particles in dimension n� 2, the so called
Dziobek configurations and, in some cases, to calculate them. The approach
is well known from references (Albouy, 1997; 2004).

Let q ¼ ðq1; . . . ; qnÞ 2 ðRdÞn be a configuration of n particles with positive
masses m1; . . . ;mn in an Euclidean space. Let qG be the center of mass of the
particles.
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Celestial Mechanics and Dynamical Astronomy 90: 213–238, 2004.
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DEFINITION 1.1. We say that q is a central configuration if there exists a
constant k 2 R such thatX

j6¼i
mjkqi � qjk2aðqi � qjÞ ¼ kðqi � qGÞ for any i 2 f1; . . . ; ng ð1:1Þ

The exponent a is taken in the range ð�1;�1Þ. Newton’s problem refers to
exponent a ¼ �3=2:

Substituting qG by its expression, the equation (1.1) take the formX
j6¼i

mj saij �
k
M

� �
ðqi � qjÞ ¼ 0 ð1:2Þ

where M ¼
P

mi and sij ¼ kqi � qjk2:
We define the function uðsÞ ¼ �sa þ k

M and the variables Sij by

Sij ¼ uðsijÞ:
We present as in Albouy (1997) an important estimate originally due to
Moeckel: defining the quantities

Rij ¼ ðmi þmjÞSij þ
1

2

X
k 6¼i; j

mkðSik þ SjkÞ

we have that if q is a central configuration then RijO0. The arithmetic mean
satisfies

R ¼ 2

nðn� 1Þ
X
i<j

Rij ¼
1

n� 1

X
i<j

ðmi þmjÞSijO 0 ð1:3Þ

DEFINITION 1.2. We call q a Dziobek configuration if there exist constants
k; g 2 R and a non-zero vector D 2 Rn such thatXn

j¼1
Dj ¼ 0 and

Xn
j¼1

Djqj ¼ 0 ð1:4Þ

and

�saij þ
k
M
¼ gdidj; with di ¼ Di=mi ð1:5Þ

It’s easy to see that Dziobek’s configurations are central configurations with
dimension at most n� 2:

The following lemma is trivial

LEMMA 1.3. If q is a configuration of dimension exactly n� 2 then there
exists, up to a factor, a unique D 2 Rn satisfying (1.4).

PROPOSITION 1.4. If q is a central configuration of dimension exactly n� 2
then q is a Dziobek’s configuration.
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Proof. See Albouy, 2004. u

The next result is a consequence of Moeckel’s inequality.

PROPOSITION 1.5. If q is a Dziobek configuration then g > 0:

Proof. We have that

0¼
X

Di

X
dj¼

X
i<j

ðDidjþDjdiÞþ
Xn
i¼1

Didi¼
1

g

X
i<j

ðmiþmjÞSijþ
Xn
i¼1

D2
i

mi

and by (1.3)

R ¼ �g
n� 1

Xn
i¼1

D2
i

mi
O0: (

The constant g can be normalized in the computation.

PROPOSITION 1.6. If q is a Dziobek configuration then

ðDi � DjÞðdi � djÞP 0 ð1:6Þ
Proof. Substituting Sij ¼ gdidj in the expression of Rij one has that

Rij ¼
�g
2
ðDi � DjÞðdi � djÞO 0: (

DEFINITION 1.7. A Dziobek configuration of dimension n� 2 is said
convex if at the least two of the Di’s are positive and at the least two of the
Di’s are negative. If one of the Di’s is negative and the others are positive then
the configuration is called non-convex.

Roughly speaking, a configuration is convex if none of the particles qi is
strictly inside the convex hull of the others. When the configuration is non-
convex with D1 < 0 and Dj > 0 (j > 1), q1 is inside the convex hull of the
particles qj:

PROPOSITION 1.8. If q 2 Rd
� �n

is a configuration then the equations (1.4)
are equivalent to the systemX

k 6¼i
Dksik ¼

X
k6¼j

Dksjk and
Xn
k¼1

Dk ¼ 0 ð1:7Þ

for any 1 O i < j O n:
Proof. Suppose that (1.4) holds. Deriving the quantity tq ¼

P
Dk

kqk � qk2 with respect to the vector q we find

�2
Xn
k¼1

Dkðqk � qÞ ¼ 0
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by (1.4). Then, tq does not depend on q and so tqi ¼ tqj .
Now, substituting skj ¼ hqk � qj; qk � qji in the first of (1.7) we haveXn

k¼1
hDkðqk � qjÞ; qi � qji ¼ 0; for all i; j 2 f1; . . . ; ng:

Fixed j, the equation above says that the vector
P

Dkðqk � qjÞ is orthogonal
to all generators of the linear space in which it lives. ThusX

Dkðqk � qjÞ ¼ 0

and thereby
P

Dkqk ¼ 0. (

Let’s define ti ¼
P

Dksik. By taking g ¼ 1 and k ¼ 1 the search of Dziobek
configurations consists in solving the system of nðnþ 1Þ=2 equations and
nðnþ 1Þ=2 variables

ti ¼ tj ð1:8ÞXn
k¼1

Dk ¼ 0 ð1:9Þ

�saij þ
1

M
¼ DiDj

mimj
; 1Oi < jOn ð1:10Þ

In addition, (1.8) furnishes the following necessary conditions for a con-
figuration be a Dziobek’s one:

Qijk ¼
1 1 1
ti tj tk
Di Dj Dk

������
������ ¼ 0 ð1:11Þ

The sign of each of these determinants is invariant by the transformations
s 7! nsþ l, n > 0 and l 2 R:

2. Dziobek Configurations of nþ 1 Bodies

Let m1; . . . ;mn be fixed positive masses and qðm0;m1; . . ., mnÞ a Dziobek
configuration which varies continuously with the mass m0. Assume that, as
m0 goes to zero, qðm0; . . . ;mnÞ tends to a well-defined, collision-free config-
uration ~q where ~qðm1; . . . ;mnÞ is n� 1 dimensional. The limit ~q is what we
call a Dziobek configuration of nþ 1 bodies.
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2.1. THE SYMMETRY

The variables sij and Di are continuous functions of the mass m0. Passing to
the limit, Equation (1.2) becomesXn

j¼1
mj

~Sijð~qj � ~qiÞ ¼ 0; i 6¼ 0:

As the configuration f~q1; . . . ; ~qng is n� 1 dimensional the set of n� 1 vectors
fqj � qig, i 6¼ 0 being fixed, is linearly independent. Then

~Sij ¼ 0 ) ~sij ¼ s0 ¼
k
M

� �1
a

for all 0 < i < jOn:

This means that the n massive particles form a regular n� 1 dimensional
simplex. For n ¼ 3 we have an equilateral triangle (Lagrange) and for n ¼ 4 a
regular tetrahedron (Lehmann–Filhés). The nullity of m0 implies that of the
Di’s. Indeed, according to relations (1.10) for all i; j 6¼ 0 the products DiDj

tend to zero as m0 ! 0. On the other hand, the limit eS0i exists and is finite,
which gives

DiD0 ¼ m0miS0i ! 0 as m0 ! 0:

One multiplies
P

Di ¼ 0 by Dj and this shows that Di ! 0 as m0 ! 0 for all
0OiOn:

PROPOSITION 2.1. If hij ¼ Sij=m0 for 0 < i < jOn then lim hij exists and is
finite.

Proof. Fix i 6¼ 0 and let j 6¼ i; 0. The limiting configuration f~q1; . . . ; ~qng
being n� 1 dimensional and qðm0; . . . ;mnÞ being a continuous function of
m0, fq1; . . . ; qng is also n� 1 dimensional for sufficiently small values of m0.
Now, from equationXn

j¼0
mjSijðqj � qiÞ ¼ 0

we see that the coordinates of the vector�S0iðq0 � qiÞwith respect to the basis
fqj � qigj 6¼0;i are mjm

�1
0 Sij. Because the linear independence is preserved at the

limit, one sees that the coordinates have a well defined and finite limit. u

Let’s call

~hij ¼ lim
m0!0

Sij

m0
:

We now rescale the vector D making

D ¼ ffiffiffiffiffiffi
m0
p

D0; . . . ;
ffiffiffiffiffiffi
m0
p

Dnð Þ ð2:1Þ
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PROPOSITION 2.2. With the normalization (2.1), limDi exists for all i.

Proof. We substitute the components of D in the equations (1.10) to get

mimjSij ¼ m0DiDj and miS0i ¼ D0Di

By the proposition (2.1) and the definition of Dziobek configuration of nþ 1
bodies, we have the limits

lim
m0!0

DiDj ¼ mimj
~hij and lim

m0!0
D0Di ¼ mi

eS0i:

As above, this implies that D2
i , and thus, by continuity, Di, have a well defined

limit as m0 goes to zero. u

We denote them by

~Di ¼ lim
m0!0

Di

REMARK 2.3. The limit ~D0 cannot be zero for, otherwise, the dimension of
the configuration should be n, which contradicts the hypothesis.

Again, the continuity hypothesis says that the ~sij and eDi satisfy the
equations (1.8). Recording that ~sij ¼ ~s0 for all i; j 6¼ 0 the necessary conditions
(1.11) for a Dziobek configuration take the form

Qijk ¼
1 1 1
~s0i ~s0j ~s0k

mi
eS0i mj

eS0j mk
eS0k

������
������ ¼ 0

where we put eD0
eDi ¼ mi

eS0i:

THEOREM 2.4 (symmetry). All Dziobek configurations in the nþ 1 body
problem with equal masses possess a symmetry.

Proof. We know that

Sij ¼ uðsijÞ
where u has the properties u0 > 0 and u00 < 0. Let 0 < i < j < kOn. IfeDi < eDj < eDk then eS0i < eS0j < eS0k. The convexity of u implies that

Qijk ¼
1 1 1
~s0i ~s0j ~s0k

uð~s0iÞ uð~s0jÞ uð~s0kÞ

������
������ < 0

what is impossible for a Dziobek configuration. Thus, we must haveeDi ¼ eDj or eDj ¼ eDk or eDi ¼ eDi: (

REMARK 2.5. For n ¼ 3 the configuration has a symmetry axis. For n ¼ 4
the configuration can admit a symmetry axis ðeD1 ¼ eD2 ¼ eD3Þ or a symmetry
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plane eD1 ¼ eD2 and eD3 ¼ eD4Þ. For n > 4 we note the variables eDi ði 6¼ 0Þ
assume no more than two different values in the case of equal masses.

2.2. THE DZIOBEK CONFIGURATIONS OF 4þ 1 BODY WITH EQUAL MASSES

We follow the strategy presented in [Albouy and Llibre, 2002]. We are going
to search Dziobek configurations with the following symmetries

D1 ¼ D2 and D3 ¼ D4 two planes of symmetry ð2:2Þ
D1 ¼ D2 ¼ D3 one axis of symmetry ð2:3Þ

For this end, we take k ¼M and a ¼ �3=2 (Newton’s case). Calculation
consists in determining the coordinates s0i with i 2 f1; 2; 3; 4g:

SYMMETRY (2.2). In this case we have s01 ¼ s02 and s03 ¼ s04. Put
D1 ¼ dð1þ rÞ and D3 ¼ dð�1þ rÞ so that by (1.4) D0 ¼ �4dr:
The equation (1.8) become the system

ðs01 � s03Þr ¼ � 1
2

�ð1þ 3rÞs01 þ ð1� rÞs03 ¼ 1�3r
2

�
ð2:4Þ

while S0i ¼ s
�3=2
0i þ 1 gives us

s
�3=2
01 ¼ 1þ qð1þ rÞ
s
�3=2
03 ¼ 1þ qð�1þ rÞ

(
ð2:5Þ

with the notation q ¼ 4d2r. We must solve this system of four equations and
four unknowns subject to the following constraints

r 6¼ 0; 1þ qð1þ rÞ > 0; 1þ qð�1þ rÞ > 0: ð2:6Þ
The first one express that the dimension of the configuration is three and the
other two that saij > 0:

Solving (2.4) for s01 and s03 we get

s01 ¼
3r2 � 2rþ 1

8r2
and s03 ¼

3r2 þ 2rþ 1

8r2
: ð2:7Þ

To avoid the fractional exponent we square the equations (2.5)

s�301 ¼ 1þ qð1þ rÞð Þ2

s�303 ¼ 1þ qð�1þ rÞð Þ2

(
ð2:8Þ

Now, in order to extract an expression of q as a function of r we multiply the
first one by ð1� rÞ2 and second one by ð1þ rÞ2. After that, we subtract the
first one from the second and substitute in the expressions (2.7) to get

ðr2 � 1Þq ¼ K� r ð2:9Þ

DZIOBEK’S CONFIGURATIONS 219



where

K ¼ 1024r7ð7r4 � 2r2 � 1Þ
ð3r2 � 2rþ 1Þ3ð3r2 þ 2rþ 1Þ3

Clearly one can see that r ¼ �1 does not solve the system (2.4) and (2.5). We
assume then r 6¼ �1 and thus, by (2.9), q has a well defined expression in
terms of r.

We now insert q in the first of the equations (2.8) and, making the sim-
plifications, the final equation is equivalent to the polynomial equation

10077696r26�531441r24�53208556r22þ29718094r20þ11588260r18�2955215r16

�524376r14 þ 189444r12 þ 34408r10 þ 4577r8 � 188r6 � 114r4 � 12r2 � 1 ¼ 0:

Sturm’s algorithm indicates six roots �r1, �r2, and �r3. One verifies that
r2 is not compatible with the constraints (2.6). Thus we have four Dziobek
configurations with symmetry of type (2.2). Using a computer program for
numerical calculations we find that the admissible values for r are

r1 ¼ �0:3872384014 . . . r3 ¼ �1:370862272 . . .
which produces

r1 :
s01 ¼ 0:562994176 . . .

s03 ¼ 1:854188433 . . .

D0 ¼ þ1:235570806 . . .
D1 ¼ �1:106573666 . . .
D3 ¼ þ0:488788263 . . .

r3 :
s01 ¼ 0:2591484536 . . .

s03 ¼ 0:6238823954 . . .

D0 ¼ þ3:9011371610 . . .
D1 ¼ �1:6867228570 . . .
D3 ¼ �0:2638457233 . . .

The other two are obtained by symmetry, interchanging the indices 1 !3:

Figure 1. Planar type symmetry.
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SYMMETRY (2.3). We have s01 ¼ s02 ¼ s03. Let’s make D4 ¼ rD1 so that
D0 ¼ �ð3þ rÞD1. The equations t0 ¼ t1 ¼ t4 are equivalent to

ð�s01 þ s04Þð3þ rÞ ¼ 1� r
ð6þ rÞs01 þ rs04 ¼ 2þ r

�
ð2:10Þ

On the other hand, S0i ¼ �s�3=20i þ 1 gives

s�301 ¼ ð1þ qÞ2

s�304 ¼ ð1þ qrÞ2

(
ð2:11Þ

where we put q ¼ ð3þ rÞD2
1. The constraints over the variables s0i; r;q are

r 6¼ �3; 1þ q > 0; 1þ rq > 0: ð2:12Þ
Solving (2.10) in s01 and s04 we get

s01 ¼
r2 þ 2rþ 3

ð3þ rÞ2
and s03 ¼

6

ð3þ rÞ2
ð2:13Þ

Now, we multiply the first equation (2.11) by r2 and deduct the second getting

r2

s301
� 1

s304
¼ ðr� 1Þðrþ 1þ 2rqÞ ð2:14Þ

The value r ¼ 1 corresponds to the situation where the body of mass zero is
located at the barycenter of the tetrahedron. One assumes r 6¼ 1 and inserts
(2.13) into (2.14) to write q as a function of r

q ¼ K� r� 1

2r
ð2:15Þ

where

K ¼ � 1

216

ðr� 1Þðr4 þ 8r3 þ 36r2 þ 108rþ 27Þð3þ rÞ6

ðr2 þ 2rþ 3Þ3

The expression (2.15) combined with (2.11) and (2.13) becomes an equation
whose polynomial form is

191850201þ2564734266rþ7570731339r2þ2940246540r3�23860106577r4

�56617690230r5�64508407371r6�42550400304r7�13108660758r8þ4393493460r9

þ8201201886r10þ5687558856r11þ2676120174r12þ957915396r13þ272281338r14

þ62542800r15þ11647341r16þ1744434r17þ206119r18þ18572r19

þ1203r20þ50r21þ r22¼ 0:

Again, Sturm’s algorithm indicates eight roots among which 5 are ruled out
by the constraints (2.12). Using a computer program for numerical calcula-
tion we find the following values for r
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r1¼ 1; r2¼�7:494424564 . . . ; r3¼�1:332058078 . . . ; r4¼ 0:4692200276 . . .

Such values correspond to the following solutions

r1 : s01 ¼ s02 ¼ s03 ¼ s04 ¼
3

8

D1 ¼ �
1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

ffiffiffi
6
p
� 9

q
D0 ¼ þ

2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

ffiffiffi
6
p
� 9

q

r2 :
s01 ¼ 2:187023453 . . .

s04 ¼ 0:297031877 . . .

D1 ¼ þ0:392051847 . . .
D4 ¼ �2:938202992 . . .
D0 ¼ þ1:762047451 . . .

r3 :
s01 ¼ 0:758533292 . . .

s04 ¼ 2:156698328 . . .

D1 ¼ �0:5549600183 . . .
D4 ¼ þ0:7392389753 . . .
D0 ¼ þ0:9256410797 . . .

r4 :
s01 ¼ 0:3455287919 . . .

s04 ¼ 0:4985257098 . . .

D1 ¼ �1:0634589110 . . .
D4 ¼ �0:4989962196 . . .
D0 ¼ þ3:6893729530 . . .

The configurations with symmetry of type (2.2) are those where the null mass
is on the three straight lines that join the middle points of opposing edges in
the tetrahedron. In each of these symmetry axes we have four possible
positions totalizing twelve central configurations with planar type symmetry.
In the Dziobek configurations of type (2.3) the null mass is located in the axis
of symmetry of the tetrahedron that passes through a vertex and crosses the
opposing face perpendicularly. There are four axes and four positions for the
null mass on each one, such that the barycenter of the tetrahedron is common
to the four axes. We have, therefore, thirteen central configurations with axis
type symmetry. Now, we can state the

Figure 2. Axis type symmetry.
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THEOREM 2.6. The spatial restricted problem of 4 þ 1 body with equal
masses has 25 central configurations among which 12 are non-convex.

3. Symmetry of Central Configurations in the Spatial Five Body Problem

3.1. INTRODUCTION

In his article with J. Llibre (Albouy and Libre, 2002), A. Albouy proved that
in the spatial restricted problem of 1 þ 4 bodies all central configuration has
a plane of symmetry. Central configurations of 1 þ 4 bodies are configura-
tions without collision that are a limit of central configurations of five bodies
when one of the masses tends to þ1. In part 2, with the simplex method (see
Albouy, 1997) adjusted to the situation, we got the same result of symmetry
in the restricted problem of 4þ 1 bodies.

When I was his PhD student, Albouy asked me if the result of symmetry in
the 1 þ 4 body problem could be extended to the case of four equal masses
and a much bigger, but finite mass.

A negative reply would give us a warning of that the simplex method is not
useful for showing symmetries of non-convex central configurations of five
bodies with equal masses. However, we succeeded in proving that the answer
to the question raised by Albouy is positive.

3.2. SYMMETRY OF CENTRAL CONFIGURATIONS IN A PROBLEM OF FIVE BODIES

One considers the problem of five bodies in a three-dimensional configura-
tion with four particles with equal mass m and a fifth unitary mass located in
the convex hull of those.
We are going to prove the following

1 m

m

m

m

Figure 3. 1 þ 4 three-dimensional configuration.
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THEOREM 3.1. If 0 < m < 1
16 then every central configuration of this prob-

lem has a plane of symmetry.

Proof. We will use the theory of Dziobek configurations and a strategy
to show the incompatibility between the equations Qijk ¼ 0 and the as-
symmetry of the configurations through the simplex method (for more
details about the construction of the simplex see (Albouy, 1997)). We will
adopt m1 ¼ 1 as being the unitary central mass and m2 ¼ m3 ¼ m4 ¼
m5 ¼ m as being the bodies around m1. Let ðq1; . . . ; q5Þ be a non-convex
assymmetrical Dziobek configuration. The first (definition 1.7) means that
D1 < 0 and Di > 0 for 2OiO5 while the absence of symmetry implies that
the variables Di are distinct. So, up to reordering, they satisfy the
inequalities

D1 < 0 <
D2

m
<

D3

m
<

D4

m
<

D5

m
ð3:1Þ

which imply that

S15|{z}
S1

< S14|{z}
S2

< S13|{z}
S3

< S12|{z}
S4

< 0< S23|{z}
S5

< S24|{z}
S6

< S25|{z}
S7

< S34|{z}
S8

< S35|{z}
S9

< S45|{z}
S10

ð3:2Þ

or

S15|{z}
S1

< S14|{z}
S2

< S13|{z}
S3

< S12|{z}
S4

< 0< S23|{z}
S5

< S24|{z}
S6

< S34|{z}
S7

< S25|{z}
S8

< S35|{z}
S9

< S45|{z}
S10

ð3:3Þ

where Sij ¼ DiDj

mimj
:

Given the 10 numbers Sl we define the subset of R10

fðs1; . . . ; s10Þ/ there exists a convex increasing function w s.t. sl ¼ wðSlÞg
Note that the list of 10 variables sij ¼ kqi � qjk2 which characterize the cen-
tral configuration ðq1; . . . ; q5Þ belongs to this subset. To see this take
w ¼ u�1:
On this set we can define the linear forms given by the determinants

Qijk ¼
1 1 1
ti tj tk
Di Dj Dk

������
������

which are null when ðs1; . . . ; s10Þ is a central configuration and whose sign is
invariant by the transformations s 7! nsþ g, n > 0 and g 2 R. Identifying
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ðs1; . . . ; s10Þ to all the ðns1 þ g; . . . ; ns10 þ gÞ with n > 0 we define a quotient
affine space of dimension 8. In this space the simplex with 9 vertices

A1ð0;0;0;0;0;0;0;0;0;1Þ B2ðS8;S8;S8;S8;S8;S8;S8;S8;S9;S10Þ
B3ðS7;S7;S7;S7;S7;S7;S7;S8;S9;S10Þ B4ðS6;S6;S6;S6;S6;S6;S7;S8;S9;S10Þ

..

. ..
.

B8ðS2;S2;S3;S4;S5;S6;S7;S8;S9;S10Þ B9ðS1;S2;S3;S4;S5;S6;S7;S8;S9;S10Þ

contains in its interior the central configuration ð. . . ; sij; . . .Þ:

REMARK 3.2. The numbers Sl appearing as coordinates of the vertices
A1;B2; . . . are those listed in the inequalities (3.2) and (3.3). Note that the
linear forms Qijk and the simplex are parameterized by the five numbers Di.
We will now show that, for m in a given interval, at the least one hyperplane,
defined by an equation Qijk ¼ 0, does not have intersection with the interior
of the simplex. This is made by evaluating the form Qijk on the vertices of the
simplex and showing that QijkðBiÞ have the same sign for all 1OiO9 and
consequently on any interior point of the simplex. Thus we conclude that the
configurations that correspond to interior points of the simplex do not realize
the necessary conditions to be a central configuration which are Qijk ¼ 0 for
all 1Oi < j < kO5. It is a contradiction. Then, for m in a given interval of
mass, the Dziobek configurations of this problem must have Di ¼ Dj for some
pair 1Oi; jO5:

Since the 1-form Q123 does not depend on s45, we can discard the variable
S10 in the vertices coordinates. In this way, we deal with a simplex of
dimension 7 defined by 8 vertices.

A1¼ð0;0;0;0;0;0;0;0;1Þ B2¼ðS7;S7;S7;S7;S7;S7;S7;S8;S9Þ
B3¼ðS6;S6;S6;S6;S6;S6;S7;S8;S9Þ B4¼ðS5;S5;S5;S5;S5;S6;S7;S8;S9Þ

..

. ..
.

B7¼ðS2;S2;S3;S4;S5;S6;S7;S8;S9;Þ B8¼ðS1;S2;S3;S4;S5;S6;S7;S8;S9Þ

Taking the order (3.2), in which S7 ¼ S25 and S8 ¼ S34, we evaluate the sign
of the 1-form Q123 on the 8 vertices above by substituting sij in the expres-
sions of ti by the coordinates of the vertices. For example, to get Q123ðB7Þ we
make s15 ¼ S2, s14 ¼ S2, s13 ¼ S3 and so on. To make the simplifications we
use a program of formal calculus as Maple. We got
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Q123ðA1Þ ¼ �D5ðD2 � D1Þ

Q123ðB2Þ ¼ �
ð2D2 þ D3 þ D4 þ D5Þ D4ðD3D4 � D2D5Þ þ D2

5ðD3 � D2Þ
� 	

m

Q123ðB3Þ ¼ �
ðD3 � D2ÞðD4D5D2 þ D2

4D2 � D2
4D1 � D2

5D1Þ
m

Q123ðB4Þ ¼ �
ðD3 � D2ÞðD2D3D4 þ D2D3D5 � D2

4D1 � D2
5D1Þ

m

Q123ðB5Þ ¼ �
ðD3 � D2Þ½mR5 þ P�

m
Q123ðB6Þ ¼ �

ðD3 � D2Þ½mR6 þ P�
m

Q123ðB7Þ ¼ �
ðD3 � D2Þ½mR7 þ P�

m
Q123ðB8Þ ¼ �

ðD3 � D2Þ½mR8 þ P�
m

where

P¼ðD2
5�D2D3ÞðD2þD3ÞþðD2

4�D2D3ÞðD2þD3þD4þD5ÞþD2
5ðD4þD5Þ> 0

R5¼�2D2ðD2þD3þD4þD5Þ2 < 0

R6¼�D1ðD2
1�D2

2�D2
3�D3D4�D3D5Þ> 0

R7¼�D1ðD2
1�D2

2�D2
3�D4D5�D2

4Þ> 0

R8¼�D1ðD2
1�D2

2�D2
3�D2

4�D2
5Þ> 0

Under the conditions
P

Di ¼ 0, D1 < 0 < D2 < D3 < D4 < D5 and
D2D5 < D3D4 one verifies that the linear form Q123 is negative, for any value
of m; on all the vertices, except, perhaps, on B5.

So, let us consider the function f : ðRþÞ4 ! R given by

f ða; b; c; d Þ ¼ d 2ðcþ dÞ
2aðaþ bþ cþ dÞ2

Under the restriction 0 < aObOcOd we have the estimate

fða; b; c; d ÞP d 22c

2að4d Þ2
P

1

16
¼ f ð1; 1; 1; 1Þ ¼ f0

Thus, if 0 < m < f0 we have

mR5 þ P ¼ �R5 �m�
P

R5

� �
> �R5ð�f0 þ f ðD2;D3;D4;D5ÞÞ > 0

from which Q123ðB5Þ < 0:
The calculations show that if 0 < m < f0 then the configurations inside the

simplex, all non-symmetrical of the type (3.2), present Q123 < 0 and so they
cannot be central configurations.

We take now, the order (3.3), in the which S7 ¼ S34 and S8 ¼ S25: By
evaluating the sign of the 1-form Q123 on the vertices we get
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Q123ðA1Þ ¼ �D5ðD2�D1Þ Q123ðB2Þ ¼ �
D5ðD3�D2Þð�D1D5þD3D4Þ

m

Q123ðB3Þ ¼ �
ðD3�D2ÞðD2D4D5þD2D

2
4�D2

4D1�D2
5D1Þ

m

Q123ðB4Þ ¼ �
ðD3�D2ÞðD2D3D4þD2D3D5�D2

4D1�D2
5D1Þ

m

Q123ðB5Þ ¼ �
ðD3�D2Þ½mR5þP�

m
Q123ðB6Þ ¼ �

ðD3�D2Þ½mR6þP�
m

Q123ðB7Þ ¼ �
ðD3�D2Þ½mR7þP�

m
Q123ðB8Þ ¼ �

ðD3�D2Þ½mR8þP�
m

By the same way, one verifies that if 0 < m < f0 one has Q123ðA1Þ < 0 and
Q123ðBiÞ < 0 for all i.

This shows that if 0 < m < f0 there do not exist Dziobek configurations
without symmetry, that is, with D1 < 0 < D2 < D3 < D4 < D5: In this case,
D2 ¼ D3 is a necessary, but not sufficient, condition for a Dziobek configu-
ration. So the Dziobek configurations have at the least one plane of sym-
metry. (

Following Albouy and Libre (2002), we can consider non-convex config-
urations with D1 < 0 < D2 ¼ D3 < D4 < D5, which gives us

S15 < S14 < S13 < 0 < S33 < S34 < S35 < S45:

Now, the simplex is defined by the vertices

s15 s14 s13 s12 s23 s24 s34 s35 s45
A1 : 0 0 0 0 0 0 0 0 1
B2 : S34 S34 S34 S34 S34 S34 S34 S35 S45

B3 : S33 S33 S33 S33 S33 S34 S34 S35 S45

B4 : S13 S13 S13 S13 S33 S34 S34 S35 S45

B5 : S14 S14 S13 S13 S33 S34 S34 S35 S45

B6 : S15 S14 S13 S13 S33 S34 S34 S35 S45

Making D2 ¼ D3 in Q134 and evaluating it on the 6 vertices above we get

Q134ðA1Þ¼D5ðD1�D3Þ Q134ðB2Þ¼
D5ðD4�D3ÞðD1D5�D3D4Þ

m

Q134ðB3Þ¼
ðD3�D4Þð6D3

3þ3D5D
2
3þ2D3ðD2

5�D2
4ÞþD5D4ðD5�D3ÞþD3

5Þ
m

Q134ðB4Þ¼
ðD3�D4Þ½mT4þJ�

m
Q134ðB5Þ¼

ðD3�D4Þ½mT5þJ�
m

Q134ðB6Þ¼
ðD3�D4Þ½mT6þJ�

m
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where

J¼D5D4ðD5�D3ÞþðD3
5�D4D

2
3Þþ2D3ðD2

5�D2
4ÞþD2

3ðD5�D4Þþ2D3
3 > 2D3

3

T4¼�2D3ð2D3þD4þD5Þ2 < 0

T5¼�D1ðD2
1�2D2

3�D2
4�D5D4Þ> 0

T6¼�D1ðD2
1�2D2

3�D2
4�D2

5Þ> 0

Except on B4; the sign of Q134 is negative on all vertices. As before,
consider the function g : ðRþÞ3 ! R given by

gða; b; cÞ ¼ bcðc� aÞ þ 2a3

2að2aþ bþ cÞ2

On the domain 0 < aObOc we have two estimates, to know

gða; b; cÞP bc2

4að2aþ bþ cÞ2
P

1

64
if a <

c

2

gða; b; cÞP
2 c3

8

2að2aþ bþ cÞ2
P

1

128
¼ g0 if aP

c

2

By restricting 0 < m < g0 we will have

mT4 þ J ¼ �T4 �m�
J

T4

� �
> �T4ð�g0 þ gðD3;D4;D5ÞÞ > 0

from which Q134ðB4Þ < 0:
These last calculations show that a non-convex configuration with

0 < D3 < D4 cannot be central. By adding this to the previous result we have
the

PROPOSITION 3.3. Under the same hypothesis as Theorem (3.1), if
0Om < 1=128 then the central configurations have an axis of symmetry.

REMARK 3.4. Note that 1=128 is not a sharp value for estimating the
symmetry of the configuration. We must remember that m is the ratio be-
tween the external mass and the central mass.

4. Bifurcation of the Regular Tetrahedron

4.1. SOME CONCEPTS AND RESULTS ON BIFURCATION THEORY WITH SYMMETRY

The best reference for what follows below is (Golubitsky et al., 1998). Let C
be a Lie Group and V a finite dimensional vector space.
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DEFINITION 4.1. We say that C acts linearly on V if there is a continuous
mapping

C�V! V

ðc; vÞ 7! c � v
such that

(i) if c1; c2 2 C then c1 � ðc2 � vÞ ¼ ðc1 � c2Þ � v
(ii) for each c 2 C the mapping qc : V! V defined by qcðvÞ ¼ c � v is

linear.

The mapping q : C! GLðVÞ is called a representation of C on V:

EXAMPLE 4.2. The action of the permutation group Sn on Rn is given by

r � ðx1;x2; . . . ; xnÞ 7! ðxrð1Þ;xrð2Þ; . . . ;xrðnÞÞ
Such action is linear and qr is represented by an elementary matrix obtained
from the identity matrix exchanging the rows according to r. For example, in
the action of S3 on R3

r ¼ 1 2 3
3 1 2

� �
, qr ¼

0 0 1
1 0 0
0 1 0

0@ 1A
In what follows, we consider that the action of C on V is always linear.

DEFINITION 4.3. if R is a subgroup of C then we define

FixðRÞ ¼ fv 2 V=rv ¼ v for all r 2 Rg ð4:1Þ

DEFINITION 4.4. The isotropy subgroup of v 2 V is the set

Rv ¼ fc 2 C : cv ¼ vg ð4:2Þ

DEFINITION 4.5. A subspace W � V is called C-invariant if cw 2W for
all w 2W and c 2 C:

PROPOSITION 4.6. Let C be a compact Lie group acting on V. Then there
exists an inner product h ; iC on V such that for all c 2 C, qc is orthogonal.

EXAMPLE 4.7. If C ¼ Sn then h ; iC ¼ h ; i is the canonical inner product
on Rn.

PROPOSITION 4.8. If C is a compact group acting on V and if W is C-
invariant subspace then there exists a C-invariant complementary subspace U

such that

V ¼W�U

DZIOBEK’S CONFIGURATIONS 229



DEFINITION 4.9. The action of C on V is irreducible if there is no
C-invariant subspaces except f0g and V: A subspace W � V is said to be
C-irreducible if W is C-invariant and the action of C on W is irreducible.

DEFINITION 4.10. A mapping g : V! V is called C-equivariant if
gðcvÞ ¼ cgðvÞ for all c 2 C and v 2 V:

LEMMA 4.11. Let A : Rn ! Rn be a Sn-equivariant linear map. Then the
matrix of A with respect to canonical basis of Rn has the form

A ¼

x y . . . y
y x . . . y

..

. ..
. . .

. ..
.

y y . . . x

0BBB@
1CCCA

n�n

ð4:3Þ

Proof. Indeed, by labelling rAð Þij¼ bij and Arð Þij¼ cij we have

bij ¼ arðiÞj and cij ¼ air�1ð jÞ

So, the equation A ¼ rAr�1 implies that aij ¼ arðiÞrðjÞ: Making the index i; j
run over f1; 2; . . . ; ng and the permutation r over Sn one see that A has the
form (4.3). (

By induction on n it’s easy to prove that the determinant of A is

detðAÞ ¼ ðxþ ðn� 1ÞyÞðx� yÞn�1 ð4:4Þ

DEFINITION 4.12. A representation of a group C on a vector space V is
absolutely irreducible if the only C-equivariant linear mappings on V are
scalar multiples of the identity.

PROPOSITION 4.13. If C is compact and the C-action on V is absolutely
irreducible then it is irreducible.

EXAMPLE 4.14. The action of S4 on R3 : let us consider R3 	W � R4

where W is the S4-invariant linear subspace

W ¼ fx 2 R4 :
X

xi ¼ 0g

The isomorphism is given by

R3 !W

ðy1; y2; y3Þ 7!
X

yjuj
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where

u1 ¼ ð�1; 1;�1; 1Þ; u2 ¼ ð�1;�1; 1; 1Þ; u3 ¼ ð1;�1;�1; 1Þ
form an orthogonal basis B for W: With respect to this basis the action of S4

on W is given by multiplying the column vectors ½u�B by matrices of the type

0 1 0
1 0 0
0 0 1

0@ 1A;
0 0 �1
0 �1 0
1 0 0

0@ 1A;
�1 0 0
0 �1 0
0 0 1

0@ 1A; etc . . .

that is, 3� 3 matrices whose rows are permutations of those of the identity
matrix changing two signs or none. This action is absolutely irreducible.
Indeed, the 3� 3 matrix which commutes with the elements of S3 � S4 are of
the type

a b b
b a b
b b a

0@ 1A ð4:5Þ

By requiring that this matrix commutes with, for example,

0 �1 0
1 0 0
0 0 �1

0@ 1A ð4:6Þ

we have that b ¼ �b:

LEMMA 4.15. Let g : V! V be a C-equivariant mapping. If R � C is a
subgroup then

gðFixðRÞÞ 
 FixðRÞ ð4:7Þ

PROPOSITION 4.16. If x 2 FixðCÞ and g is a C-equivariant mapping then

(a) DgðxÞ is a C-equivariant linear mapping,
(b) kerfDgðxÞg and ImfDgðxÞg are C-invariant subspaces.

The main result in this section is the equivariant branching lemma which we
will discuss now. First, let g : V� R! V be a C-equivariant mapping such
that

gð0; �Þ ¼ 0 and Dxgð0; 0Þ ¼ 0 ð4:8Þ
If C is a Lie group acting absolutely irreducibly on V then by (4.16a) we have
that

Dxgð0; �Þ ¼ cð�ÞId
and, by (4.8), cð0Þ ¼ 0:
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THEOREM 4.17. (Vanderbauwhede – 1980). Under the hypothesis above, if
R � C is an isotropy subgroup satisfying

dimðFixðRÞÞ ¼ 1

and c0ð0Þ 6¼ 0 then there exists a unique smooth solution branch to gðx; �Þ ¼ 0
such that Rx ¼ R:

The proof can be found in (Golubitsky et al., 1988). It shows that the
solution branch is given in the form ðx; �ðxÞÞ.

4.2. THE PROBLEM

Let qðm; 1; 1; 1; 1Þ be a spatial configuration consisting of four unitary masses
located at the vertices of a regular tetrahedron and one variable mass located
at the barycenter.

Such a configuration is Dziobek for any value of m and it’s described by
the coordinates

sij ¼ s; for 1Oqi < jO4
s0j ¼ s 0; for 1OjO4
D ¼ dðmÞð�4; 1; 1; 1; 1Þ

8<: ð4:9Þ

where

s 0

s
¼ 3

8
and dðmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1Þm

ð4þmÞðbmþ 4Þ

s
with b ¼ 3

8

� �a

REMARK 4.18. The fraction 3=8 is given by the geometry of q while the
expression for dðmÞ is calculated by substituting sij given for (1.10) into the
fraction s0=s ¼ 3=8.

Now, we transform the equations (1.8), (1.9) and (1.10) into a 4� 4 system
which describes all spatial Dziobek configurations with four equal masses. By
labelling xi ¼ Di for i ¼ 1; . . . ; 4 and defining

Figure 4. Configuration qðm; 1; 1; 1; 1Þ.
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wðSÞ ¼ �Sþ 1

4þm

� �1
a

we rewrite the four equations t0 � tk, k ¼ 1; . . . ; 4, in the form

fkðx;mÞ ¼
X4
j¼1
j6¼k

xj w
x0xj
m


 �
� w xkxj

� �n o
þ ðxk � x0Þw

x0xk
m


 �
ð4:10Þ

where we have put x0 ¼ �x1 � x2 � x3 � x4:
So, if F : R4 � Rþ ! R4 is given by F ¼ ðf1; f2; f3; f4Þ then the equation

Fðx1;x2; x3; x4;mÞ ¼ ð0; 0; 0; 0Þ ð4:11Þ
defines the Dziobek configurations for the masses ðm; 1; 1; 1; 1Þ:

PROPOSITION 4.19. The mapping F is S4 equivariant.

Proof. Let r 2 S4: Being r � x ¼ ðxrð1Þ;xrð2Þ;xrð3Þ; xrð4ÞÞ for x 2 R4; we
write

fkðr �x;mÞ¼
X4
j¼1
j6¼k

xrð jÞ w
x0xrð jÞ
m


 �
�w xrðkÞxrð jÞ

� �n o
þðxrðkÞ �x0Þw

x0xrðkÞ
m


 �

¼
X4
j¼1

j 6¼rðkÞ

xj w
x0xj
m


 �
�w xrðkÞxj

� �n o
þðxrðkÞ �x0Þw

x0xrðkÞ
m


 �
¼ frðkÞðx;mÞ

from where Fðr � x;mÞ ¼ r � Fðx;mÞ: (

The vector �x ¼ ðdðmÞ; dðmÞ; dðmÞ; dðmÞÞ is a solution of the system (4.11),
contained in FixðS4Þ. According to (4.16a), the Jacobian matrix has the
structure presented in (4.11), so that the determinant of DxFð�xðmÞ;mÞ is

detðDxFð�xðmÞ;mÞÞ ¼ ðg1 þ 3g2Þðg1 � g2Þ3

where g1 ¼ Dx1 f1ð�x;mÞ and g2 ¼ Dx1 f2ð�x;mÞ.
After a brief calculation one see that

g1 þ 3g2 ¼
6ðb� 1Þð4þmbÞ

abð4þmÞ w dðmÞ2

 �

< 0 for all a < �1 ð4:12Þ

g1 � g2 ¼
mbða� 2þ 2bÞ þ 6ðb� 1Þ þ 4ab

abð4þmÞ w dðmÞ2

 �

ð4:13Þ

So, the determinant is zero if, and only if,

m ¼ mc ¼
6� 6b� 4ab
ða� 2þ 2bÞb ð4:14Þ
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REMARK 4.20. Using derivatives with respect to a, one can see that the
numerator and the denominator of mc are both positive for a < �1: For
Newton’s case where a ¼ �3=2 we have

mc ¼
10368þ 1701

ffiffiffi
6
p

54952
ð4:15Þ

found by Schmidt (1988).

Calling � ¼ m�mc, the problem is posed as a bifurcation problem with
symmetry

Fðx; �Þ ¼ 0 ð4:16Þ
where F is S4-equivariant and �xð�Þ 2 FixðS4Þ is a non-degenerate solution for
all � 6¼ 0: Note that, if L ¼ DxFð�xð0Þ; 0Þ then

kerfLg ¼ fx 2 R4 :
X

xi ¼ 0g and ImfLg ¼ fðj;j;j;jÞ : j 2 Rg:
To make the Liapunov-Schmidt reduction, consider the change of variables
x! y given by

x ¼
X4
i¼1

yiui ð4:17Þ

where u1; u2; u3 are exhibited in the example (4.14) and u4 ¼ ð1; 1; 1; 1Þ. In
substituting (4.17) into (4.16), the new equations, labelled by Gðy; �Þ ¼ 0,
have �yð�Þ ¼ ð0; 0; 0; dð�ÞÞ as a trivial solution. Let P : R4 ! ImfLg be the
canonical projection. Then, the equations Gðy; �Þ ¼ 0 are equivalent to the
system

PGðy; �Þ ¼ hð1; 1; 1; 1Þ;Gðy; �Þi � ð1; 1; 1; 1Þ ¼ ð0; 0; 0; 0Þ ð4:18Þ

ðId� PÞGðy; �Þ ¼
X3
i¼1
hui;Gðy; �Þiui ¼ ð0; 0; 0; 0Þ ð4:19Þ

The equation (4.18) can be solved for y4 in terms of ðy1; y2; y3; �Þ in a
neighborhood of ð0; 0; 0; 0Þ: We write y4 ¼Wðy1; y2; y3; �Þ and insert it in the
equations (4.19) to get the S4-equivariant bifurcation problem

giðy1; y2; y3; �Þ ¼ hui;Gðy1; y2; y3;Wðy1; y2; y3; �Þ; �Þi ¼ 0; i ¼ 1; 2; 3

ð4:20Þ
with gið0; 0; 0; �Þ ¼ 0 and Dygð0; 0; 0; 0Þ ¼ 0: From now, we set
y ¼ ðy1; y2; y3Þ:

REMARK 4.21. Considering the S4 action on R3 given in the example
(4.14), the function Wðy; �Þ is S4-invariant, that is, Wðr � y; �Þ ¼Wðy; �Þ for
all r 2 S4: Thus

DyWð0; �Þ 2 FixðS4Þ ¼ fð0; 0; 0Þg:
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Since the S4 action on R3 is absolutely irreducible the matrix Dygð0; �Þ is a
multiple of Id3�3. The derivative of g at the solution ð0; �Þ is given by the
product matrix

�1 1 �1 1
�1 �1 1 1
1 �1 �1 1

0@ 1A � g1 g2 g2 g2
g2 g1 g2 g2
g2 g2 g1 g2
g2 g2 g2 g1

0BB@
1CCA �

�1 �1 1 1
1 �1 �1 1
�1 1 �1 1
1 1 1 1

0BB@
1CCA � 1 0 0

0 1 0
0 0 1

0@ 1A
which results in Dygð0; �Þ ¼ 4ðg1 � g2ÞId3�3: The function cð�Þ ¼ 4ðg1 � g2Þ is
given by (4.13) with m ¼ �þmc: Its derivative with respect to � at � ¼ 0 is

c0ð0Þ ¼ 2bða� 2þ 2bÞ2

aðb� 1Þð4b� 3Þ
1

2

ða� 2þ 2bÞ
ðb� 1Þð1� 2aÞ

� �1
a

6¼ 0 for all a < �1

The hypotheses of the equivariant branching lemma are fully satisfied, so for
each isotropy subgroup of S4 whose subspace fixed is one-dimensional there
exists only one solution of the bifurcation problem gðy; �Þ ¼ 0 contained in its
fixed subspace. This gives us

THEOREM 4.22. If qðm; 1; 1; 1; 1Þ is the tetrahedral non-convex central
configuration of five bodies then there exists a value mc > 0, which depends on
the exponent a, such that the configuration is non-degenerate for any m 6¼ mc.
Furthermore, defined for m near mc, there are at least seven families of central
configurations which bifurcate from the trivial solution qðm; 1; 1; 1; 1Þ. Among
them, four present an axis type symmetry and three present a planar type
symmetry.

Proof. The S4-action on R3 has seven isotropy subgroups. The first four

Rð1;1;1Þ Rð�1;�1;1Þ Rð�1;1;�1Þ Rð1;�1;�1Þ ð4:21Þ
produce solutions with planar type symmetry (D1 ¼ D2 ¼ D3 for example)
and the last three

Rð1;0;0Þ Rð0;1;0Þ Rð0;0;1Þ ð4:22Þ
produce solutions with axis type symmetry (D1 ¼ D2 and D3 ¼ D4 for
example). (

The relation between the solutions of gðy; �Þ ¼ 0 and Fðx; �Þ ¼ 0 is made
explicit below:

Axis type symmetry

ðy; y; yÞ 2 FixðRð1;1;1ÞÞ ¼) ðx; x;x; zÞ ð4:23Þ

ð�y;�y; yÞ 2 FixðRð�1;�1;1ÞÞ ¼) ðz; x; x; xÞ ð4:24Þ

ð�y; y;�yÞ 2 FixðRð�1;1;�1ÞÞ ¼) ðx; x; z; xÞ ð4:25Þ
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ðy;�y;�yÞ 2 FixðRð1;�1;�1ÞÞ ¼) ðx; z; x; xÞ ð4:26Þ
Planar type symmetry

ðy; 0; 0Þ 2 FixðRð1;0;0ÞÞ ¼) ðr; s; r; sÞ ð4:27Þ

ð0; y; 0Þ 2 FixðRð0;1;0ÞÞ ¼) ðr; r; s; sÞ ð4:28Þ

ð0; 0; yÞ 2 FixðRð0;0;1ÞÞ ¼) ðs; r; r; sÞ ð4:29Þ

4.3. COMPUTATION OF THE BIFURCATION

4.3.1. Axis Type Symmetry

We suppose the solutions have y as formal power series of �:

yð�Þ ¼ b�þOð�2Þ ð4:30Þ
Expanding each equation gi ¼ 0 in power series and substituting yi ¼ yð�Þ we
obtain

giðyð�Þ; �Þ ¼ ðp � bþ q � b2Þ�2 þOð�3Þ ¼ 0

from where the non-trivial solutions have the first order coefficient b ¼ � p
q :

The computations show that

b ¼ � 1

24

ab
nðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6� 6b� 4abÞða� 2þ 2bÞ5ð4b� 3Þ

ðb� 1Þ3ð1� 2aÞ

s
where

nðaÞ ¼ a3 � 8a2b2 þ 10a2b� 5a2 � 8ab2 þ 9ab� aþ 8b� 4b2 � 4

4.3.2. Planar Type Symmetry

Writing the possible solutions as a formal power series in terms of �, we only
obtain the solutions with axis type symmetry. According the proof of theo-
rem (4.17), the solutions are given as ðx; �ðxÞÞ with x 2 FixðRÞ which is a one
dimensional vector space. In view of this, one cannot hope that the solution
with planar type symmetry arise as a series in powers of �n with n 2 Zþ: So we
look for solutions (4.27)–(4.29) where

yð�Þ ¼ dð��Þ1=2 þOððð��Þ1=2Þ2Þ ð4:31Þ
with � < 0; that is, m < mc.

Now we expand g in power series until the third order. Substituting
ðyð�Þ; 0; 0Þ in g1; g2 and g3 we have that g2 and g3 vanish fully while

g1ðyð�Þ; 0; 0; �Þ ¼ yð�Þððp� d2 ~qÞ�þ . . .Þ
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Thus, g1 ¼ 0 until the third order if

d ¼
ffiffiffi
p

~q

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 3

8

a2bð6� 6b� 4abÞða� 2þ 2bÞ3ð4b� 3Þ
ð1� 2aÞðb� 1ÞfðaÞ

s
where

fðaÞ¼ 96þ36a�432abþ32a5b4�30a3þ120a2�408a2b�12a5bþ
48a5b2�80a4b4þ8a3b4þ324a2b4þ324ab4þ1080ab2þ96a3b2�384b3þ
780a2b2þ27a4�6a5�1008ab3�32a3b3�42a3b�816a2b3þ96a4b3�
18a4bþ96b4þ576b2�24a4b2�64a5b3�384b

REMARK 4.23. We have fðaÞ < 0 for all a < �1. In effect, fðaÞ is a poly-
nomial in a and b. Expanding it in Taylor series at the point a ¼ �1 and next
writing the coefficients in terms of b as a Taylor series at the point b ¼ 2 we
have

fðaÞ¼�ð357þ660ðb�2Þþ468ðb�2Þ2þ192ðb�2Þ3þ24ðb�2Þ4Þ
þ ½2156þ4494ðb�2Þþ3408ðb�2Þ2þ1264ðb�2Þ3þ180ðb�2Þ4� � ðaþ1Þ
� ½4668þ10846ðb�2Þþ9156ðb�2Þ2þ3504ðb�2Þ3þ500ðb�2Þ4� � ðaþ1Þ2

þ½4230þ10662ðb�2Þþ9888ðb�2Þ2þ4128ðb�2Þ3þ648ðb�2Þ4� � ðaþ1Þ3

�½1427þ3702ðb�2Þþ3528ðb�2Þ2þ1504ðb�2Þ3þ240ðb�2Þ4� � ðaþ1Þ4

þ½162þ436ðb�2Þþ432ðb�2Þ2þ192ðb�2Þ3þ32ðb�2Þ4�ðaþ1Þ5

which is clearly negative for a < �1: (Remember that b ¼ 3
8

� �a
> 2 for all

a < �1:)
To close the question it would be enough to prove the uniqueness of these

seven bifurcations. Up to now, we did not succeed in this task.
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