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Abstract Lung cancer is a heterogeneous and complex
disease with the highest incidence and mortality rate.
The present study aims at defining the lung cancer
phenome specificity of lipidomic profiles, screening
target lipid-dependent transcriptional alternations, iden-
tifying target lipid-associated target genes, and explor-
ing molecular mechanisms. Lung cancer-specific and
lung cancer subtype-specific target lipids palmitic acid
(C16:0) and stearic acid (C18:0) were found as target
lipids by integrating clinical phenomics, lipidomics, and
transcriptomics and exhibited antiproliferative effects in
sensitive cells. The metabolism-associated gene ACSL5
or inflammation-associated gene CCL3 was identified
in lung adenocarcinoma or small lung cancer cells,
respectively. C16:0 or C18:0 could upregulate ACSL5
or CSF2 expression in a time- and dose-dependent
pattern, and the deletion of both genes led to the insen-
sitivity of cells. Target lipids increased the expression of
PDK4 gene in different patterns and inhibited cell

proliferation through alterations of intracellular energy.
Thus, our data provide a new strategy to investigate the
trans-points between clinical and phenomics and
lipidomics and target lipid-associated molecular mech-
anisms to benefit from the discovery of new therapies.
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Abbreviations
eQTL Expression quantitative trait locus
GEO Gene Expression Omnibus
LPC Lysophosphatidylcholine
LPE Lysophosphatidylethanolamine
PA Phosphatidic acid
PC Phosphatidylcholine
PE Phosphatidylethanolamine
PG Phosphatidylglycerol
PI Phosphatidylinositol
PS Phosphatidylserine

Introduction

Lung cancer is a heterogeneous, complex, multifac-
torial, and refractory disease with the highest inci-
dence and mortality rate. Major functions of lung
cancer cells are maintained by multiple nutrients,
e.g., lipids. Lipid metabolic disorders occur in
many diseases, although the specificity of disease
types, severities, and durations are still unclear
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(Qiao and Wang 2019; Chirshev et al. 2019; Qi
et al. 2019). Our previous study demonstrated that
circulating lipidomic profiles of patients with lung
cancer obviously differed from those of healthy
individuals and varied among subtypes of lung
cancers (Lv et al. 2018a). Some of the lipid species
with lung cancer-specific or subtype-specific char-
acteristics are proposed to be disease biomarkers to
monitor the response to therapy, although the exact
mechanisms by which selected lipids contribute to
cancer cell growth need to be further explored (Lin
et al. 2017). With the rapid development of the
methodology for lipid measurements, the number
of studies on lipidomic profiles of disease samples
is increasing and calls for special attention on reg-
ulatory mechanisms.

Clinical lipidomics is an extension of lipidomics
to integrate lipidomic profiles and networks with
clinical phenomes as well as with cell and organ
functions (Yan et al. 2018; Lv et al. 2018b). Lin
et al. selected target lipids from lipidomic profiles of
liver cancer cells and found that palmitic acid
(C16:0)-containing glycerophospholipids could
downregulate cancer growth and metastasis by reg-
ulating cell membrane fluidity and limited glucose
metabolism (Lin et al. 2017). The present study aims
at further defining the lung cancer phenome speci-
ficity of lipidomic profiles, screening target lipid-
dependent transcriptional alternations, identifying
target lipid-associated target genes, and exploring
molecular mechanisms how selected target lipids
and genes regulate lung cancer cell biobehaviors.
Lipidomic profiles were integrated with clinical
phenomes to select two phenome-associated lipid
elements through clinical trans-omics strategy
(Zhang et al. 2018): palmitic acid (C16:0) and
stearic acid (C18:0), respectively. Then, the biolog-
ical effects of selected target lipid species were
evaluated on various lung cancer cells and defined
target lipid-sensitive lung cancer cells, lung alveolar
adenocarcinoma epithelial cells (ADC) (A549), and
small cell lung carcinoma (SCLC) cells (H1668), as
shown in Fig. 1. Target lipid-associated genes in
lung cancer cells are screened by transcriptional
sequencing, from which acyl-CoA synthetase long-
chain family member 5 (ACSL5) in ADC cells and
colony stimulating factor 2 (CSF2) in SCLC cells
are identified, respectively. The roles of target lipid-
associated genes are further investigated.

Materials and methods

Materials

Lipid extraction (Bligh and Dyer 1959) solvents used
were HPLC grade including chloroform, methanol, hex-
ane and ammonium acetate, and isopropanol (Billerica,
MA, USA). Reagents with analytical grade were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA), and
stearic acid (C18:0) and palmitic acid (C16:0) were from
Sigma-Aldrich. Glass tubes (Kimble, USA) and internal
standard cocktails were from Avanti Lipids Polar (Ala-
baster, AL, USA), including phosphatidylcholine (d7-
PC15:0–18:1), phosphatidylethanolamine (d7-PE15:0–
18:1), phosphatidylserine (d7-PS15:0–18:1),
phosphatidylglycerol (d7-PG15:0–18:1), phos-
phatidylinositol (d7-PI15:0–18:1), phosphatidic acid
(d7-PA15:0–18:1), lysophosphatidylcholine (d7-
LPC18:1), lysophosphatidylethanolamine (d7-
LPE18:1), cholesteryl ester (d7-Chol Ester18:1), mono-
glyceride (d7-MG18:1), diacylglycerol (d7-DG15:0–
18:1) , t r ig lycer ide (d7-15:0-TG15:0–18:1) ,
sphingomyelin (d9-SM18:1), and cholesterol (d7). Lip-
id internal standard was prepared at an amount of 10 μL
to each sample.

Patient blood sampling

Blood was harvested from patients with lung squamous
cell carcinoma (SCC), lung adenocarcinoma (ADC), or
small cell lung cancer (SCLC), as well as from
noncancer individuals using EDTA anti-condensation
pipe. Lung cancer patients were recruited according to
the WHO definition of lung cancer and the histopatho-
logical diagnostic criteria and scored for disease staging
according to UICC staging. The healthy were over
18 years of age, with normal physical examination and
routine laboratory examination and without other lung
underlying diseases and risk factors, including smoking,
biofuel exposure, or dust or chemical exposure history.
Those with hypertension, diabetes, hyperlipidemia, and
other cancers were excluded. The study was approved
by Zhongshan Hospital Ethics Committee of Fudan
University. Blood was taken in the morning after
fasting at night from the study patients and healthy
individuals who had not used any drugs to avoid the
effects of diet and drugs on blood test results. The
patients were informed about the objective of the
study and provided consent for the analysis of lipid
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data with ethical code B2018-187. Twenty-six pa-
tients and 8 healthy people were recruited in the
study, among which 9 were SCC, 9 were ADC,
and 8 were SCLC. There were 7 men and 2 women
in SCC with a mean age of 65.67; in ADC, there are
4 men and 5 women with a mean age of 70.11; and
in SCLC, 7 men and 1 woman were enlisted with a
mean age of 68.25. After blood sampling, plasma
was prepared with centrifugation at 3000 rpm for
10 min at room temperature and then stored at −
80 °C for further measurement.

Lipid extraction

Plasma lipids were extracted, as reported previously
(Bligh and Dyer 1959). Briefly, 200 μL plasma was
taken into the glass tube, added with 10 μL of the
i n t e r n a l s t a nda rd cock t a i l s and 5 mL of
methanol:chloroform:formic acid (10:10:1) with suffi-
cient mixing, and then placed at − 20 °C overnight, after

repeated freezing through liquid nitrogen frozen and
thawing through a thermostat water bath for five times.
After overnight incubation, the sample was added with
2 mL Hajra’s solution containing 0.2 M phosphoric acid
and 1 M KCl, vortexed, and centrifuged for 5 min at
3000 rpm. The bottom organic layer of three layers with
lipids was transferred to a new glass tube for each
extract and concentrated under nitrogen until 200 μL.
The mixture of each sample with a phase (isopropyl
alcohol:hexane:100 mM ammonium acetate, 58:40:2)
to 1 mL was transferred to a new tube rapidly and
centrifuged at 14,000 rpm, 4 °C, for 20 min, of which
400 μL was transferred to a sample bottle test and
loaded to a LC-MS system. The normal-phase silica
liquid chromatography-coupled (NPLC) triple quadru-
pole mass spectrometer (QTRAP® 6500, SCIEX, Fra-
mingham,MA, USA) was used, and the Q-Trap was run
in multireaction monitoring (MRM) mode. Precursor
ion (PI) scans in the negative ion mode and neutral loss
(NL) scans in the positive ion mode by electrospray

Patient Study
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SCLC, healthy

Phenome digitalization
Degrade scores 0-4
Duration scores 0-4
Severity scores 0-4
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Fig. 1 Clinical trans-omics workflow. After collecting clinical
samples from three lung cancer subtypes and healthy people, on
the one hand, collecting clinical phenotypic information of patients
includes digital scoring of multiple items such as patient com-
plaints, physical examinations, laboratory tests, and cancer grade
scores, and scores from 0 to 4 according to the degree of symp-
toms. On the other hand, clinical samples were detected by mass
spectrometry after standardized processing, as well as subsequent

data processing and analysis. The clinical digital information and
mass spectrometry data were processed by the eQTL model, the
correlation between the two was analyzed, and targeted lipid
molecules were screened out. In this study, we selected palmitic
acid and stearic acid for subsequent research and screened their
sensitive cells as well as related genes to further explore their
molecular mechanisms
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ionization mass spectrometry were applied to detect the
ion pairs and obtained data (Han and Gross 2005).
Every experiment was measured in triplicates.

Digitalization of clinical phenomes

Clinical phenomes of patients with lung cancer were
digitalized and scored on the basis of the severity of
phenomes, including clinical symptoms, physical
examination, disease history, lung cancer grade,
and laboratory tests for a total of 75 items. The
scores of disease severities were divided into four
levels: 0 for normal/none, 1 for mild, 2 for moder-
ate, and 4 for severe. Family history without lung
cancer was recorded as 0 and the one with lung
cancer as 4. Based on the duration of the history
of chronic obstructive pulmonary disease (COPD),
patients without COPD history were scored as 0,
within 5 years of COPD as 1, between 5 and
10 years of COPD as 2, and more than 10 years as
4. The normal range of biochemical measurements
was scored as in Table 1, according to the extent
beyond the normal range. The grade of lung cancer
was evaluated on the basis of the condition of the
primary tumor and lymph nodes as well as the
appearance of distant metastases. The digital evalu-
ation score system of patients with lung cancer was
applied for various diseases (Wang et al. 2015; Xu
et al. 2017).

Analysis of lipidomic profiles and integration
with clinical phenomes

Lipids were identified using mass spectrometry and
quantified in comparison to the internal standard, and
lipidomic data were analyzed with the bioinformatics
tool (Lipid MS Predict, http://www.lipidmaps.org). The
data obtained by mass spectrometry was processed with
MultiQuant™ software (AB Sciex), and the peak area of
each pair was used for further quantification. The
special-type lipids were identified as the fold change >
2 and p value < 0.05, as compared with other lung
cancer subtypes. The co-expression of lung cancer lipids
was identified as changes of lipid species in all lung
cancers, fold change > 2, and p value < 0.05, as com-
pared with healthy controls. The trans-points between
lipidomic profiles and clinical phenomes were evaluated
by the expression quantitative trait locus (eQTL) model.

Screening of targeted lipid-sensitive cells

The selected lipid elements contain fatty acid chains of
lengths 16 and 18 without double bonds. The C16:0 and
C18:0 were selected as the targeted lipids after analyses
of plasma lipidomic profiles of patients with lung can-
cer. The sensitive lung cancer cells to C16:0 or C18:0
were further evaluated from human lung cancer cell
lines, including large cell lung cancer cells (NCI-H460
and NCI-H661) expressing easily detectable p53
mRNA, small cell lung cancer cells (NCI-H1688), lung
adenocarcinoma (NCI-H1650), nonsmall cell lung can-
cer cells (NCI-H1299), HPV-16 E6/E7 transformed nor-
mal bronchial epithelia (HBE135-E6E7), lung alveolar
adenocarcinoma epithelia (A549p53+), or lung bronchial
adenocarcinoma epithelia (SPC-A1 cells). Cells were
exposed to targeted lipids at different concentrations
for different durations, respectively, in RMPI 1640
(KeyGEN, China) with penicillin 100 U/mL, streptomy-
cin 100 mg/mL, and 10% fetal bovine serum (Corning
Cellgro, Australia), at 37 °C in 5% carbon dioxide.

Measurement of cell proliferations

Cell proliferation was incubated in 90% RPMI 1640 for
2 h at 37 °C and then measured with 10% CCK-8
solution (Dojindo, Japan). Detection of OD value at
450 nm was done using FlexStation 3 multimode mi-
croplate reader (Molecular Devices, USA). All experi-
ments were repeated at least six times. A549 or NCI-
H1688 was selected as the sensitive cells to C16:0 or
C18:0, respectively, and then seeded in 96-well plates
with 2000 cells per well and exposed to C16:0 and
C18:0 in concentrations of 0, 50, 100, or 200 μM for
24 or 48 h, respectively.

Target gene screening and validation

RNAs were extracted from the sensitive cells, washed
with phosphate buffered saline, and added with 500 μL
of TRIzol reagent (Invitrogen, USA) per well and
200 μL chloroform. mRNA of the target genes was
amplified with quantitative real-time PCR with SYBR
green fluorescence (Takara, Japan), after reversed tran-
scription using PrimeScript RT Master Mix (Takara,
Japan). Quantitative RT-PCR was implemented by
ABI 7000 PCR instrument (Eppendorf, Hamburg, Ger-
many), using two-stage program parameters. The pro-
cess includes incubation at 95 °C for 2min and 39 cycles
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Table 1 Lung cancer bioinformatics

Variables Points

Clinical situation 0 1 2 4

Cough No Slight Moderate Severe

Sputum No Slight Moderate Severe

Hemoptysis No Rarely (blood in
sputum)

Occasionally Often

Dyspnea No After exercise At ordinally living At rest

Hoarse sound No Slight Moderate Severe

Fatigue No Slight Moderate Severe

Appetite Good Slight anorexy Moderate anorexy Severe anorexy

Sleep Well Slight anypnia Moderate anypnia Moderate anypnia

Anxiety No Slight Moderate Severe

Pain No Slight Moderate Severe (need
pain-stopping
pills)

Urination and defecation Normal Slight inconvenience Moderate
inconvenience

Severe
inconvenience

PS score 0~1 2 3 4

Physical Examination 0 1 2 4

Mind Clear Drowsiness Clouding of
consciousness

Coma

Fever Normal 37.3–38.0 °C > 38.0–39.0 °C > 39 °C

Heart rate 60–100/bpm < 60 or > 100/bpm

Respiratory rate 16–20 > 20

Blood pressure (mmHg) < 140/90 140–159/90–99 160–179/100–109 ≥ 180/≥ 110
Weight loss (compare with former) No 0–5% 5–10% > 10%

Superficial lymph node No One site Two sites Multisites

Chest inspection Normal Positive sign

Chest palpation Normal Positive sign

Chest percussion Normal Positive sign

Chest auscultation (rale) Normal Positive sign

Heart Normal Positive sign

Abdomen Normal Positive sign

History 0 1 2 4

Lung cancer family history No Yes

COPD history No 0–5 years 5–10 years > 10 years

Lung TB history No 0–5 years 5–10 years > 10 years

Other lung disease history No 0–5 years 5–10 years > 10 years

Smoking (pack * year) Never 0–20 21–40 > 40

Cancerogenic occupational environment No 0–5 years 5–10 years > 10 years

Other chronic disease history No 0–5 years 5–10 years > 10 years

Lung cancer stage (CT) (according
to UICC TNM 2009)

0 1 2 4

T (tumor) Tx and T1 T2 T3 T4

Sum of all T (mm) 0–30 mm (within 1/2
lobe for diffuse can-
cer)

31–50 mm (within 1
lobe for diffuse
cancer)

51–70 mm (within 2
lobes for diffuse
cancer)

> 70 mm (> 2 lobes
for diffuse
cancer)
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Table 1 (continued)

Variables Points

Clinical situation 0 1 2 4

Onset of new lesion (T) No Yes

N (lymph node) No N1 N2 N3

Sum of all N (mm) 0 1–30 mm 30–60 mm > 60 mm

Onset of new lesion (N) No Yes

Metastasis (pleural effusion) No Below 4th anterior rib Between 2 and 4
anterior rib

Above 2nd anterior
rib

Metastasis (contralateral lung) No Single lesion 2 lesions Multilesions

Metastasis (brain) No Single lesion 2 lesions Multilesions

Metastasis (bone) No Single lesion 2 lesions Multilesions

Metastasis (adrenal gland) No Single lesion 2 lesions Multilesions

Metastasis (other) No Single lesion 2 lesions Multilesions

Onset of new lesion (metastasis) No Yes

Stage I II III IV

Laboratory examination (ULN = upper
limit of normal; LLN = low limit of
normal)

0 1 2 4

Hemoglobin (g/L) Male 160–120
Female 150–110

Male 90–119
Female 90–109

60–89 ≤ 59

Leukocytes (total WBC) ≥ 4.0 × 109/L 3.9–3.0 × 109/L 2.9–2.0 × 109/L < 2.0 × 109/L

Neutrophils ≥ 2.0 × 109/L 1.9–1.5 × 109/L 1.4–1.0 × 109/L < 1.0 × 109/L

Platelets (× 109/L) ≥ 100 × 109/L 99–75.0 × 109/L 74.0–50.0 × 109/L < 50.0 × 109/L

Serum albumin (g/L) ≥ 35 34–30 29–25 < 25

ALT Normal >ULN–2.5 × ULN >2.5–5.0 × ULN > 5.0 × ULN

AST Normal >ULN–2.5 × ULN >2.5–5.0 × ULN > 5.0 × ULN

Bilirubin Normal >ULN–1.5 × ULN >1.5–3.0 × ULN > 3.0 × ULN

Direct bilirubin Normal >ULN–1.5 × ULN >1.5–3.0 × ULN > 3.0 × ULN

Urea (mmol/L) 3.2–7.1 7.2–9.0 9.1–19.9 > 20

Creatinine (μmol/L) 40–115 116–178 179–445 > 445

Uric acid Normal

Na (mmol/L) 136–145 146–150 or 135–130 151–155 or 131–125 > 155 or < 125

K (mmol/L) 3.5–5.2 3.0–3.4 or 5.3–5.5 2.5–2.9 or 5.6–6.0 < 2.5 or > 6.0

Cl (mmol/L) 96–105 > 105 or < 96

Ca (mmol/L) 2.15–2.55 > 2.55–2.90 or
< 2.15–2.0

> 2.9–3.1 or
< 2.0–1.75

> 3.1–3.4 or
< 1.75–1.5

P (mmol/L) 0.9–1.34 > 1.34 or < 0.9

PH 7.35–7.45 7.35–7.30 7.25–7.30 < 7.25

PaO2 (mmHg) ≥ 90 70–89 60–69 < 60

PaCO2 (mmHg) 35–44 45–47 48–50 > 50

SCC Normal > 1 × ULN > 2 ×ULN > 3 ×ULN

CEA Normal > 1 × ULN > 2 ×ULN > 3 ×ULN

Cyfra211 Normal > 1 × ULN > 2 ×ULN > 3 ×ULN

CA125 Normal > 1 × ULN > 2 ×ULN > 3 ×ULN

NSE Normal > 1 × ULN > 2 ×ULN > 3 ×ULN

CRP Normal > 1 × ULN > 2 ×ULN > 3 ×ULN
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for 5 s at 95 °C and 30 s at 60 °C. Sequences of the
primers were human ACSL5, (reverse) 5′-CGTC
AGCCAGCAACCGAATATCC-3′ and (forward) 5′-
GTCATCTGCTTCACCAGTGG-3′; human CSF2:
(reverse) 5′-CAGGAAGTTTCCGGGGTTGG-3′ and
(forward) 5′-GCCCTGGGAGCATGTGAATG-3′; and
human β-actin: (forward) 5′-AGCGAGCATCCCCC
AAAGTT-3′ and (reverse) 5′-GGGCACGAAGGCTC
ATCATT-3′. After normalization of internal control (β-
actin), the relative mRNA expression level is evaluated
by calculating 2(−ΔΔCt) values based on the threshold
cycle (Ct) values. The measurement was at least repeat-
ed three times per group.

Dynamic measurements of cell biobehaviors

The live-cell imaging technology Cell-IQ (Chip-Man
Technologies, Tampere, Finland) was utilized to record
cell number, proliferation, division, death, apoptosis,
and movement of tumor cells, with a phase contrast
microscope (Nikon CFI Achromat phase contrast objec-
tive with 910 magnifications) and a camera (Nikon,
Fukasawa, Japan), to obtain continuous dynamic cell
information and to take pictures every 2 h until 72 h.
The Cell-IQ was operated by adopting the Manual
Tracking plug-in produced by Fabrice Cordelieres
(Institut Curie, Orsay, France) and getting data through
a freely distributed image software (Cell-IQ Imagen
v2.9.5c; McMaster Biophotonics Facility, Hamilton,
ON, Canada). The machine vision technology of Cell-
IQ can get sufficient evidence of high quality and quan-
titative changes to analyze cell function and morpholog-
ical parameters. About 12 images of each single cell
were taken and collected at each time point.

RNA interference

Three different sequences of ACSL5 or CSF2 siRNA
were designed and synthesized (GenePharma,

Shanghai, China), as follows: ACSL5-Homo-731:
G C U U G U U A C A C G U A C U C U A T T ,
UAGAGUACGUGUAACAAGCTT; ACSL5-Homo-
1 509 : GCGGAAGGGUUCGUGUAAUTT,
AUUACACGAACCCUUCCGCTT; ACSL5-Homo-
1 6 0 4 : GCUUAUGGUCAAACAGAAUTT,
AUUCUGUUUGACCAUAAGCTT; CSF2-Homo-
1 5 7 : CUGAACCUGAGUAGAGACATT,
UGUCUCUACUCAGGUUCAGTT; CSF2-Homo-
2 0 2 : GAAGUCAUCUCAGAAAUGUTT,
ACAUUUCUGAGAUGACUUCTT; CSF2-Homo-
3 7 0 : G CAACCCAGAUUAUCACCUTT,
AGGUGAUAAUCUGGGUUGCTT), NC (negative
control: 5-UUCUCCGAACGUGUCACGUTT-3, 5-
ACGUGACACGUUCGGAGAATT-3), and Lipofecta-
mine 2000 (Invitrogen). Lipofectamine 2000 was added
per microliter to NC or siRNA per 20 pmol/well for
20min at room temperature. After 24 h of interference at
37 °C, the expression of mRNAwas detected using real-
time-PCR to assess the effectiveness of the interference.
ACSL5-Homo-731 and CSF2-Homo-202 were
screened as effective sequences of stable transfection
of ACSL5 and CSF2 genes and further experiments
were conducted.

Cell cycle detection

Cell cycle and division of A549 and H1688 were mea-
sured using the Cell Cycle Detection Kit (KeyGEN
Biotech, China), respectively. Cells were plated on a
six-hole plate and cultured for 24 h. After interfering
with the gene, the cells were collected after stimulation
with C16:0 and C18:0 200 μM for 6, 12, and 24 h. Each
sample was washed with PBS and centrifuged for 5 min
2000 rpm, fixed with 10% formalin fixative solution
500 μL for 10min, and washedwith PBS. Every sample
was added with 500 μL working solution according to
1:9 volume configurations of RNase A:propidium io-
dide (PI). The sample was analyzed with a Flow

Table 1 (continued)

Variables Points

Clinical situation 0 1 2 4

PT (s) 10.0–13.0 13.1–16 > 16

Free blood glucose (mmol/L) 3.9–6.9 7.0–8.9 or 3.0–3.8 9.0–13.9 or 2.5–2.9 > 14.0 or 2.0–2.4

Sum of all
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Cytometer (BD FACSAria II, USA) using FlowJo 7.4
version (FlowJo software, USA).

ATP detection

Cells were cultured in the 6-well plate for 24 h and
interfered with the gene and lipid stimulation for 24 h,
and then digested; 10,000 cells per well were trans-
ferred into the 96-well plate. After cells were
completely attached using ATPlite step purchase from
PerkinElmer (USA, 6016736), 100 μL reconstituted
reagent was added to each well. The ATP standard
solution with four gradients are established and the
96-well microplate was then shaken for 2 min for the
measurement of luminescence.

Flow fluorescence detection

After cells are cultured in a 6-well plate, lipid stimula-
tion, gene interference, and post-interference lipid stim-
ulation were performed, respectively, at different time
points. The Mito Tracker™ Green FM (Invitrogen, OR,
USA) and Mito Tracker™ Red (Invitrogen, OR, USA)
were added and then incubated for 20 min at 37 °C.
Carnitine palmitoyl transferase 1A (CPT1A)
(Proteintech, Chicago, USA) was incubated for 30 min
and transferred into the flow tube for Flow Cytometer
(BD FACSAria II, USA) after completion.

Statistics

Data were presented as mean ± SE. One-way ANOVA
was used for statistical differences between different
groups, and Student’s t test with one way and two-
tailed was used for differences between two groups.
The statistical difference for each lipid species is calcu-
lated by fold change and p value based on the average of
each lung cancer subtype and healthy control. Volcanic
maps of different lung cancer subtypes and healthy
controls based on mass spectrometry data were made
using MetaboAnalyst, based on the absolute value of
log 2 (fold change) of 1 and p value < 0.05. To assess the
correlation between clinical scores and lipid species, this
was achieved by simulating the eQTL model.
MatrixEQTL R package was used to obtain the degree
of correlation and p value between the score and the
lipid. When comparing different lung cancer groups, we
obtained the group-specific score–lipid pairs p value <
0.05. MatrixEQTL implements additive linear models

with additive and dominant effects. The Cell-IQ statis-
tical method is as follows: rate (%) = value at each time
point value of primary seeding cells / mean value of
primary seeding cells. According to the KEGG annota-
tion results and classification, the biological pathways
with statistically different genes are classified, and the
KEGG metabolic pathways involved in the genes are
divided into six branches. Flow fluorescence data anal-
ysis was conducted using FlowJo 7.6 version.

Results

Understanding of patient phenomes

Clinical phenomes of patients with lung cancer are
scored and listed in Supplemental Table 1. About
19% of patients with lung cancer were at Tx/T1 of
tumor staging, 27% in T2, 15% in T3, and 38% in
T4, of which ADC and SCC tumor staging were
higher. Some patients with ADC had distant metas-
tases of primary cancer, e.g., contralateral lung,
brain, bone, or liver, rather than other patients.
Lipidomic profiles demonstrated that the highest
level of PS34:4 was noticed in patients with ADC,
as compared with other subtypes of lung cancer, and
patients with lung cancer had a low level of
d17:1So, especially in ADC. Patients with a lower
level of d17:1So may have less metastatic rate. Lung
cancer co-regulated lipidomic profiles is listed in
Table 2, where the levels of lysoPC20:3, PC32:2,
or PC33:2e were significantly lower in lung cancer
and the lowest in ADC patients.

Lipidomic profiles of patients with lung cancer

On the basis of comprehensive information on qual-
itative and quantitative analyses of lipid composi-
tion, 385 unique lipids were detected in healthy
individuals and patients with subtypes of lung can-
cer through neutral loss in positive or precursor ion
scanning in negative mode electrospray ionization
tandem mass spectrometry. The number of 12 major
detection subclasses of lipids is classified and shown
in Fig. 2a, where the proportion of response inten-
sity of lipids was shown in total measurement
(Fig. 2a(1)), healthy control (Fig. 2a(2)), SCC
(Fig . 2a(3) ) , ADC (Fig . 2a(4)) , o r SCLC
(Fig. 2a(5)). It was found that some lipid elements
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increased in patients with lung cancer, e.g., PE36:5,
PE38:7, Cer24:1, Cer24:0, and Cer25:0 co-
upregulated in each disease group in Fig. 2b. The
distribution of upregulation and downregulation of
lipids varied among the groups of SCC, ADC, or
SCLC and is shown in the volcano plot (Fig. 2c(1),
c(2), or c(3), respectively). Levels of downregulated
and upregulated lipid molecules more than twofolds
with statistical significance were scattered in the
upper left and upper right distributions, respectively.

Figure 2d demonstrates changes of some lipid spe-
cies classified by the number of C atoms among sub-
types of lung cancer. Levels of C16:0 and C16:1 were
lower in patients with lung cancer, while levels of
C18:0, C20:2, C20:3, C20:4, or C22:6 were significant-
ly higher in patients with ADC, SCC, or SCLC. Levels
of 18:1 and 18:2 were lower in SCC than those in
healthy controls or patients with ADC or SCLC. Down-
regulated palmitic acid (16:0) and upregulated stearic
acid (18:0) were selected as target lipid elements for
further validation. PC, LPC, and PG accounted for the
major portion. Levels of PG, LPC, LPE, and
lysophosphatidylglycerol (LPG) were significantly low-
er in patients with lung cancer, as compared with the
healthy controls. In addition, the levels of PG were
significantly lower in ADC, LPC in ADC and SCLC,
or LPG and lysophosphatidylinositol (LPI) in SCC,
respectively, while the levels of LPS were significantly
higher in SCC and ADC, as compared with the healthy
controls (Fig. 2e).

Trans-omics points between lipidomic profiles
and clinical phenomes

The trans-points between the changes of lipid molecules
in plasma and major clinical phenomes of patients with
ADC, SCC, or SCLC were analyzed by simulating the
eQTL model and detailed in Supplemental Table 2. In
addition, after comparing all statistically significant lipid
species we have calculated with simulated eQTL analy-
sis methods, we have obtained a heat map of trans-
points between lipid species and clinical phenomes
(Fig. 3). Lipidomic profiles and clinical phenomes from
all patients with lung cancers were pooled together for
the detection of trans-points (Fig. 3a), where two fatty
acid chain lengths of C16 and C18 appeared significant
in most of the patients. The grade of tumor development
and the onset of new lesion were of the highest
correlation with lipids in patients with SCC, and
there were 49 trans-points crossing between lipids
and phenomes (Fig. 3b). High expression of
carcinoembryonic antigen (CEA) was associated
with 10 lipid molecules, namely lysoPS22:6,
lysoPS18:2, Cer24:0, lysoPS18:1, lysoPS20:2,
lysoPS22:4, lysoPS20:3, lysoPS22:0, d17:1So, and
Cer25:0 in patients with ADC (Fig. 3c). Fever,
COPD history, and hemoptysis were crossed with
d17:1S1P, Cer12:0, or Cer25:0 in SCLC patients
(Fig. 3d). A clinical phenome can correspond to a

Table 2 Co-expression of lipids in plasma over twofolds in
adenocarcinoma (ADC), squamous cell carcinoma (SCC), or
small cell lung cancer (SCLC)

Lipid name ADC fold SCLC fold SCC fold

Fold change > 2, p < 0.05

Cer24:0 2.862307 2.646822 2.584011

Cer25:0 4.593269 3.410717 4.675704

lysoPE14:0 6.075508 4.509418 4.476154

PE36:5 3.476027 4.307447 4.740026

PE38:7 13.88299 19.55051 11.60443

Fold change < 0.5, p < 0.05

d17:1So 0.033062 0.22666 0.448922

d18:1So 0.018086 0.012112 0.03311

lysoPC18:2 0.466565 0.328987 0.406365

lysoPC20:3 0.2842 0.388031 0.386161

lysoPC20:4 0.167714 0.165871 0.187154

lysoPC22:4 0.04893 0.038327 0.056135

lysoPC22:6 0.303424 0.221405 0.322331

lysoPE18:2 0.262675 0.308689 0.465309

lysoPE20:3 0.087032 0.038238 0.144453

lysoPE20:4 0.040011 0.034344 0.111629

lysoPE20:5 0.265641 0.149567 0.084688

lysoPE22:6 0.085642 0.110134 0.159334

lysoPI20:4 0.213547 0.472123 0.310416

lysoPI22:0 0.19909 0.342175 0.269218

PC32:2 0.330958 0.365122 0.457137

PC33:2e 0.357246 0.416174 0.381441

PE33:1 0.146865 0.141788 0.350503

PE33:2 0.113344 0.151211 0.400366

PE35:2 0.371418 0.454159 0.494954

PE35:3 0.242469 0.212768 0.374656

PE35:4p 0.151477 0.2012 0.389858

PE37:4 0.203804 0.229325 0.353764

PE39:6 0.274575 0.302664 0.474979

PI36:6 0.226573 0.498263 0.243319
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variety of lipid elements, while a lipid element was
also crossed with many clinical phenomes. For ex-
ample, PS38:6 was trans-pointed with seven clinical
phenomes in ADC patients.

Screening of target lipid-sensitive cells and biological
behaviors

C16:0 and C18:0 were selected as target lipids to screen
target lipid-sensitive lung cancer cells, on the basis of

the results from mass spectrometry that most of the
selected lipid molecules contained fatty acids with
lengths of 16 and 18 without double bonds. Of HBE,
A549, H460, H1299, H661, H1688, H1650, and SPC-
A1, C16:0 or C18:0 significantly inhibited the prolifer-
ation of HBE, A549, and H1650 (Fig. 4a) or HBE,
H1688, and H1650 (Fig. 4b) in a dose-dependent pattern
(p < 0.05 or less, respectively). Of those cells, A549
cells were more sensitive to C16:0 (Fig. 4) and H1688
cells to C18:0 (Fig. 4b). Dynamic proliferation,
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Fig. 2 Lipidomic profiles among patients with lung squamous
cell carcinoma (SCC), lung adenocarcinoma (ADC), or small cell
lung cancer (SCLC). a (1) The number of lipid subclasses in the
lipid detection list. For example, DG detects 17 lipid species, LPC
detects 21 lipid species, and all 12 lipid categories detect a total of
385 lipid species. a (2) The response intensity of the 11 lipid
subclasses in the control group as a percentage of the total. a (3)
The SCC response intensity ratio. a (4) ADC and a (5) SCLC.
Heat map (b) indicates the distribution of five lipid molecules co-
upregulated in three subtypes of lung cancer in each patient. c The
transverse axis of the volcano map represents fold change, the
longitudinal axis stands for p value, and the points at the upper left
and upper right represent lipid molecules that are downregulated
and upregulated by more than twofolds compared with healthy

people, respectively. c (1) For SCC, c (2) for ADC, and c (3) for
SCLC (p < 0.05). d C atom distribution map. In this diagram, we
can figure out that the C16, C18, and C20 fatty acyl chains are
mainly distributed in lipid series. Moreover, the expression of
C16:0, C16:1, and C18:2 in lung cancer patients was lower than
that in normal controls and was more obvious in patients with SCC
than in patients with SCLC, while C18:0 and C20:4 were upreg-
ulated in three types of lung cancer (one-way ANOVA *, **, and
*** stand for p < 0.05, 0.01, and 0.001). e Different kinds of lipid
subclasses. It was found that PC, LPC, and PG accounted for
important parts among them. In many kinds of lipids, the decrease
of PG, LPC, LPE, and LPG in the three types of lung cancer was
more obvious than that in normal persons. Among them, LPC has
the highest response intensity, which has more significance
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differentiation, death, and movement of A549 (Fig. 4c)
and H1688 cells (Fig. 4d) were monitored during 72 h
after cells were treated with C16:0 and C18:0, respec-
tively. C16:0 or C18:0 could inhibit the dynamic prolif-
eration of A549 or H1688 cells, while it increased the
number of dead cells gradually after the treatment (Fig.
4c, d). There was no significant difference in cell differ-
entiation and movement of A549 or H1688 treated with
vehicle or target lipids.

Transcriptional profiles of target lipid-sensitive cells

In order to identify target lipid-associated transcriptional
profiles and potential signal pathways, we defined the
patterns of up- or downregulated genes and changes of
functional clusters in A549 (Fig. 5a, c) or H1688 cells
(Fig. 5b, d) 24 and 48 h after treatment with C16:0 or
C18:0 at concentrations of 50, 100, or 200 μM, respec-
tively. The number of up- or downregulated expression
genes of both cells with lipid elements increased or
decreased in a dose- or time-dependent pattern. The
number of upregulated genes in A549 was consistently

higher than that of downregulated genes during different
times with various doses of C16:0, while such increase
in H1688 was noticed at 100 and 200 μM of C18:0 in
24 h and 50 μM in 48 h. The number of changed genes
in H1688 cells was obviously higher than that in A549
cells. During bioinformatics analyses of functional clus-
ters, alterations of functional patterns were compared
among cells with or without target lipids, cells with
different doses of target lipids, cells at different time
points, and different cells. Data focusing on cellular
processes, environmental information processing, ge-
netic information processing human disease metabo-
lism, and organismal systems are presented in Fig. 5c
and d. In those five focused areas, major changes of
functional cluster varied between A549 and H1688, e.g.,
cellular communication, transcription, infectious dis-
eases viral and parasitic, immune system, and excretory
system in A549, while transport and catabolism, repli-
cation and repair, cancer special types, drug resistance
antineoplastic, endocrine system, or aging in H1688,
when each functional cluster was compared. Of those
five focused areas, major variations were observed

D

E

Fig. 2 (continued)
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c d
Fig. 3 Clinical lipidomics by integrating lipidomic profiles with
clinical phenomes. By simulating the expression quantitative trait
locus (eQTL) model, we obtained the heat map of the correlation
between clinical symptom and lipid specie. The abscissa is the
related clinical symptom, the ordinate is the corresponding lipid
specie, and if the two are correlated, the color is brown and has

statistical significance (p < 0.05). The red color indicates that this
lipid specie has 16 or 18 C atoms in the main chain. a The
correlation heat map of all lung cancer patients with clinical
phenotype. b SCC group. c ADC group. d SCLC group. In the
heat map, brown indicates that the two are related, and gray
indicates that they are not related
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between A549 (Fig. 5c) and H1688 (Fig. 5d) in the area
of metabolism. Of the top 10 upregulated genes of A549
cells at 24 h (Fig. 5e) and 48 h (Fig. 5f) or H1688 cells at
24 h (Fig. 5g) and 48 h (Fig. 5h) after treatment with
C16:0 or C18:0 at 50, 100, or 200 μM, the expression of
ACSL5 or CSF2 genes significantly increased in A549
or H1688, in a dose-dependent and time-dependent
manner, and they were selected as the target lipid-
associated genes for A549 or H1688, respectively.

Validation of target lipid-associated gene functions

The target lipid-associated genes selected from RNA-
Seq in sensitive cells were further validated and the
treatment with C16:0 or C18:0 increased the expres-
sions of ACSL5 or CSF2 genes in A549 (Fig. 6a) or
H1688 cells (Fig. 6b) in time- and dose-dependent pat-
terns (p < 0.05 or less, respectively). The expression of
C-C motif chemokine ligand 3 (CCL3) and pyruvate
dehydrogenase kinase 4 (PDK4) was further investigat-
ed in order to understand potential involvements of

those genes related to the regulation of target lipid-
associated genes. C18:0 increased CCL3 expression in
a time- and dose-dependent pattern (Fig. 6c, p < 0.01),
while PDK4 expression reduced from 50 μM at 24 h
and significantly increased at 48 h (Fig. 6d, p < 0.05).
C16:0 increased PDK4 expression with an increase of
doses and time and reached statistical significance in
100μMat 24 h and 50μMat 48 h (Supplemental Fig. 1,
p < 0.01 or 0.05, respectively).

After screening of siRNA sequencing, the inhibitory
effects of ACSL5 siRNA (Fig. 6e) or CSF2 siRNA (Fig.
6f) were evaluated to select the proper dose of siRNA
for further validation. A549ACSL5− cells had a similar
capacity of proliferation to A549ACSL5+ when treated
with vehicle (Fig. 6g). Compared with A549ACSL5+

cells, the proliferation inhibition of A549ACSL5− cells
reduced to a certain extent after C16:0 treatment. The
proliferation of H1688CSF2+ cells treated with C18:0
was significantly lower than that with vehicle. Similarly,
the effect of H1688CSF2− on the inhibition of cell prolif-
eration after C18:0 is reduced, and there is a tendency to

Fig. 4 Identification and validation of target lipid-sensitive lung
cancer cells. a C16:0 and b C18:0 act on nine types of lung cancer
cells including HBE135-E6E7, A549p53+, NCI-H460, NCI-
H1299, NCI-H661, NCI-H1688, NCI-H1650, and SPC-A1. It
was found that the inhibitory effect of C16:0 on A549 or C18:0
on H1688 was the most obvious, when C16:0 and C18:0 were
treated in three different doses. c, d These figures showed dynamic
alterations of the A549 and H1688 cells stimulated with C16:0 and

C18:0 of A549 (c) and H1688 (d) after treated with C16:0 and
C18:0 50, 100, and 200 μM compared with vehicle. H1299 cells
are not sensitive to both lipid stimulations. The number of dead
cells was higher after C16:0 and C18:0 treated. The mean number
of divided C16:0-treated A549 cells and C18:0-treated H1688
cells shows no obvious change compared with vehicle, and the
ability of movement did not change significantly
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Fig. 5 Transcriptional profiles of target lipid-sensitive cells and
molecular mechanisms. a, b The RNA-Seq of A549 and NCI-
H1688 after treated with C16:0 or C18:0 at different doses and
times. From the diagram, we come to the conclusion that the
number of specific gene expression were dose- and time-depen-
dent. The clustering of the KEGG pathway can be seen from the
effect of 200 μM lipid for 48 h, and the most metabolism associ-
ation of genes is involved in lipid metabolism, carbohydrate me-
tabolism, cofactors and vitamins, xenobiotics biodegradation and
metabolism, or other amino acids, nucleotide, as well as energy
biosynthesis of other secondary metabolism in A549 (c) and

H1688 (d). In the results of RNA-Seq, of the top 10 upregulated
genes of A549 cell at 24 h (E) and 48 h (F), the levels of ACSL5
expression significantly increased in A549 cells after treated with
C16:0 from 50 to 200 μM at 48 h and in a concentration-
dependent manner. There was no repeat of the first 10 upregulated
genes in 24 and 48 h. Of the first 10 genes of C18:0 acting at 24 h
(g) and 48 h (h) on H1688 cells, there was an overlapping gene
CSF2. In these figures, the abscissa represents the concentrations
of 50, 100, and 200 μM, and the ordinate represents the fold
change compared to the vehicle
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rise (Fig. 6h). In order to explore the effect of lipid on
the cell cycle, the cell number in different phages (G1,
G2, and synthesis) was counted 6, 12, and 24 h after
treatment with C16:0 or C18:0 at 200 μM. The number
of A549ACSL5− cells with vehicle in the G1 phase in-
creased, and in the S phase, it reduced at 12 h. The
treatment with C16: 0 significantly increased the num-
ber of A549ACSL5+ cells in the S phase at 6 h, as
compared with A549ACSL5− cells (Fig. 6i). In H1688
cells, the difference between H1688CSF2+ and
H1688CSF2− cells after C18:0 stimulation is more pro-
nounced over time on the S phase (Fig. 6j).

There was no difference of the ATP content between
A549ACSL5+ and A549ACSL5− cells (Fig. 7a) or between
H1688CSF2+ and H1688CSF2− cells (Fig. 7b) treated with
vehicle. The ATP content in A549ACSL5− cells was
significantly lower than that in A549ACSL5+ cells after
treatment with C16:0 (Fig. 7a, p < 0.05), while in
H1688CSF2− cells, it increased after treatment with
C18:0 (Fig. 7b, p < 0.05). In order to further study the
effect of lipid on mitochondrial function, the intracellu-
lar number of mitochondria and mitochondrial mem-
brane potential were analyzed byMito Tracker™ Green

FM and Mito Tracker™ Red fluorescent dyes, respec-
tively. The number of mitochondria in A549ACSL5− or
H1688CSF2− cells was significantly higher than that in
A549ACSL5+ or H1688CSF2+ cells after treatment with
C16:0 (Fig. 7c, p < 0.05) or C18:0 (Fig. 7f, p < 0.0001),
respectively. The value of mitochondrial membrane po-
tential in H1688CSF2− cells was significantly higher than
that in H1688CSF2+ cells after treatment with C18:0 (Fig.
7g, p < 0.05). There was no difference of mitochondrial
membrane potential between A549ACSL5− and
A549ACSL5+ cells (Fig. 7d). C16:0 reduced significantly
the levels of long-chain fatty acid oxidation in
A549ACSL5− cells, while not in A549ACSL5+ cells (Fig.
7e). There was no obvious difference between
H1688CSF2− and H1688CSF2+ cells (Fig. 7h).

Discussion

The present study screened and identified lung cancer-
specific, lung cancer subtype-specific, and clinical
phenome-specific target lipid species using the princi-
ple of clinical trans-omics between clinical phenomics
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Fig. 5 (continued)
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and lipidomic profiles (Zhang et al. 2020; Wang 2018).
The previous study integrated clinical phenomics,
lipidomics, and transcriptomics and found lung cancer-
specific and lung cancer subtype-specific biomarkers on
the basis of statistical analyses, multiple omics correla-
tions, and significant difference (Lv et al. 2018a). In
addition to lung cancer, disease-associated patterns of
altered lipidomic profiles were found between infection-
and noninfection-initiated acute lung injury and be-
tween primary infection and acute exacerbation of
chronic lung disease (Gao et al. 2019). The present
study furthermore focused on lung cancer subtype-
specific trans-points/crossing-points between clinical
phenomic and lipidomic networks to define an

individual phenome corresponding to lipid(s) or lipid
to phenome(s). Clinical phenomics is considered as a
new emerging discipline not only for identifying
disease-specific biomarkers, but also for discovering
novel targets for the development of new therapies
(Han et al. 2015). The new subphenotypes and subcat-
egories of diseases can be identified by integrating clin-
ical phenomes and molecular multiple omics (Zerin
et al. 2015). The present study furthermore identified
palmitic acids or stearic acids as target lipids in lung
cancer and multiple trans-points between clinical
phenomic and lipidomic profiles (Yugi et al. 2016).

Biomarkers of NSCLC and potential mechanism
were identified through lipidomics (Chen et al. 2018),

Fig. 6 Validations of target lipid-associated gene networks and
target lipid-specific gene regulation. Four genes were screened
from RNA-Seq results for 24 and 48 h validation. a–d PCR results
verify for four genes. Expression of ACSL5 gene in A549 cells
treated with C16:0 for 24 and 48 h (a). It can be seen that the gene
expression increases with the increase of C16:0 concentration.
After C18:0 acted on H1688 for 24 and 48 h, the expression of
CSF2 increased more obviously (b), the expression of the other
two genes, CCL3, also increased with increasing concentration,
but in PDK4, the expression trends of 24 and 48 h were opposite
(c, d). We selected the best effective interference concentration of

ACSL5 siRNA-731 (e) and CSF2 siRNA-202 (f). Interference
with A549 (g) and H1688 (h) inhibited these two kinds of cell
proliferation treated with vehicle and prevented from cell prolifer-
ation after treatment with C16:0 and C18:0 at 200 μM for 24 h
(p < 0.05 or less, respectively), respectively. i After interference
with ACSL5, C16:0 200 μM was used to stimulate for 6, 12, and
24 h. jAfter interfering with CSF2 and C18:0 200 μMstimulation,
compared with not interfering with CSF2 then C18:0 stimulation,
the change of S phase is more and more obvious (* and ** stand
for p values less than 0.05 and 0.01)
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and human lung resident cells were used to under-
stand the changes of lipid in lung diseases and lipid-
involved pathological process of diseases (Zemski
Berry et al. 2017). Using a panel of lung cancer cells
with different molecular phenotypes corresponding to
different subtypes of clinical categories, C16:0 or
C18:0 was found to be antiproliferative and cells were
divided into more sensitive cells to C16:0 (A549), to
C18:0 (H1688), or to both (HBE, H1650), with time-
and dose-dependent responses to target lipids. It is
questioned whether the variation of C16:0 and C18:0
levels in the circulation may result from the difference
of lipid metabolisms, production sources, organ/
tissue consumptions, or interactions with lung cancer
cells. Of those potentials, it seems that the interaction
between target lipids and lung cancer cells is

independent upon systemic levels of patients, which
may be disease-associated biomarkers (Mirtavoos-
Mahyari et al. 2019; Doumandji et al. 2019). Various
responses of lung cancer cells to target lipids may be
associated with genetic heterogeneity, although the
exact mechanisms remain unclear. Target lipids could
inhibit alterations in proliferation and death patterns
of ADC and SCLC cells, rather than cell differentia-
tion and movement.

To further explore novel mechanisms by which two
target lipids may interact with the corresponding sensi-
tive cells through different or similar pathways, tran-
scriptional profiles of ADC or SCLC cells were studied
by temporal gene expression analysis at different time
points after treatment with C16:0 or C18:0, respectively.
From functional clusters of transcriptional genes
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Fig. 7 Validations of target lipid-associated bioenergy production
and mitochondrial function. a A549 and b H1688 cells were
stimulated by C16:0 200 μM and C18:0 200 μM after interfering
with ACSL5 and CSF2, respectively. The changes of ATP in the
two kinds of cells were detected. c–h Flow cytometry was used to
detect the mean fluorescence intensity (MFI) of Mito Tracker™
Green FM andMito Tracker™Red and CPT1. Among them,Mito
Tracker™ Green is to detect the number and activity of mitochon-
dria, andMito Tracker™Red is to detect mitochondrial membrane

potential and CPT1 measuring fatty acid oxidation. c–e In the
detection of Mito Tracker™ Green in A549 cells, it can be seen
that after interfering with the gene and then stimulated with C16:0,
the number of mitochondria is increase and more active (c), and
the metabolism of fatty acids in CPT1 detection is also relatively
enhanced (e). f–h In H1688 cells, there was a similar effect, and
the increase in mitochondrial membrane potential was more pro-
nounced (g). (*, **, and **** represent p < 0.05, 0.01, and 0.0001)
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between C16:0-sensitive or 18:0-sensitive cells, a
metabolism-associated gene ACSL5 or inflammation-
associated gene CCL3 was identified in ADC or SCLC
cells, respectively, on the basis of the top 10 highly
expressed genes. ACSL5 encodes an enzyme acyl-
CoA synthetase long-chain family member 5 related to
fatty acid degradation and lipid biosynthesis (Ding et al.
2017) to activate fatty acids from exogenous sources
and synthesize triacylglycerol for intracellular storage.
The expression of ACSL5 gene varied among different
tumors (Reinartz et al. 2010; Gassler et al. 2003;
Hartmann et al. 2017). CSF2 plays key roles in
immunomodulation and hematogenesis and acts as a
tumor-derived factor to promote tumor growth and de-
velopment (Hong 2016).

The interaction of target lipids with the correspond-
ing genes is important to deeply understand potential
mechanisms of sensitivity to metabolites, evidenced by
the fact that C16:0 upregulated ACSL5 expression in
ADC cells in a time- and dose-dependent pattern and the
deletion of ACSL5 led to the occurrence of cell insen-
sitivity. This indicates that ACSL5 plays a decisive role
in the interaction between C16:0 and cells. ACSL5 is
one of the five ACSL isoforms in mammals (e.g.,
ACSL1, ACSL3, ACSL4, ACSL5, and ACSL6) located
in the mitochondria and contributes to cell apoptosis by
alternative splicing (Gassler et al. 2007). ACSL5 ex-
pression was altered in bladder, esophagus, lung, pan-
creatic, and prostate cancer, due to the heterogeneity of
its own genomic patterns and biological characteristics.
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to 1-acylglycerol by CEL, and catalyzed to fatty acid by MGLL.
Palmitic acid is a type of fatty acid. Synthesis of palmitic acid by
adding C atom by FASN multistep reaction of acetyl-CoA.
Palmitic acid can be reacted to palmitoyl-CoA under the catalysis
of ACSL5, and further CPT1 to palmitoylcarnitine. After CPT2
and PPT1, other enzymes can be catalyzed to palmitic acid again.
Palmitic acid can also be converted to stearic acid via LCE. On the
one hand, it can be catalyzed to oleic acid by SCD, or it can
become stearoyl-CoA through ACSL5 and continue to be metab-
olized by SCD to oleyl-CoA and octadecadienoyl-CoA. On the
other hand, palmitoyl-CoA can also be catalyzed to stearoyl-CoA
by ELOVL6, HSD17B12, HACD2, and TECR, or it can continue
to increase the C chain length to docosanoyl-CoA. In the protein–

protein interaction network (PPI), almost all ACSL5-related en-
zymes play an important role in the metabolism of palmitic acid
and stearic acid. Among them, FADS2, ELOVL6, ELOVL1,
FASN, ACOX1, HSD17B4, and ACADL are related to fatty acid
metabolism, ACOX2 is connected with bile acid metabolism,
MGLL has connection with glyceride metabolism and LPL is
related to cholesterol metabolism. LPL, lipoprotein lipase; CEL,
carboxyl ester lipase; MGLL, monoglyceride lipase; FASN, fatty
acid synthase; ACADL, acyl-CoA dehydrogenase long chain;
ACOX1, acyl-CoA oxidase 1; PPT1, palmitoyl-protein
thioesterase 1; CPT1, carnitine palmitoyltransferase 1; CPT2,
carnitine palmitoyltransferase 2; ELOVL6, fatty acid elongase 6;
LCE, long-chain elongase; SCD, sterol-CoA desaturase;
HSD17B12, hydroxysteroid 17-beta dehydrogenase 12; ACTO2,
acyl-CoA thioesterase 2; TECR, trans-2,3-enoyl-CoA reductase;
HACD2, 3-hydroxyacyl-CoA dehydratase 2; FADS2, fatty acid
desaturase 2; ELOVL1, fatty acid elongase 1
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ACSL5 gene expression varies in different cancer types
and even in different subclasses. The high expression of
ACSL5 gene has a positive impact for prognosis of
patients with breast, colorectal, lung, and ovarian cancer
(Chen et al. 2016). ACSL5 is strongly involved in
metabolism of palmitic acid, palmitoleic acid, oleic acid,
and linoleic acid. The decrease of ACSL5 and Wnt
family member 2B was related to the abnormality of
lung development and the pathogenesis of human con-
genital pulmonary airway malformations (Qu et al.
2018). In addition, the present study demonstrated that
C18:0 could upregulate CSF2 expression in SCLC cells
in a time- and dose-dependent pattern to participate in
cell sensitivity, which was altered by the deletion of the
CSF2 gene.

Alterations of metabolism- or inflammation-associated
CCL3 and PDK4were functionally linked with CSF2 and
ACSL5. C16:0 and C18:0 increased the expression of
PDK4 gene in different patterns. For example, C16:0
gradually and consistently increased PDK4 expression
paralleled with the expression of the ACSL5 gene, while
C18:0-induced PDK4 overexpression appeared later than
CSF2 changes. It indicates that PDK4was associated with
the inhibitory effects of target lipids in cell proliferation,
probably being a primary, secondary, or additive factor
during the interaction between target lipids and cells.
ACSL5 plays an important role in the maintenance of
intracellular energy and carnitine palmitoyl transferase
1A activity, which may be a critical mechanism by which
C16:0 inhibited cell proliferation. However, CSF2 as one
of the inflammatory factors also shows a decisive role in
the process of C18:0-inhibited cell proliferation associated
with the increase of intracellular energy. Different func-
tions of ACSL5 and CSF2 have the same influence in the
sensitivity of various lung cancer cells to different target
lipids. For example, ACSL5 not only plays a central role
in the associated gene networks in the processes of fatty
acid and long-chain fatty acid metabolism and fatty acid
biosynthesis, but also in the metabolic processes of
palmitic acid and stearic acid through the control of the
transfer from palmitic acids to palmitory-CoA and from
stearic acids to stearoyl-CoA, as explained in Fig. 8. How-
ever, nonsensitive or co-sensitive cells are equally impor-
tant for further studying the mechanism of lipid metabo-
lism. In addition, the challenge of clinical trans-omics is to
take more resources, research budgets, and processes to
manage the comprehensive information and analyses,
even though it becomes more important and adaptable to
the clinic.

In conclusion, we identified lung cancer-specific,
lung cancer subtype-specific, and clinical phenome-
specific target lipid elements and integrated clinical
phenomics, lipidomics, and transcriptomics to find lung
cancer-specific and lung cancer subtype-specific target
lipids palmitic acids (C16:0) or stearic acids (C18:0).
The lung cancer subtype-specific trans-points/crossing-
points between clinical phenomics and lipidomics net-
work demonstrated an individual phenome correspond-
ing to lipid(s) or lipid to phenome(s). C16:0 or C18:0
exhibited antiproliferative effects in sensitive cells with
a time- and dose-dependent decline of cell proliferation.
The metabolism-associated gene ACSL5 and
inflammation-associated gene CCL3 were identified in
ADC and SCLS to play decisive roles in cell sensitivity.
C16:0 and C18:0 increased the expression of PDK4
gene in different patterns and inhibited cell proliferation
through the alterations of intracellular energy. Thus, our
data provide a new strategy to investigate the trans-
points between clinical phenomics and lipidomics and
target lipid-associated molecular mechanisms to benefit
the discovery of new therapies.
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