ORIGINAL ARTICLE

Biochemical effects of some CeO₂, SiO₂, and TiO₂ nanomaterials in HepG2 cells

Kirk T. Kitchin • Judy A. Richards • Brian L. Robinette • Kathleen A. Wallace • Najwa H. Coates • Benjamin T. Castellon • Eric A. Grulke

Received: 4 June 2018 / Accepted: 22 August 2018 / Published online: 27 October 2018 O US Government 2018

Abstract The potential mammalian hepatotoxicity of nanomaterials was explored in dose-response and structure-activity studies in human hepatic HepG2 cells exposed to between 10 and 1000 µg/ml of five different CeO₂, three SiO₂, and one TiO₂-based particles for 3 days. Various biochemical parameters were then evaluated to study cytotoxicity, cell growth, hepatic function, and oxidative stress. Few indications of cytotoxicity were observed between 10 and 30 μ g/ml. In the 100 to 300 µg/ml exposure range, a moderate degree of cytotoxicity was often observed. At 1000 µg/ml exposures, all but TiO₂ showed a high degree of cytotoxicity. Cytotoxicity per se did not seem to fully explain the observed patterns of biochemical parameters. Four nanomaterials (all three SiO₂) decreased glucose 6phosphate dehydrogenase activity with some significant decreases observed at 30 μ g/ml. In the range of 100 to 1000 μ g/ml, the activities of glutathione reductase (by all three SiO₂) and glutathione peroxidase were

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10565-018-9445-x) contains supplementary material, which is available to authorized users.

K. T. Kitchin (⊠) · B. L. Robinette · K. A. Wallace Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, 109 Alexander Drive, B105-03, Durham, NC 27711, USA e-mail: kitchin.kirk@epa.gov

J. A. Richards \cdot N. H. Coates

Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, 109 Alexander decreased by some nanomaterials. Decreased glutathione concentration was also found after exposure to four nanomaterials (all three nano SiO₂ particles). In this study, the more responsive and informative assays were glucose 6-phosphate dehydrogenase, glutathione reductase, superoxide dismutase, lactate dehydrogenase, and aspartate transaminase. In this study, there were six factors that contribute to oxidative stress observed in nanomaterials exposed to hepatocytes (decreased glutathione content, reduced glucose 6-phosphate dehydrogenase, glutathione reductase, glutathione peroxidase, superoxide dismutase, and increased catalase activities). With respect to structure-activity, nanomaterials of SiO₂ were more effective than CeO_2 in reducing glutathione content, glucose 6-phosphate dehydrogenase, glutathione reductase, and superoxide dismutase activities.

Keywords HepG2 \cdot Liver \cdot Nanomaterial \cdot Oxidative stress \cdot CeO₂ \cdot SiO₂

Drive, B105-03, Durham, NC 27711, USA

B. T. Castellon

Institute of Biomedical Studies and Department of Environmental Science, Baylor University, Waco, TX 76798, USA

E. A. Grulke

Chemical & Materials Engineering, University of Kentucky, Lexington, KY 20506-0046, USA

Introduction

It is difficult to evaluate nanomaterials to determine their degree and type of toxicity and to subsequently make science-based decisions (Holsapple et al. 2005; Warheit et al. 2007; Walker and Bucher 2009). For nanomaterials, a major determinant of their biological action may be their surface properties, particularly the ability to donate or accept electrons (Thompson and Yates 2006), to release or absorb oxygen (Merrifield et al. 2013) and to generate free radicals such as reactive oxygen species (ROS) (Nel et al. 2006, Khan et al. 2015).

Thus, oxidative stress has frequently been hypothesized as a major possible mode of action of nanomaterials (Nel et al. 2009; Yokel et al. 2014; Shvedova et al. 2012). A second major theory of nanomaterial toxicity is the inflammation theory (Nel et al. 2006; Park and Park 2009). Oxidative stress and inflammation can be closely related in many ways.

Good reviews of CeO_2 nanomaterials are available stressing various aspects such as redox and physicalchemical properties (Grulke et al. 2014), fuel additives, and toxicology (Cassee et al. 2011) and in vivo and in vitro inhalation exposures (Demokritou et al. 2013). For TiO₂ nanomaterials, in vitro toxicology (Iavicoli et al. 2011) and inhalation toxicology (Shi et al. 2013) have been recently reviewed. After i.p. administration of a SiO₂ nanomaterial to mice, increased oxidative stress, inflammation, and DNA damage parameters were observed in several mouse organs including the liver (Nemmar et al. 2016).

This biochemical study is part of a large, coordinated US Environmental Protection Agency study of metal oxide nanomaterials composed of CeO_2 , SiO_2 , and TiO_2 for systemic toxicity in several organs including the liver. Because study parameters have been selected to evaluate cell growth, cytotoxicity, hepatic function, and oxidative stress, comparisons can be made to determine which parameters respond to low exposure concentrations, which parameters are the most responsive, and to what degree the observed effects are driven by cytotoxicity. Other completed studies in this series include in vitro immuno spin-trapping effects (oxidative stress) (Kitchin et al. 2011), proteomics effects, (Ge et al. 2011) genomics studies in HepG2 cells (Thai et al. 2015a, b, 2016), and metabolomics (Kitchin et al. 2014).

The central purpose of this study was to further investigate the potential hepatotoxicity of CeO_2 containing nanoparticles. Thus, nano CeO_2 particles W4, X5, Y6 and Z7 were selected (see Table 1 for particle descriptions). CeO₂ Q was selected as a larger, not nano sized, CeO₂ particle which had been well studied by a European group (Geraets et al. 2012). Nano SiO₂ particles K1 and N2 were selected in an attempt to study thin coatings of nano CeO₂ on a SiO₂ base particle (J0)). Finally, TiO₂ T8141 was included as an additional control of a (a) not CeO₂ and (b) not nano sized but still a metal oxide particle. The four major purposes of this present study were (a) dose-response, (b) structure-activity, (c) better connecting the physical-chemical characterization information to their toxic biochemical effects, and (d) develop a nanomaterial-toxicity database useful for structureactivity and dose-response modeling. Many of the study parameters were related to oxidative stress (e.g., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GRD), glucose 6phosphate dehydrogenase (G6PDH), gamma glutamyltranspeptidase (GGT), reduced glutathione concentration (GSH), and thioredoxin reductase (THRR)). Two other parameters were related to cell growth (microalbulmin (MIA) and protein concentration). Cytotoxicity-related parameters were done by a variety of methods (cytotoxicity by dyes and by visual criteria using a microscope), released enzymes subsequent to membrane damage and toxicity (percentage of total lactate dehydrogenase (%LDH), alanine aminotransferase (%ALT), and aspartate transaminase (%AST). The halflife of LDH enzyme that has been released from cells into the surrounding medium is approximately 9 h (information from Promega Technical Bulletin TB163 at www. promega.com/protocols/CytoTox 96® Non-Radioactive Cytotoxicity Assay (Product G1780)). In circulating human blood, the plasma half-life of AST is 17 ± 5 h while the half-life for ALT is 47 ± 10 h (Price and Alberti 1979). Hepatic function was assessed by measuring the alkaline phosphatase (ALP) activity and the concentration of total bilirubin (T BIL) and triglycerides (TRIG).

In respect to structure-activity issues, we tried to determine if the studied CeO_2 , SiO_2 , and TiO_2 nanomaterials are similar toxicologically or if they have quite different biological properties. Specifically, we studied the differences in biochemical effects of these nine metal oxide nanomaterials ranging in dry primary particle size of 8 to 214 nm. These nine particles (Table 1) also differed in other physical-chemical characteristics (e.g., specific surface area/porosity, primary and agglomerated particle size and particle shape, as well as oxygen, electron, and metal vacancies or excesses on the surfaces). These biochemical parameters were chosen to (a) evaluate the type and degree of possible cellular toxicity and to (b) evaluate the oxidative stress theory of nanomaterial-induced toxicity. The resulting data is interpreted in terms of possible mode of action (free radical attack, glutathione depletion, and oxidative stress), dose-response and structure-activity relationship.

Methods

Chemicals and related items

The chemicals and suppliers used in this study were as follows: bovine serum albumin and dimethyl sulfoxide (Sigma of St. Louis, MO, USA), fetal bovine serum, phosphate buffered saline (PBS), Dulbecco's PBS (DPBS), glutamate, sodium pyruvate, penicillin/ streptomycin (Invitrogen of Carlsbad, CA, USA), and corn oil (Food Lion of Durham, NC, USA). The nanomaterials sources (Nano-oxides, Aldrich, Alfa Aesar, Sigma, Sigma Aldrich and US Research Nanomaterials) and the available physical-chemical characterization are presented in Table 1.

Nanomaterials, their dispersion via ultrasound, and their characterization

The nine nanomaterials used in this study (Table 1) were primarily selected to explore the biochemical and metabolomics effects of different CeO₂ nanomaterials. Atomic layer deposition (170 or 350 cycles (for SiO₂ K1 and SiO₂ N2 respectively) of 250 °C for 40 min) was used in the attempt to put a thin coat of CeO₂ (particles SiO₂ K1 and SiO₂ N2) on top of a base SiO₂ particle (J0). This CeO₂ coating endeavor was not successful. The TiO₂ T8141 particle was included in this study as a non-CeO₂ and non-nano control particle.

All CeO₂ and SiO₂ particles have been well characterized by either Dr. Eric Grulke's group at the University of Kentucky or in Geraets et al.'s study (Geraets et al. 2012) (Table 1). Nanomaterial physical-chemical characterization was done by a variety of techniques for primary particle size, range of particle size, surface area, % purity, and crystal form by either their manufacturer or by an independent party (University of Kentucky, Chemical & Engineering Department) under a US EPA contract. Other physical-chemical characterization data available from the University of Kentucky studies on our nanomaterials includes elemental analysis by TEM/EDX, primary and agglomerated particle size, crystal structure by XRD, and particle shape and morphology by TEM and SEM. This detailed nanomaterial physical-chemical characterization information for nanomaterials W4, X5, Y6, Z7, J0, K1, and N2 will be published elsewhere (Hancock et al. in preparation). Of these nine particles, seven have dry sizes in the nano range, while two have larger dry sizes (CeO₂ Q and TiO₂ T8141) (Table 1).

In the text of this paper, the primary particle size presented is either from the University of Kentucky or Geraets et al.'s (2012) study (OECD) (Geraets et al. 2012) and not from the vendors. The physical-chemical characterization of CeO₂ Q has been already published (Geraets et al. 2012). By TEM, the primary dry particle sizes of the seven nanomaterials ranged from 5 to 50 nm. For CeO₂ Q size, estimates were > 500 nm by TEM and < 615 nm by SEM (Table 1). The surface area estimates of these nine particles ranged from 3.73 to 137.4 m² per gram (Table 1).

For dispersion, measured amounts of bovine serum albumin solution (200 mg/ml in deionized water), sonicated and filter sterilized corn oil (0.01% (ν/ν) in PBS), and PBS were added to the dry nanomaterials in a glass vial. The general nanomaterial coating recipe of Dale Porter (Porter et al. 2008) was followed in that the mass ratio of the albumin to the nanomaterial was 0.6/1 and the mass ratio of the albumin to the corn oil was 60/1.

The recipe for the preparation of SiO₂ "J0" was 30.15 mg of nanomaterial "J0," 18.09-mg bovine serum albumin, 3.28-ml of 0.01% corn oil, and 6.05 ml of PBS. Sonication occurred at a nanomaterial concentration of 3.20 mg/ml and 9.42 ml of volume in three tubes. Sonication was done for two 10-min cycles of 13 s on, 7-s off with a total typical power of about 132 watts and 159,351 joules with a S-4000 Misonix Ultrasonic Liquid Processor with a 2.5-in. cup horn (part #431-A, Farmingdale, NY). Excess unbound albumin and corn oil were removed by centrifugation of the nanomaterials (9300×g for 5 min) and then resuspending them in cell culture media without any sonication of the culture media.

After nanomaterial dispersion, the degree of agglomeration was determined by dynamic light scattering at 35 °C with a Malvern Model Zen3600 Zetasizer. Refractive index values used were 2.33 for CeO₂, 1.544 for SiO₂ and 2.488 for TiO₂. Size and zeta potential determinations were performed both just after sonication and 3 days later at the end of cell culture.

Table	1 Physical	-chemical charac	cterization e	of CeO ₂ , SiO	$^{1}_{2}$, and TiO ₂ p	articles								
≙	Chemical	Vendor	Cat no.	Lot number	Primary particle size (nm)	TEM particle size (nm)	SEM aggregate size (µm)	Surface area (m ² /g)	Diameter by BET (nm)	FTIR	Elements by SEM- EDX	Elements by TEM- EDX	Form by XRD	Assayer
W4	CeO ₂	Nano-oxides	10-025	68740	15 by BET			55	15					Nano-oxides
						20–50	1–3	52.8	14.9	-OH,	Ce, O, Al	Ce, O, Al, Ti, Si	Crystalline	University of Kentucky
										90				
X5	CeO_2	Nano-oxides	10-025-3	67722	200 by BET			5-9	200					Nano-oxides
						5-20	1-5	20.8	38.1	OH, C	Ce, O	Ce, 0	Crystalline	University of Kentucky
Y6	CeO_2	Aldrich	544841	67722	< 25 by RFT					D				Aldrich
						5-20	1–20	40.3	19.5	-0H,	Ce, O	Ce, O	Crystalline	University of Kentucky
										0				
LΖ	CeO_2	Alfa aesar	44960	J06U027	15 - 30			30–50						Alfa aesar
						5-20	1-5	57.0	13.8	, c Å	Ce, O	Ce, 0	Crystalline	University of Kentucky
Ø	CeO_2	Sigma Aldrich	211575	NM-213	< 5000	> 500	0.615	3.73	213)				Geraets et al. 2012
						ND^{a}	ND	ŊŊ	ŊŊ	ND	ND	ŊŊ	QN	University of Kentucky
J0	SiO ₂	US Research Nanomater- ials	US3438	None	20–30									US Research Nanomater- ials
						10–30	1-10	137.4	16.5	-0H, 0 ⊤' S	Si, O	Si, O	Amorphorus	University of Kentucky
K1	SiO ₂	ALD ^b	NA°	None	20–30									US Research Nanomater- ials
						10 - 30	1 - 10	128.8	17.6		Si, O	Si, O	Amorphorus	

🖄 Springer

Cell Biol Toxicol (2019) 35:129-145

Table	1 (continue	(p												
Ð	Chemical	Vendor	Cat no.	Lot number	Primary particle size (nm)	TEM particle size (nm)	SEM aggregate size (µm)	Surface area (m ² /g)	Diameter by BET (nm)	FTIR	Elements by SEM- EDX	Elements by TEM- EDX	Form by XRD	Assayer
										-0H, 0 ⊤ S-				University of Kentucky
N2	SiO ₂	ALD ^b	NA^{c}	None	20–30									US Research Nanomater- ials
						10–30	1-10	120.5	18.8	-0H, -∽ -⊢ O	Si, O	Si, O	Amorphorus	University of Kentucky
TiO ₂ T8- 141	TiO ₂	Sigma ^d	T8141	068K3521	NA^{e}			9.7 ^e)				Sasa Novak ^e
TEM1 infrare	transmission ed spectrosco	electron microsc py, EDX energy	copy, SEM : -dispersive	scanning elec x-ray analys:	tron microsco is, and XRD >	py, <i>BET</i> surf <-ray diffract	ace area/poro tion	sity determ	ination by th	ie Bruna	ler, Emmett	, Teller test m	lethod, <i>FTIR</i> Fc	urier-transform
^b Aton	done nic laver den	osition on SiO.												
° Not	available													
^d The Nanor	addresses for naterials, and	r the vendors al 1 Ward Hill, MA	re Salt Lak v, USA, for	e City, UT, I Alfa Aesar	JSA, for Nan	o-oxides; St	. Louis, MO	, USA, for	· Aldrich, Sig	gma and	Sigma Aldı	ich; Houstor	ı, TX, USA, fc	r US Research
^e Pers(5 nm ¹	onal commun by X-ray diff	iication from Dr. raction	. Sasa Nova	k, Jozef Stefa	n Institute, Lji	ubljana, Slov	enia. While th	he BET sur	face area was	: 9.7 m ² / ₁	g, the crystal	lite size of Ti	O ₂ T8141 was f	ound to be 50±

Cell culture methods

Human hepatocellular carcinoma cells (HepG2, ATCC cat# HB-8065) were obtained and expanded through passage seven using Eagle's minimum essential medium (Basal Medium Eagle (BME) containing 2-mM GlutaMAXTM, 1-mM sodium pyruvate, and 10% fetal bovine serum (all from InVitroGen)) and then frozen in liquid nitrogen. Cells were subsequently carefully thawed and expanded before experimentation between passage 10 and 15. Cell cultures were maintained in a humidified incubator at 37 °C and 95% air/5% CO₂ during the study. Cells were plated at a density of 30,000 cells/cm² in 60-mm dishes (Corning) for 48 h prior to nanomaterial exposure.

Working stock dispersions of each nano material were prepared in cell culture media at 1.0 mg/ml and diluted as needed using cell culture media. Individual dishes were dosed with 200 μ l/cm² of the appropriate nano material dilution. Two separate cultures were done for the purposes of (a) cytotoxicity via the dyes MTS and alamar blue and (b) the three release enzymes (LDH, AST, and ALT) and the biochemical parameters (e.g., G6PDH and SOD).

Cultures were then incubated for 72 h prior to harvesting. At 72 h, the media was vacuum aspirated and the dishes rinsed with warm DPBS. The DPBS was removed, cells were scraped free of the dish, and then the cells were collected in 1 ml of warm DPBS by micropipette and transferred into a labeled 15-ml tube. The cells were then centrifuged at $10 \times g$ for 5 min. The supernatant was removed via vacuum aspiration and the cellular pellet was placed on dry ice before transfer to – 80 °C freezer for storage prior to all biochemical analysis. For enzyme release samples, the cells were taken up in PBS rather than DPBS.

Cytotoxicity assays and kits

Determining cytotoxicity in nanomaterial research can be a major challenge (Monteiro-Riviere et al. 2009). Briefly, nanomaterials may interfere with common cytotoxicity assays by scattering light, absorbing light, fluorescence and precursor dyes, and/or product dyes adsorption onto the nanomaterial surface. Many common cytotoxicity assay kits (MTT (3-[4,5-dimethyl-2-thiazol]-2,5-diphenyl-2H-tetrazolium bromide, CAS 298-93-1, Sigma-Aldrich, St Louis, MO), MTS (4-[5-[3-(carboxymethoxy)phenyl]-3-(4,5-dimethyl-1,3-thiazol-2-yl)tetrazol-3-ium-2yl]benzenesulfonate, CAS 138169-43-4, Promega, Madison, WI), alamar blue (resazurin, CAS 62758-13-8, Cell Titer-Blue, Promega, Madison, WI), ATP (CAS 34369-07-8, CellTiter-Glo® Luminescent Cell Viability Assay, Promega, Madison, WI), and simple visual examination of the cells) have been used by our laboratory seeking to avoid or minimize interferences from the study nanomaterials themselves. After 3 days of nanomaterial treatment, cytotoxicity assays based on MTT, MTS, and alamar blue were performed using commercial kits. Cytotoxicity assay results were always checked with each other and with visual assessment of the cells to ensure that the cytotoxicity assays were working well. Based on microscopic examination of the cultured cells at 20X with a Zeiss inverted microscope, they were classified into the categories of healthy, normal cells, or cells displaying slight toxicity, moderate toxicity, or a high degree of toxicity. A PerkinElmer 1420 Multilabel Counter Victor³V was used as the plate reader for all cytotoxicity assays.

Biochemical assays via Konelab Arena 30

Media was removed and the cultured cells were rinsed with 2 ml of warm DPBS. Then 500 µl of cold PBS was added and the cells removed by scraping. Harvested cells were subjected to five cycles of freezing on dry ice and thawing as a method of cellular disruption. The disrupted cells were then spun at $1500 \times g$ for 5 min, the supernatant was transferred to new microfuge tube, and the samples were frozen. All samples were maintained at -80 °C until processed. The Konelab Arena 30 clinical chemistry instrument (Thermo Scientific) depends on absorption of visible light and was used to determine many enzyme activities (GRD, THRR, SOD, GPx, G6PDH, GGT, CAT, and ALP) and biochemical concentrations (TRIG, T BIL, MIA, GSH, and protein) via commercial kits. The protein assay is based on coomassie blue binding.

For GSH assay, media were decanted and then the cells rinsed with 2000 μ l of warm DPBS. Five hundred microliters of cold PBS is added and the cells were removed by scraping. The cells were spun down at 100×g for 10 min and the supernatant was removed. One hundred microliters of a solution of 270-mM trichloroacetic acid and 6.6-mM Na₄EDTA was added to the cell pellet. The cell containing the tube was vortexed for 1 min and then spun at 10,000 rpm for 5 min at room temperature. The supernatant was used for the determination of GSH concentration.

LDH enzyme activities do not tolerate freezing and thawing, so LDH assays were done on the day of cell harvesting without freezing. %LDH values are corrected for culture media activity of LDH. The half-life of LDH enzyme that has been released from cells into the surrounding medium is approximately 9 h (information from Promega Technical Bulletin TB163 at www. promega.com/protocols/ CytoTox 96® Non-Radioactive Cytotoxicity Assay (Product G1780)). LDH, AST, and ALT determinations were done from both cells and the culture media. For cellular enzyme determinations of LDH, AST, and ALT, 760 µl of 1% Triton X-100 was added to each culture well and then incubated at 37 °C for 5 min. Supernatants were spun at $1500 \times g$ for 5 min and the supernatants stored at 2 to 8 °C (for cellular LDH) or frozen at -80 °C until processed (for cellular AST and ALT).

Study design

This study was done to determine the biochemical effects of CeO₂, SiO₂, and TiO₂-based particles (dose range 10 to 1000 μ g/ml) on enzyme activities in HepG2 cells. The number of samples per group is usually 6 but sometimes is as low as 3 (e.g., for TiO₂ T8141 treatments, all experimental *N* are tabulated in Supplementary Table 1). The major comparisons in this study are between different nanomaterials (structure-activity relationship (SAR), different exposure concentrations (dose-response), and degree of responsiveness of the multiple experimental parameters (Tables 2 and 3)).

Statistical analysis

All data were normalized to protein concentration with the exception of the enzyme release data (%LDH, %AST, and %ALT), GSH, and the protein content itself. All numerical data were analyzed using mixed-effects models in SAS PROC MIXED (SAS v. 9.3 (SAS Institute, Cary, NC)). The data met the assumptions of parametric statistical tests (normal distribution and homogenous variances), and therefore, the data were not transformed. Restricted maximum likelihood estimation was used to estimate the model parameters. A model of Y= dose effects plus an error term with time as a random variable was used to minimize the impact of day effects of measurement. *P* values were adjusted for multiplicity of testing by a Tukey multiple-comparison test (Table 3). In supplementary Figs. 1 to 10, the displayed standard error of the mean error bars includes both the variation within days and the variation between different experimental days (day effects). Results were considered statistically significant at the *P* value of < .05. The degree of statistical significance presented in this study is both the common P < .05 and additionally the P < .010 and P < .001 levels. For quantitative comparisons, experimental results are presented as mean, standard deviation, standard error of the mean (SEM), and *N* in Supplementary Table 1 (e.g., for %LDH, %ALT, %AST, G6PDH, GRD, GPx, and SOD).

Results

Nanomaterial characterization

In this series of nine particles, the range of zeta potentials in cell culture media was -6.1 to -13.1 mV (data not shown). In PBS, TiO₂ T8141 gave the lowest zeta potential recorded -16.5 mV. Thus, in cell culture media, the measured zeta potential for all nine particles were in the range where monodispersed nanomaterials are energetically unfavored under the colloidal DLVO (Derjaguin, Landau, Verwey and Overbeek) theory (Mishchuk 2011). Thus, it is not surprising that attractive van der Waals forces were larger than electrostatic repulsion forces and the nanomaterials agglomerated in a cell culture media containing 10% FBS.

Generally, the CeO₂ particles showed the smallest hydrodynamic diameters by dynamic light scattering with values ranging from 102 to 597 nm for CeO₂ X5, Y6, and Q. For nano CeO₂ W4, wet sizes ranged from 116 to 994 nm while nano CeO₂ Z7 sizes ranged from 297 to 1326 nm (data not shown). The three SiO₂ based particles agglomerated much more in cell culture media giving a size range from about 170 to 2320 nm in the concentration range of 10 to 1000 μ g/ml of SiO₂ J0, SiO₂ K1, and SiO₂ N2. TiO₂ T8141 gave wet sizes between 505 nm and 897 nm.

As the SiO₂ gave the highest wet sizes of any of the nanomaterials we tested, more DLS sizing data is provided for one of the SiO₂ series—uncoated JO. All the zeta potentials were unremarkable for JO ranging from a low of -12.5 to -9.9 mV in cell culture media. In PBS, 100 µg/ml of J0 had a zeta potential of -14.6 on day 1 and -16.1 mV on day 3 compared to -6.8 (day 1) and -7.8 mV (day 3) for the PBS solvent alone. The baseline DLS size values recorded for the cell culture media

	1	1	6 1	2		e	1		
Cytotoxicity	CeO ₂					SiO ₂			TiO ₂
Concentration	W4	X5	Y6	Z7	Q	J0	K1	N2	Sigma T8141
10 µg/ml									
30 µg/ml				LowCT	LowCT	MediumCT	LowCT		
100 µg/ml	LowCT	LowCT		HighCT	LowCT	HighCT	MediumCT	MediumCT	
300 µg/ml	MediumCT	LowCT	MediumCT	HighCT	MediumCT	HighCT	HighCT	MediumCT	LowCT
1000 µg/ml	HighCT	HighCT	HighCT	HighCT	HighCT	HighCT	HighCT	HighCT	MediumCT

Table 2 Dose-response relationship for the degree of cytotoxicity observed following metal oxide particle treatments

ND, not done

To interpret all the cytotoxicity information from many different sources, dyes (alamar blue and MTS) that were 86-89% of control values were considered a low degree of response

For a medium response, dyes were 80–85% of control, less than or equal to 0.8 for the ratio of total LDH, total AST, or total ALT, greater than or equal to 1.3 for ratio of %ALT, greater than or equal to 1.4 for ratio of %AST, and greater than or equal to 1.5 for ratio of %LDH

For a high response, dyes were 41-79% of control, less than or equal to 0.7 for the ratio of total AST or total ALT, less than or equal to 0.6 for the ratio of total LDH, greater than or equal to 1.6 for ratio of %ALT, greater than or equal to 1.8 for ratio of %AST, and greater than or equal to 2.0 for ratio of %LDH

Both the number and degree of response were considered for each of the seven parameters (LDH, AST, ALT, alamar blue, MTS, cellular protein concentration, and microscopic rating of cell appearance) germane to "cytotoxicity" in this data set. Then the below key was used to place exposures into one of the five cytotoxicity categories

Key:

-----, not cytotoxic

LowCT, one or two cytotoxicity parameters are beginning to respond

MediumCT, substantial evidence of cytotoxicity in two or more parameters

HighCT, clearly cytotoxic by two or more responding parameters with high degree of change

alone were 20 and 175 nm on day 1 and day 3, respectively. On day 1 of cell culture, the mean DLS wet sizes were 172, 739, 1290, and 1744 nm at 30, 100, 300, and 1000 μ g/ml of JO, respectively. On day 3 of cell culture, the mean DLS wet sizes were 201, 196, 234, and 2321 nm at 30, 100, 300, and 1000 μ g/ml of JO respectively. Thus, for JO, there was clear concentration-dependent agglomeration occurring during cell culture.

Cytotoxicity and released enzymes

Table 2 presents the overall patterns in the dosedependent degree of cytotoxicity observed after exposures to nine metal oxide particles. At 10 µg/ml, no treatment showed any cytotoxicity using our multiple parameter cytotoxicity system outlined at the bottom of Table 2. However, at 1000 µg/ml, all treatments except TiO₂ T8141 (not a nano-sized particle with a low surface area (9.7 m²/g)) (by the Brunauer, Emmett, Teller method (BET)) were graded as high in cytotoxicity degree. The most cytotoxic particles were nano CeO₂ Z7, nano SiO₂ J0, and nano SiO₂ K1 all of which also showed a high degree of cytotoxicity in the dose range of 100 to 300 μ g/ml. All the nano CeO₂ and nano SiO₂ particles showed at least a low or medium degree of cytotoxicity in the dose range of 30 to 300 μ g/ml. For exposures to these particles, %LDH and %AST were the major drivers in determining the cytotoxicity rating of these CeO₂, SiO₂, and TiO₂ particles.

With respect to cytotoxicity, a clear overall doseresponse pattern was seen (Table 2). No signs of cytotoxicity were seen at 10 μ g/ml of any of the nine particles. A low degree of cytotoxicity was seen at 30 to 300 μ g/ml, depending on the particle. A medium degree of cytotoxicity was observed at 30 to 1000 μ g/ml doses. Finally, at 1000 μ g/ml, high degrees of cytotoxicity were seen for everything except TiO₂ T8141. The doses required to cause high degrees of cytotoxicity in our HepG2 cells ranged from a low of 100 μ g/ml (for nano CeO₂ Z7 and nano SiO₂ J0) to 1000 μ g/ml (the highest concentration used) (for nano CeO₂ W4, nano CeO₂ X5, nano CeO₂ Y6, CeO₂ Q, and nano SiO₂ N2).

Table 3 Biological effects of nine particles in HepG2 cells: direction and degree of statistical significance

	CeO ₂					SiO ₂			TiO ₂
Concentration	W4	X5	Y6	Z7	Q	JO	K1	N2	Sigma T8141
A. %LDH									
10 µg/ml							<i>P</i> =.048 160		
30 µg/ml				<i>P</i> =.017 201	<i>P</i> < .0001 180		<i>P</i> =.0003 199		
100 µg/ml				<i>P</i> < .0001 472	<i>P</i> < .0001 177	<i>P</i> < .0001 391	<i>P</i> <.0001 273	<i>P</i> =.018 309	
$300 \ \mu g/ml$	<i>P</i> =.0017		P<.0001	P<.0001	P<.0001	P<.0001	<i>P</i> <.0001	-	P = .027
1000 µg/ml	280 P<.0001	<i>P</i> =.0002	P < .0001	/21 P<.0001 871	2/4 P < .0001	887 P<.0001	P < .0001	P<.0001	149 P<.0001 207
The %I DH dat	300 a is not norm	270 alized to Hen	C2 protein	0/1	409	1303	082	832	291
B. %AST			02 protein						
10 µg/ml									
30 µg/ml									
100 µg/ml				<i>P</i> < .0001 196		<i>P</i> < .0001 151	<i>P</i> < .0001 156	<i>P</i> =.012 168	
300 µg/ml				<i>P</i> < .0001 309	<i>P</i> =. <i>036</i> 126	<i>P</i> < .0001 240	P<.0001 227	<i>P</i> =.044 158	
1000 µg/ml	<i>P</i> < .0001 240	<i>P</i> =.003 178		<i>P</i> < .0001 358	<i>P</i> <.0001 151	<i>P</i> < .0001 379	<i>P</i> < .0001 333	<i>P</i> <.0001 341	
The %AST data	a is not norma	alized to Hep	G2 protein						
C. %ALT									
10 µg/ml									
30 µg/ml									
100 µg/ml									
300 µg/ml							<i>P</i> =.015 118		
1000 µg/ml							<i>P</i> =.0002 126	<i>P</i> =.0046 124	
The %ALT data	ı is not norma	alized to Hep	G2 protein						
D. Catalase (CA	AT)								
10 µg/ml									
30 µg/ml									
100 µg/ml									
300 µg/ml									
1000 µg/ml				<i>P</i> =.0091 176					
E. Gamma gluta	amyltranspep	tidase (GGT)							
10 μg/ml									
30 µg/ml	<i>P</i> =. <i>019</i> 127								
100 µg/ml									
300 μg/ml									P = .025
. 0									160

 $\underline{\textcircled{O}}$ Springer

Table 3 (continued)

	CeO ₂					SiO_2			TiO ₂
Concentration	W4	X5	Y6	Z7	Q	JO	K1	N2	Sigma T8141
1000 µg/ml								<i>P</i> =.0008 156	
F. Glucose 6-ph	osphate dehy	/drogenase	(G6PDH)						
10 µg/ml	P=.032 157								P=.039 250
30 µg/ml	<i>P</i> =. <i>049</i> 154				P = .0037 66	P = .013 74		P = .0045 77	
100 µg/ml					P = .024 72	P = .0004 65		P = .0002 69	
300 µg/ml						P = .0003 64	P = .013 49	P = .012 79	
1000 µg/ml						P = .0005 65		P ≤.0001 66	
G. GSH									
10 µg/ml									ND
30 µg/ml									ND
100 µg/ml									ND
300 µg/ml				P ≤.0001 71					ND
1000 µg/ml				$P \leq .0001$ 37		<i>P</i> ≤ .0001 33	P = .001 42	<i>P</i> ≤.0001 34	ND
H. Glutathione	peroxidase (GPx)							
10 µg/ml									
30 µg/ml									
100 µg/ml			P ≤.0001 77						
300 µg/ml			P ≤.0001 79						
1000 µg/ml			<i>P</i> ≤.0001 78						
I. Glutathione re	eductase (GR	D)							
10 µg/ml									
30 µg/ml								P = .0069 82	
100 µg/ml						P = .038 88		P = .0003 76	
300 µg/ml						P = .0009 82	P = .003 64	P = .0027 80	
1000 µg/ml						P ≤ .0001 79		<i>P</i> ≤.0001	
J. Microalbulmi	in (MIA)								
10 µg/ml									
30 µg/ml									
100 µg/ml									
300 µg/ml									
1000 µg/ml								<i>P</i> = .0033	

🖄 Springer

	CeO ₂					SiO ₂			TiO ₂
Concentration	W4	X5	Y6	Z7	Q	JO	K1	N2	Sigma T8141
								23	
K. Superoxide	dismutase ((SOD)							
10 µg/ml								P = .034 78	
30 µg/ml								P = .0031 72	
$100 \ \mu g/ml$						P = .018 84		P = .0078 74	
$300 \ \mu g/ml$						P = .049 86			
1000 µg/ml									
L. Total bilirubi	n (T BIL)								
10 µg/ml									
30 µg/ml									
100 µg/ml			P = .028 79						
300 µg/ml			P = .002 73						
1000 µg/ml			P = .025 79			<i>P</i> =.013 127			
M. Thioredoxin	reductase	(THRR)							
10 цg/ml									
30 µg/ml									
100 µg/ml								P = .029 58	
300 µg/ml									
1000 µg/ml									
The protein data	a in this Ta	ble is not nor	malized to Hep	G2 protein					
N. Protein			-	-					
10 µg/ml									
30 µg/ml								<i>P</i> =. <i>024</i> 128	
100 µg/ml									
300 µg/ml			<i>P</i> =.058 120						
1000 µg/ml	_		<i>P</i> =. <i>030</i> 117						

ND = not done; — = not significant; the *P* values are for comparison of the treated group versus the zero nanomaterials concentration control group. Statistically significant increases are shown in italics while significant decreases are displayed in bold. In the case of statistical significance, the displayed numbers are the percentage of control values observed in the treatment group. Data was normalized to total protein concentration of HepG2 cells

%LDH released

In the data and discussion sections of this paper, the quantitative data itself is primarily presented in Supplementary Table 1 and Supplementary Figs. 1–10. The direction of the biological effects and degree of statistical significance achieved are presented in Table 3. Table 3 allows one to see the pattern of biological

responses in respect to dose-response, treatment chemical, and biological parameter. For example, all nine metal oxide treatments were capable of increasing the %LDH released. The dose at which initial membrane dysfunction or damage occurs with LDH release varies but all nine compounds are showing major %LDH effects (all P < .01and more elevated than 2.4-fold) at 1000 µg/ml (Table 3). Among the CeO₂ particles, nano CeO₂ Z7 and CeO₂ Q appeared to be the most potent cytotoxins to HepG2 cells, with nano CeO₂ X5 as the least potent. Nano SiO₂ K1 was active at increasing %LDH at much lower doses than either nano SiO₂ J0 or nano SiO₂ N2. The larger TiO₂ particle had a lower degree of %LDH release (Table 3). Graphical representation of all the %LDH released to the media data are provided in Supplementary Fig. 1.

%AST released

Compared to %LDH release, generally HepG2 cells showed the same or less degree of response with %AST (Table 3). In two cases, nano CeO₂ Y6 and TiO₂ T8141, no significant %AST effects were observed even at 1000 µg/ml. Nano CeO₂ Z7 again was the strongest CeO₂ particle giving P < .001 responses at 100, 300, and 1000 µg/ml. The parameter %AST was increased by several doses of nano SiO₂ J0 and nano SiO₂ K1 (at 100, 300, and 1000 µg/ml). Graphical representation of all the %AST released to the media data are provided in Supplementary Fig. 2.

%ALT released

As seen before with other metal oxide nanoparticles (Kitchin et al. 2016), %ALT was much less responsive to nanomaterial exposure than was either %LDH or %AST, the two other cytotoxicity release enzymes. Only three significant findings were observed for %ALT (nano SiO₂ K1 at 300 and 1000 μ g/ml and nano SiO₂ N2 at 1000 μ g/ml) (Table 3). %ALT was nonresponsive for all other seven treatments.

Graphical representation of all the %ALT released to the media data is provided in Supplementary Fig. 3.

Biochemical assays via Konelab Arena 30

Parameters related to hepatotoxicity—ALP, MIA, T BIL, TRIG, and protein

No significant effects were seen in either ALP or TRIG for any of the nine particle treatments (Table 3 presents all hepatotoxicity related data). In respect to MIA, only one significant effect was observed, a decrease in MIA following 1000 μ g/ml nano SiO₂ N2. Nano CeO₂ Y6 (100, 300, and 1000 μ g/ml) reduced total bilirubin concentration. In contrast, at 1000 μ g/ml nano SiO₂ J0 increased T BIL, a significant effect in the opposite direction. There were three significant increases in protein concentration found at 300 μ g/ml and 1000 μ g/ml with nano CeO₂ Y6 and 30 μ g/ml with nano SiO₂ N2.

Graphical representations of all the T BIL and protein data are provided in Supplementary Figs. 4 and 5, respectively.

Parameters related to oxidative stress—CAT, GGT, GPx, SOD, THRR, GSH, GRD, and G6PDH

Catalase enzyme activity was significantly increased by only nano CeO₂ Z7 at 1000 µg/ml (Table 3 presents all oxidative stress related data). Three significant increases were observed with GGT, nano CeO₂ W4 at 30 µg/ml, nano SiO₂ N2 at 1000 μ g/ml, and TiO₂ T8141 at 300 µg/ml. Nano CeO₂Y6 (at 100, 300, and 1000 µg/ml) was the only one of the nine particle treatments that decreased GPx activity (supplementary Fig. 6). Nano SiO₂ J0 and nano SiO₂ N2 caused reductions in SOD in fairly low (10 and 30 μ g/ml for nano SiO₂ N2) or more intermediate dose range (100 μ g/ml of nano SiO₂ N2, 100 and 300 μ g/ml of nano SiO₂ J0) (Supplementary Fig. 7). Unexpectedly at the highest dose of $1000 \,\mu g/ml$, no SOD decreases were observed for any of the nine particulate treatments. The sole significant finding with THRR was a reduction at 100 μ g/ml of nano SiO₂ N2.

Nano CeO₂ Z7, nano SiO₂ J0, nano SiO₂ K1, and nano SiO₂ N2 all significantly decreased GSH concentration at 1000 µg/ml (Supplementary Fig. 8). Nano CeO₂ Z7 also decreased GSH concentration at 300 µg/ml. Only nano SiO₂ (J0, K1, and N2) particles caused significant decreases in GRD activity. These GRD reductions were observed in the dose range of 30 to 1000 µg/ml. G6PDH enzyme activity was the most responsive hepatic enzyme of this study. For two particles (nano CeO₂ W4 at 10 and 30 μ g/ml and also TiO₂ T8141 at 10 µg/ml), significant increases were observed at low exposures. However, the much more common G6PDH biochemical response was decreases in the 30 to 1000 μ g/ml range observed with CeO₂ Q, nano SiO₂ J0, nano SiO₂ K1, and nano SiO₂ N2. In addition, there were observed G6PDH activity decreases (even though the individual P values ranged only between .15 and .05,

thus not reaching the common standard for statistical significance of P < .05) in the dose range of 100 to 1000 µg/ml for nano CeO₂ Y6, nano CeO₂ Z7, and CeO₂ Q, (decreases were seen in six out of eight cases). Graphical representations of all the GRD and G6PDH data are provided in Supplementary Figs. 9 and 10, respectively. Out of all these parameters, GRD and G6PDH stand out as the most responsive.

Discussion

Dose-response

In Table 3, some "statistically significant" responses (P < .05 or even lower) may be spurious as they appear to occur randomly in the data set. These putative "random effects" were not confirmed by similar statistically significant findings at higher doses (possible examples of increased GGT by nano CeO₂ W4 at 30 µg/ml, increased G6PDH at 10 and 30 µg/ml by nano CeO₂ W4, decreased G6PDH at 30 and 100 μ g/ml of CeO₂ Q, increased G6PDH at 10 of TiO₂ T8141, decreased SOD by 100 and 300 µg/ml of nano SiO₂ J0, decreased THRR by 100 μ g/ml of nano SiO₂ N2, and increased protein in 30 μ g/ml of nano SiO₂ N2). Other than these possibly random effects, the overall biological responses (particularly with %LDH and %AST) generally appeared fairly monotonic (always increasing with dose). However, the dose-response slope was not high in many cases in the upper dose region. Thus, there was a degree of "upper asymptote" character to some of the dose-response curves. Several examples of biochemical parameters that showed somewhat of an upper asymptote in the quantitative degree of change are shown in Supplementary Table 1. For example, this pattern can be observed with G6PDH by nano SiO₂ J0 and nano SiO₂ N2, GPx by nano CeO₂ Y6, GRD by nano SiO₂ J0 and nano SiO₂ N2, and T BIL by nano CeO₂ Y6.

It is well known that CeO₂, SiO₂, and TiO₂ are highly insoluble in water and do not contribute high concentrations of soluble and potentially toxic metal ions to cause biological effects. This low degree of solubility and ionization of CeO₂, SiO₂, and TiO₂ may be a reason that the slope of dose-response curves for CeO₂, SiO₂, and TiO₂ is so flat in the upper dose region.

In comparing the responses between this study's five nano CeO_2 particles and our group's prior study (Kitchin et al. 2016) with four other nano CeO_2 particles, some

conclusions are possible. First, in respect to oxidative stress-related parameters, the current group of nano CeO₂ particles showed fewer statistically significant effects in regard to G6PDH, GRD, GPx, and SOD. Second, this same pattern of fewer effects was observed with respect to both HepG2 protein and MIA with the current nano CeO₂ particles showing fewer statistically significant effects. Why the current nano CeO₂ particles are less biologically active than the prior CeO₂ set (Kitchin et al. 2016) is not known. It may be that the current nano CeO₂ particle surfaces are less active in generating ROS species.

Structure-activity

The most cytotoxic nano CeO₂ was Z7 (by cytotoxicity grading and %AST release); nano CeO₂ Z7 also had the largest wet size of these CeO₂ particles (1325-nm peak on day 1 of cell culture). These two observations may not be causally related. With respect to G6PDH, GRD, GPx, SOD, MIA, and HepG2 protein, the low number of significant responses seen in the present study was noteworthy when compared with more active CeO₂ particles in a prior study (Kitchin et al. 2016).

Attempts to coat SiO₂ particles with CeO₂ by atomic layer deposition were unsuccessful as determined by multiple chemical assays for Ce concentration by multiple groups. By ICP-OES analysis, the ratio of the coated (K1 or N2)/uncoated (J0) concentrations for several other metals was quite large-for Mn over 80-fold, for Cu over 90-fold, and for Zn over 10-fold. Thus, particles K1 and N2 were inadvertently coated with Mn, Cu, and Zn during the atomic layer deposition procedure. After the atomic layer deposition procedure, the three nano particles appeared to be somewhat different in some of their biological effects. Examples include cytotoxicity grades which were higher for SiO₂ J0, intermediate for SiO₂ K1, and lowest for SiO₂ N2. It was quite surprising that %ALT which often is an unresponsive parameter showed significant changes with both nano SiO₂ K1 and nano SiO_2 N2, the two "coated" SiO_2 particles, but for not for any other of the seven particles tested. For both G6PDH, GRD, and SOD, nano SiO₂ J0 and nano SiO₂ N2 showed significant reductions in enzyme activity, while nano SiO₂ K1 showed fewer effects.

In respect to G6PDH, GRD, and SOD, there was a similarity of effect (all decreases) between the nano SiO_2 particles of this study and by the prior nano CeO_2 particles (Kitchin et al. 2016). Some metal oxide nanomaterial

surfaces may generate ROS and/or RNS free radicals and decrease cellular glutathione concentrations which has been observed in other published studies as well as our own HepG2 studies. For example, GSH concentration decreases have been observed after exposure to CeO₂ (Lin et al. 2006) (Monteiller et al. 2007; Kitchin et al. 2014) or SiO₂ particles (Ramesh et al. 2013; Polimeni et al. 2008). In murine alveolar macrophages (MH-S) exposed in vitro to 1-10-µm diameter quartz particles, decreases were observed for G6PDH, the pentose phosphate pathway and GSH while increases were seen for thiobarbituric acid reactive substances (Polimeni et al. 2008). In human lung cells (A549), CeO₂ nanomaterial exposure produced decreases in GSH and alphatocopherol concentration and increases in malondial dehyde and 2',7'-dichlorofluorescin diacetate fluorescence (Lin et al. 2006).

In human lung cells (A549) exposed to SiO_2 nanomaterials, decreases were observed with SOD and GPx activity (Yu et al. 2015). However, increases were seen in respect to malondialdehyde, 2',7'-dichloro fluorescin diacetate fluorescence and DNA damage by the comet assay. Viewed collectively, our structureactivity data and the published redox-related data of others suggest that some but not all CeO₂ and SiO₂ surfaces may generate ROS and deplete GSH concentration directly as well as perturb the cellular G6PDH, GR,D and SOD antioxidant defence enzyme systems. Depending on the material and the biological system, nanomaterials are known to have prooxidant, antioxidant, or neither overall biological effect (Merrifield et al. 2013). In our studies, G6PDH, GRD, and SOD are the best biomarkers or functional assays, for oxidative stress (this study and (Kitchin et al. 2016)).

Glutathione, oxidative stress, and literature review

All nine particles tested in the concentration range of 10 to 100 µg/ml did not significantly decrease HepG2 GSH concentration. Above this dose level (at both 300 and 1000 µg/ml), only one CeO₂-based nanomaterial (Z7) decreased GSH concentrations. However, at 1000 µg/ml, all three nano SiO₂ (J0, K1, and N2) reduced GSH concentration at a high P < .001 level of significance. In our present study, the particle exposures that reduced GSH often caused other biochemical effects as well—decreased activities of G6PDH, GRD, and SOD. It is difficult to know if all four biochemical effects are coming from the same cause or if GSH

depletion itself is driving the observed decreases in the activities of G6PDH and GRD.

With respect to published nano CeO_2 studies, decreased GPx was found in three different biological systems—in the rat liver (Tseng et al. 2012), human hepatoma (SMMC-7721) cells (Cheng et al. 2013), and rat brain (Hardas et al. 2012). These three GPx studies agree with our observation of nano CeO₂ Y6 causing GPx decreases in HepG2 cells (Table 3).

With respect to nano SiO₂ studies, GSH depletion has been observed by two investigators in human lung A549 cells (Akhtar et al. 2010; Yu et al. 2015) and also in carp liver (Stanca et al. 2013). In human lung A549 cells treated with SiO₂ nanoparticles, decreased GRD was observed (Akhtar et al. 2010). Glutathione concentration decreases are a well-known effect of many metal oxide nanomaterial exposures (Kumar et al. 2011; Kitchin et al. 2014). Following the administration of Si/SiO₂ nanoparticles, decreased carp liver G6PDH has been observed (Stanca et al. 2013). Finally, after nano SiO₂ exposures to human lung A549 cells, decreased SOD was found (Yu et al. 2015). Overall, several of our observations of the health effects presented in Table 3 (decreased GSH, GPx, GRD, G6PDH, and SOD) are in agreement with observations of others in different biological systems.

Does "cytotoxicity" explain the observed biochemical findings?

The major problems with the interpretation that cytotoxicity causes biochemical effects are that none of the responsive cytotoxic parameters (%LDH, %AST, or combined interpretations of cytotoxicity parameters as a whole) (Table 2) matched the responses of the biological parameters well (Table 3). For example, in 16 out of 18 cases, doses of 300 μ g/ml or higher caused medium or high degrees of cytotoxicity (Table 2). However, with the exception of GSH, in all 12 other cases, there was not a medium or higher degree of biological response seen throughout these two higher dose groups (e.g., GPx, SOD, GGT, and protein). At the usually cytotoxic dose of 1000 µg/ml, four of the eight tested particles did indeed significantly deplete GSH concentration (mostly nano SiO₂ particles) but four CeO₂ particles did not cause GSH depletion at any dose. Thus, overall, the correlation between observed HepG2 cytotoxicity and other biochemical effects was poor. In prior HepG2 hepatotoxicity data sets, there appeared to be a higher

degree of possible correlation between cytotoxicity and other biochemical effects (Kitchin et al. 2016).

Physical-chemical characterization to biological effects connection

Extensive physical-chemical characterization on eight of the studied nanomaterials is available from two sources (Geraets et al. 2012, Hancock et al. in preparation) and also summarized in Table 1. In decreasing order, the BET surface area (in m^2/g) of the nine studied nanomaterials was 137.4 (SiO₂ J0), 128.8 (SiO₂ K1), 120.5 (SiO₂ N2), 57.0 (CeO₂ Z7), 52.8 (CeO₂ W4), 40.3 (CeO₂ Y6), 20.8 (CeO₂ X5), 9.7 (TiO₂ T8141), and $3.73 (\text{CeO}_2 \text{ Q}) \text{ m}^2/\text{g}$ (Table 1). The larger surface area of the nano SiO₂ particles gives an obvious potential cause of the higher degree of activity of these nano SiO₂ particles observed for GSH, G6PDH, GRD, and SOD. If surface area is the largest cause of effects however, it is difficult to understand why nano SiO₂ K1 has so few effects (3), and nano SiO₂ J0 (11) and SiO₂ N2 (16) have so many effects. All of nano SiO₂ K1-induced effects (G6PDH, GRD, and GSH) were also duplicated by nano SiO₂ J0 and nano SiO₂ N2. Relative to the number of significant biochemical effects found at the P < .05 level or lower, the order was 16 (SiO₂ N2), 11 (SiO₂ J0), 8 (CeO₂ Y6), 3 (CeO₂ W4, CeO₂ Z7, and SiO₂ K1), 2 (CeO₂ Q and TiO₂ T8141), and 0 (CeO₂ X5). The company Nano-oxides of Salt Lake, Utah, was the source of both nano CeO₂ W4 (surface area of 52.8 and three noted significant effects) and nano CeO₂ X5 (surface area of 20.8, zero noted significant effects) (Table 1). So, in this case with CeO_2 , larger surface area (W4 more than X5) correlates with more significant effects. However, the biological effects are probably being determined by many physical-chemical factors; only one of which is surface area.

Utility of this experimental data set to modeling

This large data set should contribute to an even larger potentially useful data set for modelers with respect to dose-response, structure-activity, and linking physicalchemical characteristics with in vitro hepatic effects and other more "big data" orientated uses. In the future, this data from the current and other related hepatotoxicity studies should become available in an EPA knowledge base called "NaKnowBase" that can be used by multiple people in many different institutions for different purposes. From the point of view of modeling, there are two negative aspects to consider. First, the current group of nano CeO₂ particles was considerably less active than the first group of studied nano CeO₂ particles (Kitchin et al. 2016). Second, with the three nano SiO₂-based particles, attempts to coat them with CeO₂ failed and we were not able to demonstrate any CeO₂-dependent effects with particles K1 and N2 versus J0. As atomic layer deposition placed three new metal contaminants (Mn, Cu, and Zn) on the surface of particles K1 and N2, any differences in the biological properties of the coated particles versus J0 can be due to these three factors. This makes the SiO₂ J0 versus SiO₂ K1 versus SiO₂ N2 SAR comparison quite problematic.

Summary and conclusions

With CeO_2 , SiO_2 , & TiO_2 particle exposures to HepG2 cells for 3 days, our major findings are:

- a) decreased GSH was found after exposure to four nanomaterials (all three nano SiO₂ particles),
- b) reduced G6PDH activity was observed following many exposures (six out of nine nanomaterials). Decreases in the activity of this enzyme could deplete NADPH and GSH concentrations and lead to oxidative stress (Xu et al. 2010),
- c) decreases in SOD and GRD were also observed with exposure to several SiO₂ nanomaterials; these biological effects will also contribute to oxidative stress,
- d) nano SiO₂ was more active than nano CeO₂ in respect to decreasing GSH content and G6PDH, GRD, and SOD enzyme activities,
- e) cytotoxicity per se did not correlate or explain well the patterns of biological responses observed. The pattern of cytotoxicity degree observed (Table 2) does not match well the number of significant effects found (Table 3) and
- f) in this study, the more responsive and informative assays were G6PDH, GRD, SOD, %LDH, and %AST.

Acknowledgments We are grateful for the participation of many individuals in this study. Particularly, we thank Drs. Carl Blackman, Michael F. Hughes, and Urmila Kodavanti for reviewing this manuscript as part of EPA clearance procedures. Dr. Xinhua Liang of Missouri University of Science and Technology performed the atomic layer deposition which produced nano SiO_2 K1 and SiO_2 N2.

Funding US EPA.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflicts of interest.

Disclaimer The information in this document has been funded wholly by the U. S. Environmental Protection Agency. It has been subjected to review by the National Health and Environmental Effects Research Laboratory and approved for publication. Approval does not signify that the contents necessarily reflect the views of the Agency, nor does mention of trade names or commercial products that constitute endorsement or recommendation for use.

References

- Akhtar MJ, Ahamed M, Kumar S, Siddiqui H, Patil G, Ashquin M, et al. Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology. 2010;276(2):95–102.
- Cassee FR, van Balen EC, Singh C, Green D, Muijser H, Weinstein J, et al. Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Crit Rev Toxicol. 2011;41(3):213–29.
- Cheng G, Guo W, Han L, Chen E, Kong L, Wang L, et al. Cerium oxide nanoparticles induce cytotoxicity in human hepatoma SMMC-7721 cells via oxidative stress and the activation of MAPK signaling pathways. Toxicol in Vitro. 2013;27(3): 1082–8.
- Demokritou P, Gass S, Pyrgiotakis G, Cohen JM, Goldsmith W, McKinney W, et al. An in vivo and in vitro toxicological characterisation of realistic nanoscale CeO(2) inhalation exposures. Nanotoxicology. 2013;7(8):1338–50.
- Ge Y, Bruno M, Wallace K, Winnik W, Prasad RY. Proteome profiling reveals potential toxicity and detoxification pathways following exposure of BEAS-2B cells to engineered nanoparticle titanium dioxide. Proteomics. 2011;11(12): 2406–22.
- Geraets L, Oomen AG, Schroeter JD, Coleman VA, Cassee FR. Tissue distribution of inhaled micro- and nano-sized cerium oxide particles in rats: results from a 28-day exposure study. Toxicol Sci. 2012;127(2):463–73.
- Grulke E, Reed K, Beck M, Huang XY, Cormack A, Seal S. Nanoceria: factors affecting its pro- and anti- oxidant properties. Environ Sci Nano. 2014;1:429–44.
- Hardas S, Sultana SR, Warrier G, Dan M, Florence RL, Wu P, et al. Rat brain pro-oxidant effects of peripherally administered 5 nm ceria 30 days after exposure. Neurotoxicology. 2012;33(5):1147–55.
- Holsapple MP, Farland WH, Landry TD, Monteiro-Riviere NA, Carter JM, Walker NJ, et al. Research strategies for safety

evaluation of nanomaterials, part II: toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol Sci. 2005;88(1):12–7.

- Iavicoli I, Leso V, Fontana L, Bergamaschi A. Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies. Eur Rev Med Pharmacol Sci. 2011;15(5):481–508.
- Khan MM, Farooq S, Al-Mayouf AA. Metal oxides as photocatalysts. J Saudi Chem Soc. 2015;19:462–4.
- Kitchin KT, Prasad RY, Wallace KA. Oxidative stress studies of six TiO(2) and two CeO(2) nanomaterials: immuno-spin trapping results with DNA. Nanotoxicology. 2011;5(4): 546–56.
- Kitchin KT, Grulke EA, Robinette BL, Castellon BT. Metabolomic effects in HepG2 cells exposed to four TiO2 and two CeO2 nanomaterials. Environ Sci Nano. 2014;1: 466–77.
- Kitchin KT, Robinette BL, Richards J, Coates NH, Castellon BT. Biochemical effects in HepG2 cells exposed to six TiO2 and four CeO2 nanomaterials. J Nanosci Nanotechnol. 2016;16(9):9505–34.
- Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A. Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med. 2011;51(10):1872– 81.
- Lin W, Huang YW, Zhou XD, Ma Y. Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int J Toxicol. 2006;25(6):451–7.
- Merrifield RC, Wang ZW, Palmer RE, Lead JR. Synthesis and characterization of polyvinylpyrrolidone coated cerium oxide nanoparticles. Environ Sci Technol. 2013;47(21):12426–33.
- Mishchuk NA. The model of hydrophobic attraction in the framework of classical DLVO forces. Adv Colloid Interf Sci. 2011;168(1–2):149–66.
- Monteiller C, Tran L, MacNee W, Faux S, Jones A, Miller B, et al. The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med. 2007;64(9):609–15.
- Monteiro-Riviere NA, Inman AO, Zhang LW. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol. 2009;234(2):222–35.
- Nel AE, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–7.
- Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8(7):543–57.
- Nemmar A, Yuvaraju P, Beegam S, Yasin J, Kazzam EE, Ali BH. Oxidative stress, inflammation, and DNA damage in multiple organs of mice acutely exposed to amorphous silica nanoparticles. Int J Nanomedicine. 2016;11:919–28.
- Park EJ, Park K. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett. 2009;184(1):18–25.
- Polimeni M, Gazzano E, Ghiazza M, Fenoglio I, Bosia A, Fubini B, et al. Quartz inhibits glucose 6-phosphate dehydrogenase in murine alveolar macrophages. Chem Res Toxicol. 2008;21(4):888–94.

- Porter D, Shiram K, Wolfarth M, Jefferson A, Schwegler-Berry D, Andrew M, et al. A biocompatible medium for nanoparticle dispersion. Nanotoxicology. 2008;2(3):144–54.
- Price C, Alberti K. Biochemical assessment of liver function. In: Wright RM, Alberti K, Karran S, Millward-Sadler G, editors. Liver and Biliary Disease-Pathophysiology, Diagnosis, Management. London: W. B. Saunders; 1979. p. 381–416.
- Ramesh R, Kavitha P, Kanipandian N, Arun S, Thirumurugan R, Subramanian P. Alteration of antioxidant enzymes and impairment of DNA in the SiO2 nanoparticles exposed zebra fish (Danio rerio). Environ Monit Assess. 2013;185(7): 5873–81.
- Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol. 2013;10:15. https://doi.org/10.1186/1743-8977-10-15.
- Shvedova AA, Pietroiusti A, Fadeel B, Kagan VE. Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol. 2012;261(2):121–33.
- Stanca L, Petrache SN, Serban AI, Staicu AC, Sima C, Munteanu MC, et al. Interaction of silicon-based quantum dots with gibel carp liver: oxidative and structural modifications. Nanoscale Res Lett. 2013;8(1):254. https://doi.org/10.1186 /1556-276X-8-254.
- Thai SF, Wallace KA, Jones CP, Ren H, Castellon BT, Crooks J, et al. Differential genomic effects on signaling pathways by two different CeO2 nanoparticles in HepG2 cells. J Nanosci Nanotechnol. 2015a;15(12):9925–37.

- Thai SF, Wallace KA, Jones CP, Ren H, Grulke EA, Castellon BT, et al. Differential genomic effects of six different TiO2 nanomaterials on human liver HepG2 cells. J Biochem Mol Toxicol. 2015b;30(7):331–41.
- Thompson TL, Yates JT Jr. Surface science studies of the photoactivation of TiO2–new photochemical processes. Chem Rev. 2006;106(10):4428–53.
- Tseng MT, Lu X, Duan X, Hardas SS, Sultana R, Wu P, et al. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria. Toxicol Appl Pharmacol. 2012;260(2):173–82.
- Walker NJ, Bucher JR. A 21st century paradigm for evaluating the health hazards of nanoscale materials? Toxicol Sci. 2009;110(2):251–4.
- Warheit DB, Borm PJ, Hennes C, Lademann J. Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop. Inhal Toxicol. 2007;19(8):631–43.
- Xu Y, Zhang Z, Hu J, Stillman IE, Leopold JA, Handy DE, et al. Glucose-6-phosphate dehydrogenase-deficient mice have increased renal oxidative stress and increased albuminuria. FASEB J. 2010;24(2):609–16.
- Yokel RA, Hussain S, Garantziotis S, Demokritou P, Castranova V, Cassee FR. The Yin: an adverse health perspective of nanoceria: uptake, distribution, accumulation, and mechanisms of its toxicity. Environ Sci Nano. 2014;1(5):406–28.
- Yu Y, Duan J, Li Y, Jin M, Li C, Wang Y, et al. Combined toxicity of amorphous silica nanoparticles and methylmercury to human lung epithelial cells. Ecotoxicol Environ Saf. 2015;112:144–52. https://doi.org/10.1096/fj.09-135731.