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Abstract Caudatin as one species of C-21 steroidal
from Cynanchum bungei decne displays potential anti-
cancer activity. However, the underlying mechanisms
remain elusive. In the present study, the growth suppres-
sive effect and mechanism of caudatin on human glioma
U251 and U87 cells were evaluated in vitro. The results
indicated that caudatin significantly inhibited U251 and
U87 cell growth in both a time- and dose-dependent

manner. Flow cytometry analysis revealed that caudatin-
induced cell growth inhibition was achieved by induc-
tion of cell apoptosis, as convinced by the increase of
Sub-G1 peak, PARP cleavage and activation of caspase-
3, caspase-7 and caspase-9. Caudatin treatment also
resulted in mitochondrial dysfunction which correlated
with an imbalance of Bcl-2 family members. Further
investigation revealed that caudatin triggered U251 cell
apoptosis by inducing reactive oxygen species (ROS)
generation through disturbing the redox homeostasis.
Moreover, pretreatment of caspase inhibitors apparently
weakens caudatin-induced cell killing, PARP cleavage
and caspase activation and eventually reverses caudatin-
mediated apoptosis. Importantly, caudatin significantly
inhibited U251 tumour xenografts in vivo through in-
duction of cell apoptosis involving the inhibition of cell
proliferation and angiogenesis, which further validate its
value in combating human glioma in vivo. Taken to-
gether, the results described above all suggest that
caudatin inhibited human glioma cell growth by induc-
tion of caspase-dependent apoptosis with involvement
of mitochondrial dysfunction and ROS generation.
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Introduction

Glioma is one of the most common malignant tumours
of the nervous system, which has high mortality and
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morbidity (Tseng and Tseng 2005). Due to its high
infiltration and invasion capacity into adjacent tissues,
the traditional therapies, such as the surgery, radiotherapy,
chemotherapy or combined treatments, still cannot
achieve the desired therapeutic effect (Adair et al. 2014;
Demuth et al. 2008; Wang et al. 2015a, b; Zhang et al.
2014; Teschke and Eickhoff 2015). Hence, novel chemo-
therapeutic drugs with high efficacy and low toxicity are
urgently needed to combat human glioma in clinical
practice.

Recently, traditional Chinese medicines (TCMs) attract
more attention in treatment of human tumours, improve-
ment of life quality, prevention of recurrence and metas-
tasis and reducing the complications of tumour chemo-
therapy (Wang et al. 2015a, b). Cynanchum auriculatum
(C. auriculatum) as a TCM has been reported to nourish
the blood and enhance immunity (Ma et al. 2011; Peng
and Ding 2015). C-21 steroidal glycosides belong to the
Asclepiadaceae family that exhibit potential ability in
inhibiting cancer cells proliferation and invasion by in-
duction of cell apoptosis (Li et al. 2014; Wang et al. 2011,
2013). Caudatin, a species of C-21 steroidal isolated from
the root of Cynanchum bungei decne in China, displays
multiple pharmacological functions, such as anticancer,
immune regulation, hepatoprotection, antiaging, antioxi-
dation, antiviral and neuroprotection (Luo et al. 2013;
Zhang et al. 2007; Peng et al. 2008; Lv et al. 2009). The
chemical structure of caudatin can be found in our previ-
ous publication (Fu et al. 2015). It is reported that caudatin
could induce cell apoptosis in several types of cancer cell
lines (Wang et al. 2015a, b). For instance, Fei et al.
reported that caudatin could induce caspase-dependent
apoptosis in HepG2 human hepatocarcinoma with in-
volvement of Bcl-2 family change and activation of
ERK and JNK (Fei et al. 2012). We previously explored
that caudatin inhibited human glioma cell growth by
induction of cell cycle arrest in 48 h (Fu et al. 2015).
However, the underlying mechanism of caudatin-induced
apoptosis remains unclear, especially the molecular mech-
anism in human brain tumours.

In the present study, we evaluated the anticancer activ-
ities and molecular mechanism of caudatin on human
glioma cells, and the results showed that caudatin effec-
tively inhibited human glioma cell growth in vitro by
induction of caspase-dependent apoptosis with involve-
ment of mitochondrial dysfunction and reactive oxygen
species (ROS) generation.Moreover, caudatin significant-
ly inhibited U251 tumour xenografts in vivo through
induction of cell apoptosis involving the inhibition of cell

proliferation and angiogenesis, which validated the thera-
peutic potency in clinic.

Materials and methods

Chemical

Caudatin (dissolved with 100 % dimethyl sulfoxide),
propidium iodide (PI), JC-1 and MTT [3-(4, 5-dimethyl-
thiazol-2-yl)-2, 5-diphenyltetrazolium bromide], glutathi-
one (GSH) and other reagents were all purchased from
Sigma. DCFH-DA, mitoSOX and BCA assay kit was
bought from Beyotime Institute of Biotechnology.
Dulbecco’s modified Eagle’s medium (DMEM), fetal
bovine serum (FBS) and penicillin–streptomycin were
purchased from Invitrogen. All solvents used were of
high-performance liquid chromatography (HPLC) grade.
The water used in this study was provided by a Milli-Q
water purification system from Millipore. The antibodies
PARP (CST, no. 9542), Cleaved-PARP (CST, no. 9541),
active-caspase-3 (CST, no. 9664p), active-caspase-7
(CST, no. 9491), active-caspase-9 (CST, no. 9509s), Bad
(CST, no. 9292), Bax (CST, 2772), Bcl-2 (CST, 2872),
Bcl-XL (CST, 2762), general caspases inhibitor (z-VAD-
fmk), caspase-9 inhibitor (z-LEHD-fmk) and caspase-3
inhibitor (z-DEVD-fmk) used in this study were all ob-
tained from Cell Signaling Technology (Beverly, MA,
USA).

Cell culture and drug treatments

U87 and U251 cells were purchased fromAmerican Type
Culture Collection (ATCC, USA) and cultured in DMEM
with fetal bovine serum (10 %), penicillin (100 U/ml) and
streptomycin (50 U/ml) at 37 °C in a humidified incubator
with 5 % CO2 atmosphere. Cells (4×10

3 cells/well) seed-
ed in a 96-well plate were exposed to caudatin (0, 25, 50,
100 μM) for 24, 48 and 72 h. The sensitive cell line to
caudatin was employed for subsequent experiments.

MTT assay

Cell viability was detected by MTT assay. Briefly, U87
and U251 cells (4×103 cells/well) seeded in a 96-well
plate were treated with caudatin (0, 25, 50, 100 μM) for
24, 48 and 72 h. After incubation, 20 μl MTT (5 mg/ml)
solution/well was added and incubated for another 4 h.
Then, the medium was aspirated, and 150 μl/well DMSO
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was added to dissolve the formazan. Then, the 96-well
plate was shaken on a mini shaker for 20 min. The
absorbance at 570 nm reflects the cell growth condition
was recorded by a microplate reader (Molecular Device,
USA). Cell viability was expressed as percentage of con-
trol (as 100%). The half maximal inhibitory concentration
(IC50) was used to evaluate the anticancer ability of
caudatin.

Cell cycle distribution and detection of cell apoptosis

Flow cytometric analysis was used to analyze cell
cycle distribution and cell apoptosis. Briefly, U251
cells seeded in cell culture dishes (6 cm) were treat-
ed with caudatin (0, 25, 50, 100 μM) for 72 h. After
treatment, cells were trypsinized and harvested by
centrifugation. Then, cells were stained with PI so-
lution after fixation with 70 % ethanol at −20 °C
overnight. Labelled cells were washed and analyzed
with a flow cytometry. The sub-G1 peak (hypodip-
loid DNA contents) was used to quantify the apo-
ptotic cell death.

Detection of ROS, superoxide and GSH content

U251 cells were seeded in 96-well plate and incu-
bated with 10 μM DCFH-DA probe for 15 min at
37 °C. Then, cells were washed with PBS and treat-
ed with different concentrations of caudatin for 2 h.
Then, the ROS leve l was moni tored wi th
microreader at excitation and emission wavelengths
of 488 and 525 nm, respectively. The superoxide
was detected by a mitochondria-targeted fluorogenic
dye, MitoSOX (Beyotime). Briefly, U251 cells were
seeded in 2-well plate and incubated with 10 μM
MitoSOX probe for 15 min at 37 °C. Then, cells
were washed with PBS and treated with different
concentrations of caudatin for 2 h. The cells were
then imaged with an inverted fluorescence micro-
scope. The GSH content was determined by specific
assay kits purchased from Beyotime Institute of
Biotechnology and carried out according to the man-
ufacturer’s instructions. The data was expressed as
percent of control (as 100 %). Cells were pretreated
with GSH (ROS scavenger) for 2 h prior to the
caudatin treatment to evaluate caudatin-induced cell
growth inhibition and apoptosis.

Measurement of mitochondrial membrane potential
(Δψm) and mitochondrial mass

U251 cells seeded in a tissue culture plate (2 cm) were
incubated with 10 μg/ml JC-1 solution at 37 °C for
15 min. After incubation, cells were washed with PBS
and treated with caudatin for 5, 15 and 30 min. At the
different interval, the Δψm of the same area of cells
were examined by a fluorescence microscope (Nikon
Eclipse80i, ×200). The shift of fluorescence from red to
green represents the loss of Δψm. The mitochondrial
mass was detected by NAO probe. Briefly, cells seeded
in 2-cm tissue culture plates were exposed to 25–
100 μM caudatin for 72 h. After treatment, cells were
incubated with 10 μM NAO and 10 μg/ml DAPI for
15 min. Then, cells were washed and observed by
fluorescence microscope (Nikon Eclipse80i, ×200).
The mitochondrial mass was analysed by Image-Pro
Plus 6.0 (control as 100 %).

Western blotting

U251 cells were seeded in cell culture dishes (10 cm)
and treated with caudatin (0, 25, 50, 100 μM) for 72 h.
After treatment, the cells were washed with PBS, har-
vested and lysed with RIPA buffer. Total protein was
extracted and quantified by BCA assay kit according to
the manufacturer’s instructions. The protein expression
in U251 cells was detected by western blotting methods.
Briefly, protein was boiled for 10 min and stored at
−80 °C environments for subsequent test. Forty micro-
grams of total protein/lane was loaded and separated in
10 % SDS-PAGE. After electrophoresis, protein was
transferred to polyvinylidene difluoride (PVDF) mem-
branes. Then, the membrane was blocked with 5%BSA
for 2 h at room temperature, followed by incubation
with primary antibodies (1:1000) overnight at 4 °C
and secondary antibodies (1:2000) for 2 h at room
temperature. Protein bands were detected by X-ray film
using an enhanced chemiluminescence system (Nikon).
Theβ-actin was employed as positive control band. The
protein expressions were quantified by Quantity-One
Software and the expression rate was labelled under
the bands.

In vivo study

Briefly, about 1 ×107 U251 human glioma cells (in
100 μl serum-free medium) were subcutaneously
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injected into the right oxter of male nude mice. After 8-
day growth (tumour volume about 60 mm3), the mice
were treated with caudatin. Caudatin (0, 25 and 50 mg/
kg) was injected from the caudal vein every other day
from the first day until the 16th day (eight times). After
experiments, tumours were harvested and measured
with the following formula: volume= l×w2 / 2, with l
being the maximal length and w being the width. Sec-
tions of tumours were used for western blotting and
immunohistochemical (IHC) assay. The in vivo study
was mainly conducted as in a previous report (Fan et al.
2014a, b). All animal experiments were approved by the
Animal Experimentation Ethics Committee.

Statistical analysis

Statistical analysis was performed using the SPSS statis-
tical package (SPSS 13.0 for Windows; SPSS, Inc., Chi-
cago, IL USA). The difference between two groups was
analyzed by a two-tailed Student’s t test. The difference

between three or more groups was analyzed by one-way
analysis of variance multiple comparisons. Bars in fig-
ures with different characters (a, b, c or d) are statistically
different at the P<0.05 level, which were achieved by
multiple comparison between three or more groups.

Results

Caudatin inhibits human glioma cells growth

Cell growth inhibition of caudatin against U251 and
U87 cells was firstly assessed by MTT assay. As shown
in Fig. 1a, b, caudatin treatment significantly decreased
U251 and U87 cell viability in both a time- and dose-
dependent manner. For instance, cells treated with
caudatin (25, 50 and 100 μM) for 72 h significantly
inhibited the U251 cell viability from 100 % (control) to
73.5, 51.3 and 28.2 %, respectively. The result sug-
gested that caudatin could act as a potential cytostatic
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Fig. 1 Caudatin inhibits human glioma growth. Cytotoxicity of
caudatin towards U251 (a) and U87 (b) cells. Cells seeded in 96-
well plate (4000 cells/well) were treated with caudatin (0, 25, 50 or
100 μM) for 24, 48 and 72 h. Cell viability was detected by MTT

assay. c The IC50 value of U251 and U87. All data were expressed
as the mean± SD of the three independent experiments. Bars with
different letters indicate the statistical difference (P< 0.05)
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agent in inhibiting human glioma cell growth. More-
over, the IC50 (half maximal inhibitory concentration) of
caudatin at 24, 48 and 72 h towards U251 cells was
170.3, 102.2 and 52.1 μM, respectively (Fig. 1c), which
showed more sensitivity to caudatin than that of U87
cells. Therefore, U251 cell line was employed for sub-
sequent mechanism evaluation.

Caudatin induces glioma cell apoptosis

To elucidate the cell death mode, flow cytometric anal-
ysis was employed to detect caudatin-induced cell apo-
ptosis. Apoptotic cells measured by flow cytometry
usually emerge a Sub-G1 peak, which is generally used
to quantify the cell apoptosis (Chen and Wong 2008).
As shown in Fig. 2a, exposure of U251 cells to indicated

concentrations of caudatin for 72 h resulted in signifi-
cant cell apoptosis in a dose-dependent manner, as indi-
cated by the increase of Sub-G1 peak. For instance,
treatment with 50 and 100 μM caudatin caused 34.7
and 71.4 % apoptosis in U251 cells. Caudatin-induced
apoptosis in human glioma cells was further confirmed
in U87 cells, and the result indicated that induction of
cell apoptosis was also the action model of caudatin
against U87 cells (Figure S2). To further explore the
apoptotic mechanism, PARP cleavage and caspase acti-
vation, two important apoptotic events, were investigat-
ed in caudatin-treated U251 cells by western blotting
method. As shown in Fig. 2b, c, caudatin treatment
significantly induced the PARP cleavage and the acti-
vation of caspase-3, caspase-7 and caspase-9, which
further confirmed caudatin-induced apoptosis. The
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Fig. 2 Caudatin induces U251 cell apoptosis. a Flow cytometric
analysis of caudatin-induced apoptosis in U251 cells. Cells after
treatment with caudatin were stained with PI solution and detected
by flow cytometry. The Sub-G1 peak was used to quantify the
apoptotic cells. Caudatin induces U251 cell PARP cleavage (b)
and caspase activation (c). Cells after treatment with caudatin were

lysed and total protein (40 μg/lane) was loaded, and the protein
expression was examined by western blotting method as presented
in the BMaterials and methods^ section. The protein expressions
were quantified by Quantity-One Software and the expression rate
was labelled under the bands. All data and images were obtained
from three independent experiments
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activation of caspase-9 and caspase-7, two major initia-
tors of mitochondria-mediated apoptotic pathway, sug-
gests that caudatin inhibits human glioma cell growth
mainly by induction of mitochondria-mediated apopto-
sis. To validate the contribution of death receptor-
mediated extrinsic pathway, caspase-8 and DR5 expres-
sion were detected by western blotting method. The
results indicated that caudatin treatment slightly activat-
ed caspase-8 and DR5, indicating that death receptor-

mediated extrinsic pathway partly contributed to
caudatin-induced U251 cell apoptosis.

Caudatin causes mitochondrial dysfunction

Mitochondria as the energy generator regulates both the
extrinsic (death receptor-mediated) and intrinsic apoptotic
(mitochondria-mediated) signals and plays key role in
launching the apoptotic process (Marini et al. 2006).
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Fig. 3 Caudatin causes the mitochondrial dysfunction through
dysregulation of Bcl-2 family. a Caudatin treatment resulted in
the loss of mitochondrial membrane potential (Δψm). U251 cells
seeded in a tissue culture plate (2 cm) were incubated with 10 μg/
ml JC-1 solution at 37 °C for 15 min. After incubation, cells were
washed with PBS and treated with caudatin for 5, 15 and 30 min.
The Δψm of the same area of cells at different interval were
imaged by a fluorescence microscope. The fluorescent shift from

red to green indicates the depletion of ΔψmΔψm. b Caudatin
affects Bcl-2 family expression. The protein expression was de-
tected by Western blotting method. c Time-course effect of
caudatin on Bcl-2 and Bad expression. The protein expressions
were quantified by Quantity-One Software and the expression rate
was labelled under the bands. All data and images were obtained
from three independent experiments
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Mitochondrial dysfunction will disturb the energy metab-
olism and lead to cell apoptosis. The loss of Δψm as an
early apoptotic event contributes to the initiation of apo-
ptotic cascades (Ryu et al. 2005). Therefore, we employed

JC-1 probe to detect the loss of Δψm by fluorescence
microscope. As shown in Fig. 3a, U251 cells treated with
caudatin (50 μM) showed notable loss ofΔψm in a time-
dependent manner, as convinced by the enhanced green
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Fig. 4 Caudatin disturbs the intracellular redox homeostasis. a
Caudatin induced ROS accumulation. b Caudatin caused super-
oxide production. The superoxide in live cells was detected by
MitoSOX specific red dye which can target mitochondria super-
oxide (magnification, ×400). c Caudatin decreased the mitochon-
drial mass in U251 cells. Cells after treatment were stained by
NAO and DAPI probes according to the description in section of
methods. d Statistical analysis of mitochondrial mass by Image-
Pro Plus 6.0. All images shown here are representative of three

independent experiments with similar results. e Caudatin de-
creased the intracellular GSH content. The intracellular GSH
content was measured by specific assay kits according to the
manufacturer’s instructions. f Inhibition of ROS attenuated
caudatin-induced apoptosis. Cells were pretreated with glutathione
(GSH) for 2 h before caudatin treatment. All data and images were
obtained from three independent experiments. Bars with different
letters indicate the statistical difference (P< 0.05)
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fluorescence, followed by the decrease of red fluores-
cence. Furthermore, the mitochondrial mass was also
examined by NAO probe. As shown in Fig. 4c, caudatin
treatment dose-dependently decreased the mitochondrial
mass, as proved by the decreased red fluorescence. The
statistical analysis of mitochondrial mass further con-
firmed this conclusion (Fig. 4d). These results suggest
that caudatin causes mitochondrial dysfunction.

Bcl-2 family members can affect Δψm and play im-
portant role in regulating cell apoptosis (Liu et al. 2014;
Hollville et al. 2014; Kale et al. 2014). Hence, the Bcl-2
family was detected by western blotting. As shown in
Fig. 3b, caudatin treatment dose-dependently upregulated
the Bad and Bax expression, but downregulated the Bcl-2
andBcl-XL expression. The time-course of Bcl-2 andBad
expression further confirmed that caudatin treatment
disrupted the balance of Bcl-2 family member (Fig. 3c).
Taken together, these results clearly revealed that caudatin
caused mitochondrial dysfunction which correlated with
an imbalance of Bcl-2 family members.

Caudatin disturbs the intracellular redox homeostasis

Based on the importance of the redox homeostasis,
we examined the intracellular ROS generation, in-
cluding the total ROS and superoxide anion. As
shown in Fig. 4a, caudatin treatment significantly
induced the total ROS accumulation with a dose-
dependent manner. Moreover, the superoxide anion
in live cells was detected by mitoSOX specific red
dye which can target mitochondrial superoxide, and
the result vividly indicated that caudatin dose-
dependently induced superoxide anion production
in live cells, as convinced by the enhanced red
fluorescence (Fig. 4b). Additionally, caudatin treat-
ment also decreased the glutathione content (GSH).
However, GSH supplement effectively blocked
caudatin-induced apoptosis in U251 cells, indicating
the role of ROS in caudatin-induced apoptotic sig-
nal. These results all revealed that caudatin dis-
turbed the intracellular redox homeostasis.
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Caudatin triggers caspase-dependent apoptosis in U251
cells

The caspase family plays a crucial role in initiating and
modulating the apoptosis process. Based on the impor-
tance of caspase, z-VAD-fmk (a general caspases inhib-
itor) was employed to examine caudatin-induced apo-
ptotic mechanism. Firstly, flow cytometric analysis re-
vealed that z-VAD-fmk pretreatment effectively
inhibited caudatin-induced apoptosis in U251 cells, as
convinced by the weaken Sub-G1 peak (Fig. 5a). For
instance, 50-μM caudatin treatment alone caused
32.4 % apoptosis. However, pretreatment with z-VAD-
fmk effectively decreased the sub-G1 peak to 7.4 %.
Moreover, inhibition of caspases subsequently large-
scale elevated the cell viability and repressed the cell
apoptosis in caudatin-treated cells, which indicated that
caudatin induced cell growth inhibition and apoptosis in
U251 cells in a caspase-dependent manner.

For further evaluation of caudatin-induced apoptosis,
the effects of z-VAD-fmk (a general caspase inhibitor),

z-LEHD-fmk (a caspase-9 inhibitor) and z-DEVD-fmk
(a caspase-3 inhibitor) on PARP and caspase expression
were also examined by western blotting. As shown in
Fig. 6a, exposure of U251 cells to 50 μMcaudatin alone
markedly induced PARP cleavage and activation of
caspase-3, caspase-7 and caspase-9. However, pretreat-
ment with 20 μM z-VAD-fmk and z-LEHD-fmk dra-
matically suppressed caudatin-induced PARP cleavage
(Fig. 6a). Moreover, addition of z-VAD-fmk and z-
DEVD-fmk also suppressed caudatin-induced activa-
tion of caspases (Fig. 6b, c). Cells treated with z-VAD-
fmk, z-LEHD-fmk or z-DEVD-fmk alone showed no
significant changes in expression of PARP or caspases.
Above all, these results all convinced that caudatin
inhibits U251 cell growth by induction of caspase-
dependent apoptosis.

Caudatin inhibits U251 tumour xenografts in vivo

To validate the in vivo effect and mechanism of caudatin
against human glioma cell growth, the immunodeficient
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nude mice bearing U251 tumour xenografts was
employed. The results suggested that caudatin treatment
in vivo significantly inhibited xenograft tumour growth,
as convinced by the decrease of tumour volume
(Fig. 7a) and tumour weight (Fig. 7b), but not affected

body weight of mice (Fig. 7c). The mechanism studies in
vivo revealed that caudatin treatment inhibited tumour
xenografts by induction of cell apoptosis, as convinced
by the activation of caspase-3 (Fig. 7d). Moreover, the
cell proliferation and angiogenesis in vivo were also

T
u

m
o

r 
v

o
lu

m
e 

(c
m

3
)

(d)

A

2      4      6      8      10    12    14    16

B
o

d
y
 w

ei
g

h
t 

(
)

T
u

m
o

r 
w

e
ig

h
t 

(
)

a

b

B

C

c

Caudatin (mg/kg)       - 25             50

E

Ki-67

Control                      25 mg/kg                      50 mg/kg

CD-31

0.0

0.5

1.0

Caudatin (mg/kg)

0

25

50

0.0

0.5

1.0

1.5

0

5

10

15

20

25

Caudatin (mg/kg)       - 25             50

D

Control               25                  50

Caudatin (mg/kg)

Active-

caspase-3

-actin

19 KD

42 KD
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evaluated by the IHCmethod, and the results indicate that
caudatin treatment apparently inhibited cell proliferation
(Ki67 staining) and angiogenesis (CD-31 staining) in
vivo (Fig. 7e), which further validate its value in com-
bating human glioma in vivo.

Discussion

Glioma with high infiltration and invasion capacity into
adjacent tissues represents one of the most common
malignant tumours of the nervous system. Thus,
searching novel anticancer agents with high efficiency
and low toxicity is emerging as the priority in clinical
practice. Caudatin isolated from the root of Cynanchum
bungei decne shows various pharmacological functions,
including its antitumour activity. Our previous study has
indicated that caudatin had the ability to inhibit human
glioma cell growth in vitro, and induction of cell cycle
arrest was accepted as the main anticancer mechanism
after 48-h treatment (Fu et al. 2015). However, caudatin-
induced apoptosis and the underlying mechanism re-
main elusive. Therefore, we reduced the cell density
and prolonged the treatment time in the present study,
and caudatin-induced apoptosis and mechanism were
investigated in human glioma cells.

Apoptosis, a process of automatic killing, is tightly
regulated by multiple gene and protein factors (Kang et
al. 2006; Lu et al. 2015). Normal cell apoptosis can
remove the useless, aging and some harmful cells to
maintain the stability of homeostasis in case of cancers
(Roos et al. 2007; Hsiao et al. 2009; Zhang et al. 2012;
Lin et al. 2012). Thus, cancer cell apoptosis by
antitumour drugs is the most important way in treating
human tumours (Kang et al. 2006;Miyashita et al. 2006;
Renaudo et al. 2004; Bose et al. 2010). However, drugs
inhibit cancer cell growth by cell cycle arrest, apoptosis
or combined model, which mainly depend on the cell
types, cell concentration, drugs’ properties, drug treat-
ment time and dosage and so on. In our previous pub-
lication, U251 cells were seeded in a high density
(105 cells/ml) and treated with caudatin for 48 h, and
the results indicated that caudatin inhibited human glio-
ma cell growth under thus condition mainly by trigger-
ing cell cycle arrest (Fu et al. 2015). However, in the
present study, in order to exactly evaluate caudatin-
induced apoptosis, the cells were seeded in a lower
density (4×104 cells/ml) and the treatment time was
prolonged to 72 h. As expected, U251 and U87 cells

treated with caudatin for 72 h both showed significant
cell apoptosis, as convinced by the increase of Sub-G1
peak, PARP cleavage, caspase activation and the mito-
chondria dysfunction.We speculated that cells with high
density and short treatment time inevitably have stron-
ger resistance against drug-induced cell apoptosis. Cells
hence mainly initiated cell cycle arrest for DNA damage
repair in our previous report (Fu et al. 2015). However,
in the present study, the cells with low density and long
treatment time inevitablymainly launched cell apoptosis
to permanently remove the damaged cells. The similar
conclusion was observed again recently in our recent
publication (Wang et al 2016) and previous publication
(Chen and Wong 2009).

Mitochondria integrate the extrinsic and intrinsic ap-
optotic signals and play an important role in launching
mitochondria-mediated apoptosis (Lin et al. 2012;
Ofengeim et al. 2012). Bcl-2 family including anti-
apoptotic members (Bcl-2 and Bcl-XL) and
proapoptotic members (Bax and Bad) is much involved
in mitochondria-mediated apoptosis (Anilkumar and
Prehn 2014; Bauer et al. 2015). The imbalance of Bcl-
2 family expression and the loss of Δψm both contrib-
ute to mitochondria-mediated apoptosis pathway
(Sochalska et al. 2015; Kale et al. 2014). Caspases, a
family of cysteine proteases, are synthesized as inactive
proenzymes which are processed to active form in cells
undergoing apoptosis (Bate et al. 2010). Caspase-3 is
considered to be the most important executioner of
apoptosis and caspase-7 and caspase-9 were accepted
as the main regulators in mitochondria-mediated apo-
ptosis (Droga-Mazovec et al. 2008; White et al. 2008;
Xu et al. 2009). In this study, U251 cells treated with
caudatin showed obvious loss ofΔψm through dysreg-
ulation of Bcl-2 family. Activation of caspase-3,
caspase-7 and caspase-9 in caudatin-treated cells were
all observed, which suggested that caudatin induced
mitochondria-mediated apoptosis. Addition of several
caspase inhibitors distinctly prevented caudatin-induced
apoptosis, indicating the caspase-dependent apoptosis in
caudatin-treated cells.

ROS, including hydrogen peroxide, hydroxyl radical
and superoxide anion, all have key roles in induction of
cancer cell apoptosis (Chen and Wong 2008). The bal-
ance of the anti-antioxidant and pro-antioxidant system
keeps the intracellular level of ROS. Therefore, induc-
tion of cell apoptosis by promoting ROS accumulation
represents an important mechanism to combat human
cancers. In the present study, ROS generation was
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observed as early as in 15 min in caudatin-treated cells,
confirming the important role of ROS as an early event
in apoptotic signal. Fei et al. previously reported that
caudatin could induce caspase-dependent apoptosis in
HepG2 human hepatocarcinoma with involvement of
Bcl-2 family change and activation of ERK and JNK
(Fei et al. 2012), but the role of reactive oxygen species
(ROS) in caudatin-induced apoptosis in HepG2 cells
was not investigated. We previously reported that
caudatin-induced apoptosis involved AKT inactivation
(Fu et al. 2015). Even though the role of MAPKs and
AKT pathways in caudatin-induced apoptosis were not
evaluated in the present study, we speculated that
MAPKs and AKT pathways may both contribute to
caudatin-induced apoptosis. Because our previousmany
publications revealed that ROS as an upstreammediator
could play key role in regulating cell cycle arrest and
apoptosis and regulating MAKPs and AKT pathways
(Wang et al. 2015a, b; Fu et al. 2016; Fan et al. 2014a, b;
Fan et al. 2013).

In conclusion, caudatin could act as an effective
cytostatic agent in inhibiting human glioma cell growth
through triggering mitochondria-mediated apoptosis.
Mechanistically, caudatin lunches caspase-dependent
apoptosis with involvement of mitochondrial dysfunc-
tion and ROS generation. Importantly, caudatin showed
novel anti-tumor effect against U251 tumour xenografts
in vivo through induction of cell apoptosis involving the
inhibition of cell proliferation and angiogenesis, which
validated the therapeutic potential of caudatin in hunting
human glioma.
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