
BRIEF REPORT

Glycosaminoglycans can be associated with oxidative damage
in mucopolysaccharidosis II patients submitted to enzyme
replacement therapy
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Introduction

The mucopolysaccharidoses (MPS) are a group of
inherited metabolic diseases caused by the deficiency
of specific lysosomal enzymes responsible for the deg-
radation of glycosaminoglycans (GAG), leading to their
abnormal storage (Neufeld and Muenzer 2001). As a
consequence of the GAG accumulation, both architec-
ture and function of cells and organs are compromised,
and the clinical features presented by MPS patients are
progressive and multisystemic (Berry 1987; Mabe et al.
2004; Neufeld and Muenzer 2001). Screening tests
based on the identification and quantification of urinary
GAG and clinical features are meaningful for MPS
diagnosis, but the measurement of the deficient enzyme
remains the gold standard (Coelho et al. 1997). The
enzyme deficient in MPS type II, also known as Hunter
syndrome, is iduronate-2-sulfatase (I2S; EC 3.1.6.13),
one of those responsible for the catabolism of the GAG
dermatan sulfate and heparin sulfate (Neufeld and

Muenzer 2001). The enzyme replacement therapy
(ERT) was approved in Brazil in 2008. The use of
a recombinant human enzyme (idursulfase) as a ther-
apy resulted in an increase in mobility, improve-
ments in 6-min-walk time, functional outcomes and
measures of pulmonary function, as well as reduction
of liver and spleen volumes in MPS II patients
(Germain 2005; Giugliani et al. 2009; Harmatz
et al. 2008; Kakkis et al. 2001; Muenzer et al.
2007).

Oxygen and nitrogen reactive species can be pro-
duced by endogenous and exogenous sources. In order
to minimize free radical damage, there are enzymatic
and non-enzymatic antioxidant defense systems
(Halliwell and Gutteridge 2007). The decrease of anti-
oxidant defenses and/or the increase of intracellular
reactive species concentration lead to a status known
as oxidative stress, in which the excess of free radicals
results in lipid, protein, and DNA damage and, conse-
quently, tissue damage (Beckman and Ames 1998;
Halliwell and Gutteridge 2007).

Studies in humans showed that oxidative stress
occurs in inborn errors of metabolism, such as phe-
nylketonuria, X-linked adrenoleukodystrophy, and
some lysosomal storage disorders (Barschak et al.
2006; Biancini et al. 2012; Pereira et al. 2008;
Roversi et al. 2006; Sitta et al. 2006; Vargas et al.
2004).

Literature suggests that oxidative stress can play an
important role in the pathophysiology of MPS I, as it
was demonstrated by a high level of lipid peroxidation
in MPS I patients, and ERT induced an increase of
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catalase and decrease of superoxide dismutase activities
(Pereira et al. 2008). Considering this scenario, the aim
of this study was to analyze urinary GAG of MPS II
patients at the moment of diagnosis and during ERT, as
well as oxidative stress parameters.

Materials and methods

Patients, controls, and biological samples

Twelve subjects with MPS II were recruited from the
Medical Genetic Service of the Clinical Hospital of
Porto Alegre, RS, Brazil, after confirmation of MPS II
diagnosis by measurement of enzyme activity in leuko-
cytes and by urinary GAG quantification (Table 1) (Jong
et al. 1992; Voznyi et al. 2001). Samples of participants
were divided in two groups: before ERT and after ERT.
The treatment consisted of 6 months of idursulfase
replacement (0.5 mg/kg) once a week by 3 h of intrave-
nous infusion (Elaprase®, Shire Human Genetic Thera-
pies Inc., Cambridge, MA, USA). The control group
consisted of six healthy subjects with similar ages to the
MPS II patients accompanied by Laboratory of Clinical
Analysis of Pharmacy Faculty of Federal University of
Rio Grande do Sul. This study was approved by the
Ethics Committee of the Clinical Hospital of Porto
Alegre, RS, Brazil. Informed consent was obtained ac-
cording to the guidelines of this committee.

Blood samples were obtained from patients and con-
trols by venous puncture in vials containing EDTA.
Thereafter, blood samples were centrifuged at
1,000×g, and plasma was removed and frozen at
−80 °C until biochemical analysis. Leukocytes were
obtained from whole blood to do the alkaline comet
assay. Occasional urine was obtained from the same
patients and controls, and these samples were frozen at
−80 °C until GAG analysis.

Oxidative stress biomarkers

The lipid peroxidation index was evaluated by measure-
ment of malondialdehyde (MDA) by high performance
liquid phase chromatography (HPLC) following the
Esterbauer and Cheeseman modified method. MDA
results were expressed in micromolar (μM)
(Esterbauer and Cheeseman 1990). In order to evaluate
DNA damage index, the alkaline comet assay was per-
formed, as described by Singh et al. (Singh et al. 1988).

Urinary glycosaminoglycans determination

The quantification of urinary GAG followed the
dimethylene blue method by Blau et al., which consists
of the color reaction between the dye 1,9-
dimethylmethylene blue chloride and glycosaminogly-
cans followed by spectrophotometry (Blau et al. 1996).

Table 1 Characteristics of Mucopolysaccharidosis II patients before ERT

Patient Urinary GAG levels
at diagnosis (μg/mL)

Age at the beginning
of ERT

Coarse facial
features

Short stature Developmental
delay

Joint
contractures

1 648 1 year, 7 months Absent Absent Absent Absent

2 683 1 year, 7 months Absent Absent Absent Absent

3 525 3 years, 6 months Absent Absent Absent Mild

4 265 7 years, 6 months Absent Absent Absent Mild

5 430 4 years, 1 month Mild Absent Mild Mild

6 280 4 years, 4 months Moderate Moderate Moderate Mild

7 314 4 years, 1 month Mild Absent Mild Mild

8 335 5 years, 2 months Moderate Moderate Severe Moderate

9 481 4 years, 8 months Mild Absent Moderate Mild

10 399 5 years, 2 months Moderate Mild Mild Mild

11 428 6 years, 9 months Mild Mild Absent Mild

12 949 2 years, 2 months Mild Mild Mild Mild
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Statistical analysis

Data were expressed as mean±standard deviation
(mean±SD). For the statistical analysis, non-paired Stu-
dent’s t test was used to compare results from control
andMPS II patients, and paired Student’s t test was used
to compare results fromMPS II patients at diagnosis and
after ERT. Correlations between biochemical parame-
ters in patients at diagnosis and during ERTwere carried
out using the Pearson correlation coefficient. A p value
of less than 0.05 was considered to be significant. All
analyses were performed using the Statistical Package
for the Social Sciences (SPSS) software in a compatible
computer.

Results

Comet assay was performed in peripheral blood leuko-
cytes from MPS II patients, resulting in an increase of
DNA damage levels in this group (mean±SD 66.20±
1.87 arbitrary units) when compared to controls (mean±
SD 17.20±2.68 arbitrary units), as well as a reduction of
this damage after initiation of treatment (mean±SD
51.23±4.49 arbitrary units) (p<0.01). MDA results
showed a higher lipid oxidative damage in diagnosis
(mean±SD 149.19±7.12 μM) and after ERT (mean±
SD 74.80±10.90 μM) when compared to controls
(mean±SD 28.76±3.38 μM), suggesting that there is
more lipid injury in MPS II patients when compared to
healthy individuals (p<0.01). Moreover, there was a
decrease in MDA levels in treated patients (mean±SD
74.80±10.90 μM) when compared to non-treated group

(mean±SD 149.19±7.12μM), showing that ERT is able
to reduce lipid peroxidation (p<0.01). A strong signif-
icant positive correlation (r=0.905, p<0.01) was ob-
served between lipid peroxidation and DNA damage,
suggesting that DNA injury is probably oxidative.

Figure 1 represents urinary GAG quantification,
which showed thatMPS II patients have very significant
high levels of GAG at diagnosis when compared to
controls (p<0.01). On the other hand, ERT induced a
decrease in GAG storage when compared to non-treated
patients (p<0.01), once the deficient enzyme is being
replaced.

Discussion

Since it has been demonstrated that oxidative stress is
presented in many LSD, researches should be encour-
aged to investigate oxidative pathways presented by
MPS disorders, in order to better understand the patho-
physiology of this LSD as well as to improve new
treatments and patients’ quality of life. There are reports
showing a decrease in GAG storage and clinical benefits
after ERT, such as an improvement in mobility and
pulmonary function, as well as a reduction in
hepatosplenomegaly (Germain 2005; Kakkis et al.
2001). Therefore, in this study, we analyzed GAG stor-
age in MPS II patients at the moment of diagnosis and
after ERT, as well as oxidative stress in biomolecules,
such as DNA and lipids.

Our results showed increased lipid peroxidation and
DNA damage at diagnosis in MPS II patients, and ERT
induced a decrease on this process. Moreover, ERT

Fig. 1 Determination of
glycosaminoglycans (GAG) in
urine from MPS II patients at
diagnosis and after ERT, as well
as control individuals. Data
represent the mean±standard
deviation. Difference from
control, *p<0.05, **p<0.01
(Student’s t test for unpaired
samples). Difference between
patients at diagnosis and after
ERT groups, ##p<0.01 (Student’s
t test for paired samples)
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induces a decrease in GAG urinary levels. These results
demonstrated that the enzyme replacement can decrease
GAG storage and that probably GAG abnormal accu-
mulation can be associated with oxidative damage in
lipids, such as cell membrane lipids, after cell swelling.
Furthermore, it is possible to speculate that the high
levels of GAG in lysosomes can also be associated with
DNA damage. Besides, the positive correlation between
lipid peroxidation and DNA damage index suggested
that DNA injury is oxidative.

Di Domenico et al. (2009) showed in a MPS IIIB
murine model, using the lentiviral-alpha-N-
acetylglucosaminidase (NAGLU) vector to intracranial
deliver of the functional human NAGLU gene into the
brain of young adult mice, a significant decrease in the
expression of the cytokineMIP1-alpha (Ccl3), at 6months
from treatment, when compared to untreated mice. Ccl3 is
an inflammatory chemokine responsible for macrophage
recruitment. Not only inflammation-related genes but also
oxidative stress-related genes, such as gp91phox, a com-
ponent of the enzyme complex NADPH-dependent oxi-
dase and also a source of ROS during inflammation, were
studied, leading to a decrease in expression at 6 months
from treatment comparing to untreated brains, suggesting
the possibility of its use as biomarkers for the follow-up of
therapy (Di Domenico et al. 2009).

Different oxidative stress parameters have been used
to analyze oxidative damage in patients affected by
LSD, and an increase in oxidative injury to biomole-
cules in several of these disorders, such as Fabry dis-
ease, Niemann-Pick type C (NPC), different types of
MPS, and Gaucher disease was demonstrated. Pereira
et al. (2008) observed high levels of lipid peroxidation
in MPS I patients and also verified that ERT in MPS I
resulted in an increase of catalase activity as well as a
decrease in superoxide dismutase activity. Besides, there
are studies regarding oxidative stress before and after
the treatments with ERT that are currently recommend-
ed for LSD, as for example MPS I, Fabry disease, NPC,
and Gaucher disease, showing the benefits of ERT upon
oxidative damage (Biancini et al. 2012; Deganuto et al.
2007; Pereira et al. 2008; Ribas et al. 2012; Roversi et al.
2006; Shen et al. 2008).

According to our results, oxidative stress process is
present at diagnosis in MPS II patients, and ERT pro-
tects against lipid and DNA damage. Besides, ERT can
lead to GAG reduction, probably influencing positively
against oxidative damage to biomolecules, such as lipids
and DNA in this disease.
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