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Abstract The starlet sea anemone Nematostella
vectensis has been recently established as a new
model system for the study of the evolution of
developmental processes, as cnidaria occupy a key
evolutionary position at the base of the bilateria.
Cnidaria play important roles in estuarine and reef
communities, but are exposed to many environmental
stressors. Here, I describe the genetic components of a
“chemical defensome” in the genome of N. vectensis
and review cnidarian molecular toxicology. Gene
families that defend against chemical stressors and
the transcription factors that regulate these genes have
been termed a chemical defensome and include the
cytochromes P450 and other oxidases, various conju-
gating enyzymes, the ATP-dependent efflux trans-
porters, oxidative detoxification proteins, as well as
various transcription factors. These genes account for
about 1% (266/27,200) of the predicted genes in the
sea anemone genome, similar to the proportion
observed in tunicates and humans, but lower than
that observed in sea urchins. While there are
comparable numbers of stress-response genes, the

stress sensor genes appear to be reduced in N.
vectensis relative to many model protostomes and
deuterostomes. Cnidarian toxicology is understudied,
especially given the important ecological roles of
many cnidarian species. New genomic resources
should stimulate the study of chemical stress sensing
and response mechanisms in cnidaria and allow us to
further illuminate the evolution of chemical defense
gene networks.
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Cnidaria occupy a key basal evolutionary position
within Metazoa (Dunn et al. 2008), with recent
evidence suggesting that they are early-diverging
bilaterians (de Jong et al. 2006; Matus et al. 2006).
Cnidaria have important ecological roles as reef
structure builders and as predators and prey in
planktonic and benthic ecosystems (e.g., Harborne et
al. 2006; Sebens 1981). Cnidaria are sensitive to
many environmental stressors and have been used as
indicators of water quality (Arkhipchuk et al. 2006;
Davies and Freeman 1995; Wiger and Stottum 1985).
With a better understanding of regulatory processes
and development of appropriate endpoints (e.g.,
Tarrant 2007), cnidaria will become valuable indica-
tors of exposure to disruptive chemicals and other
stressors.
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The starlet sea anemone Nematostella vectensis has
been recently established as a new model system for
the study of the evolution of developmental processes
(Darling et al. 2005; Putnam et al. 2007) and may act
as a model for the basic molecular biology of
anthozoans. The remarkable amenability of this
species to laboratory manipulation has already made
it a productive system for exploring cnidarian
development and the origins of bilateral symmetry
(Finnerty and Martindale 1999; Finnerty et al. 2004;
Fritzenwanker et al. 2004; Kusserow et al. 2005;
Magie et al. 2005; Matus et al. 2006; Torras and
Gonzalez-Crespo 2005).

N. vectensis is a burrowing estuarine anemone,
with populations in the eastern Pacific, northern
English Channel, western North Sea, and western
Atlantic (Hand and Uhlinger 1994), although it is
likely that all but the western Atlantic represent
introduced populations (Reitzel et al. 2008a). It can
tolerate a remarkably wide ranges of salinities (2–
54 ppt), temperatures (−1°C to 28°C), and dissolved
oxygen concentrations (Sheader et al. 1997). The
facility with which Nematostella populations can be
investigated within their natural ecological context
(Darling et al. 2005) suggests that this model may
also be profitably expanded to address important
questions in molecular and evolutionary ecology and
toxicology. A mechanistic understanding of stress
responses is essential to establishing this model
system, as with all model systems.

An important question in biology is how cells and
organisms maintain homeostasis in a variable environ-
ment. The need to deal with physical, chemical, and
biological stressors has driven the evolution of an array
of gene families and pathways (also known as
“environmental genes” (Ponting 2008)) that afford
protection from challenges. The immune system is
one such protective mechanism, which responds to
biotic stressors such as pathogens (Miller et al. 2007).
Another set of genes comprises the “chemical defen-
some”, encoding a network of defensive proteins that
allows the organism to sense, transform, and eliminate
potentially toxic chemicals (Goldstone et al. 2006).

The chemical defensome protects against chemically
mediated injury by environmental chemicals such as
heavy metals, microbial products, and other natural
exogenous compounds, as well as anthropogenically
derived compounds such as hydrocarbon derivatives
and pesticides. These compounds are structurally

diverse, requiring either non-specific enzymatic
responses or a broad array of specific enzymatic
actions. In addition, the maintenance of cellular
homeostasis requires the inactivation and elimination
of endogenous signaling molecules, such as eicosa-
noids, and defense against endogenously generated
toxicants such as reactive oxygen species (ROS).

The chemical defensome is comprised of several
classes of proteins that function coordinately to protect
the cell (Fig. 1). These proteins include enzymes that
transform chemicals to less toxic and more readily
excretable metabolites, efflux transporters that actively
eliminate toxicants and transformed products, antiox-
idant enzymes protecting against externally and
internally generated ROS or other radicals, and soluble
receptors and ligand-activated transcription factors that
act as sensors of toxicants or cellular damage.

Efflux transporter proteins such as the ATP-
binding cassette (ABC) transporters can provide the
first line of cellular defense (Dean et al. 2001). Once
toxicants enter the cytoplasm, however, biotransfor-
mation is often required to inactivate or enhance the
elimination of toxicants. Biotransformation enzymes
include oxidative enzymes such as the cytochromes
P450 (CYPs); reductive enzymes such as aldo-keto
reductases (AKR), epoxide hydrolase (EH), and NAD
(P)H-quinone oxidoreductase (NQO); and conjugative
enzymes including glutathione-S-transferases (GST),
sulfotransferases (SULT), UDP-glucuronosyl trans-
ferases (UGT), and N-acetyl transferases (NAT).
Biotransformation generally results in detoxification,
but oxidation, N-acetylation, sulfate, or glutathione
conjugation can lead to toxic metabolites in a
chemical and cell-specific manner (Gamage et al.
2006; Guengerich et al. 2003; Surh. 1998).

Gene products that protect against injury from
chemicals may be especially important in embryos
given the complex chemical signaling pathways
governing development (Davidson and Erwin. 2006;
Hamdoun and Epel 2007), as well as the need to
protect the genome of the germ cells (Epel 2003). In
adults, some of these proteins also provide protection
from environmental factors, such as oxidative stress,
that can lead to senescence (Finkel and Holbrook
2000). Many gene products in this network (e.g.,
CYPs) perform multiple roles, having important
endogenous functions (including but not limited to
development), as well as functioning in chemical
defense.

484 Cell Biol Toxicol (2008) 24:483–502



Here, I show that the major elements of the
network of genes and pathways that allow an
organism to mount a defense against toxic chemicals
appear to be conserved in cnidaria and review
relevant aspects of cnidarian molecular toxicology.
Almost all of the gene families or superfamilies that
are characteristic of the chemical defensive network
in deuterostomes (Goldstone et al. 2006) are also
represented in the sea anemone (Fig. 1; see also
Reitzel et al. 2008b), indicating the presence of this
system in the bilaterian ancestor and evolutionary
conservation. However, while there is general confor-
mity in the presence of higher order gene groups
across taxa, in most cases, gene orthology is more
difficult to determine.

Methods

Different types of evidence are available for the genes
discussed in this paper. Predicted genes are derived
from the US Department of Energy Joint Genome
Institute (JGI) predictions of the whole genome
shotgun assembly (www.jgi.doe.gov). Many of these
predicted genes are supported by expression data
from an extensive EST collection (Sullivan et al.
2008). Resources are available online at stellabase.

org, cnidbase.bu.edu and nematostella.org. In this
study, defensome genes were identified by Hidden
Markov Model searches (Hmmer v2.3.2; Eddy 1998)
of the JGI gene predictions with conserved domains
of known defense genes using the PFAM models.
Gene homologies were confirmed by reciprocal
BLAST of the predicted genes against Genbank. For
this study, the JGI “best models” were used without
significant refinement. Alignments were constructed
using Muscle v3.6b (Edgar 2004) and are available
upon request of the author.

The exact nomenclature of many genes presented
in this paper is tentative because of the uncertainty in
classifying genes to specific subfamilies within the
major superfamilies represented in these analyses. I
have attempted to follow the nomenclature guidelines
for many of the defined gene superfamilies (Hyndman
et al. 2003; Jez and Penning 2001; Mackenzie et al.
2005; Nebert and Vasiliou 2004; Nelson et al. 1993;
Vasiliou and Nebert 2005; Vasiliou et al. 2006), but
due to evolutionary distances, some of the subfamily
assignments are tentative. Thus, new genes here are
given names, indicating my understanding of the
homologous relationships, but that should not be
taken as formal assignments. Formal assignments of
new gene names are often reserved by specific
nomenclature committees (e.g., the Cytochrome
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P450 Nomenclature Committee or the Aldo-Keto
Reductase Nomenclature Committee). Based on evi-
dence from our previous analysis of the sea urchin
genome (Goldstone et al. 2006), gene orthologies may
also not be predictive of function.

Phylogenetic trees were constructed by analyzing
amino acid sequences using maximum likelihood
(RAxML 7.0.3; Stamatakis 2006). Regions of align-
ment uncertainty were excluded from phylogenetic
analysis (Kreil and Ouzounis 2003) by automatic
masking using a custom-written script. The WAG-
CAT model of amino acid substitution (Whelan and
Goldman 2001) with a gamma distribution of substi-
tution rates was used in all likelihood analyses, based
on likelihood tests using RAxML.

Defensome gene families

Receptors and signal transduction

Homologs of most important stress receptors are
present in the sea anemone genome, including the
aryl hydrocarbon receptor (AHR), hypoxia-inducible
factor 1 (HIF1α), and the aryl hydrocarbon nuclear
translocator (ARNT), metal transcription factor 1
(MTF1), nuclear factor-kappa B (NFkB), and nuclear
factor erythroid-derived 2 related 2 (NRF2), detailed
below (Fig. 2). Although some of the known
components of the vertebrate and invertebrate xeno-
biotic receptor pathways are missing (e.g., pregnane
X receptor, liver X receptor, farnesoid X receptor
[PXR, LXR, and FXR]), receptors that are not clearly
orthologous to known xenobiotic sensors may substi-
tute, or there may be an increased xenobiotic receptor
promiscuity.

Aryl hydrocarbon receptor (AHR) and related bHLH-
PAS proteins Basic helix-loop-helix PER/ARNT/SIM
(bHLH-PAS) family genes encode proteins involved
in critical physiological and developmental signaling,
including those that mediate responses to certain
environmental pollutants (including polynuclear aro-
matic hydrocarbons) and low oxygen tension (Kewley
et al. 2004). bHLH-PAS genes in chordates that have
been shown to be important to physiological
responses to environmental pollutants include the
aryl hydrocarbon receptor (AHR), HIF1α, and the
ARNT.

The bHLH gene family has previously been
examined in N. vectensis and other species (Simionato
et al. 2007). Simionato et al. identified 68 bHLH
genes, several of which also contained a PAS domain,
including one or two ARNT genes and zero to two
HIF genes (the range depends on uncertainty in the
phylogenetic clustering; Simionato et al. 2007), but
could not identify an AHR in the N. vectensis
genome. However, Reitzel et al. (2008b) identify a
gene (gi|156394392) as a putative AHR homolog and
note that its expression is confirmed through an EST.
Both AHR and HIF1α form heterodimers with ARNT
to regulate transcription of downstream targets
through the recognition of specific DNA response
elements. Transcriptional responses to potential acti-
vators of AHR and HIF have not been well studied in
sea anemones, and no data are available to determine
if these response elements are conserved in N.
vectensis.

Oxidative and metal stress-response transcription
factors Oxidative stress-response factors in verte-
brates include the CNC-bZIP family [nuclear factor
erythroid-derived 2 and related factors (NRFs)], the
BTB-bZIP proteins BACH1 and BACH2, and the
small Maf proteins (MafF, MafG, and MafK in
particular). Maf proteins in vertebrates are heterodi-
meric partners of NF-E2, NRFs, and Bach proteins
(Igarashi and Sun 2006). In addition to their roles as
heterdimerization partners for various CNC proteins,
small Maf proteins have critical roles in vertebrate
stress signaling, oncogenesis, and may also have links
to the inflammation response (Blank 2008).

N. vectensis has two homologs of the small Maf
proteins, an NRE2-like protein homologous to NRF2
and a KEAP1-like protein, which in the absence of
oxidative stress in vertebrates, encodes a protein that
retains NRF2 in the cytoplasm and enhances its
proteasomal degradation (Nguyen et al. 2003). In
vertebrates, the NRF2 signaling pathway provides a
rapid response to electrophilic or oxidative com-
pounds and has been show to attenuate carcinogenesis
and inflammation (Osburn and Kensler 2008).

Other important oxidative stress-responding tran-
scription factors with homologs in sea anemone
include MTF1 and NFkB. MTF1 is well known as a
metal-responsive transcription factor (Laity and
Andrews 2007), but has also been proposed as a
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generalized sensor of oxidative stress (Murphy 2004;
Murphy et al. 1999, 2005). MTF1 may also interact
with HIF1α and contribute to HIF1α activation
during hypoxia (Murphy et al. 2005).

Nuclear receptors Ligand-activated nuclear receptors
(NRs) function as chemically activated transcription
factors, primarily with endogenous functions but also
importantly in xenobiotic sensing. Of greatest interest
with regards to the chemical defensome are those
related to NRs in the NR1H and NR1I subfamilies,
which contain vertebrate FXR, LXR, and PXR, consti-
tutively active receptor (CAR), and the vitamin D
receptor (VDR), as well as arthropod EcR (ecdysone
receptor). Other NRs involved in xenobiotic response in
vertebrates include estrogen receptor (ER; NR3A
subfamily); the peroxisome proliferator receptors
(PPARs; NR1C subfamily), which have target genes
involved in lipid metabolism, energy homeostasis, and
cell differentiation; and the retinoid X receptor (RXR;
NR2B subfamily), which has many target genes
involved in xenobiotic metabolism.

N. vectensis and other cnidaria appear to lack many
nuclear receptors traditionally studied in response to
toxicants (e.g., NR1s, ER; Grasso et al. 2001; Reitzel
et al. 2008b). N. vectensis appears to have a modest
number of NRs (18), none of which are related to the
NR1H (PPAR, LXR, FXR) or NR1I (VDR, PXR,
CAR) families. However, there are genes related to
hepatocyte nuclear factor 4 (HNF4, NR2A) and to
RXR, indicating the presence of ancestral NR2
subfamily members in this cnidarian. An RXR gene
has been cloned from a cubazoan, Tripedalia cysto-
phora, and the protein binds 9-cis retinoic acid with
high affinity (Kostrouch et al. 1998).

Although there does not appear to be an ER in N.
vectensis, the existence of a bilaterian ancestral
steroid-binding receptor was inferred based on ances-
tral protein reconstruction (Thornton et al. 2003).
Cnidaria appear to be susceptible to signal disruption
by exogenous estrogens (reviewed in Tarrant 2005,
2007), although there appear to be differences
between coral and hydra sensitivity (Pascoe et al.
2002; Tarrant et al. 2004). Estrogen signaling may
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still be important in corals, however, as estrogens
have been found in and around spawning corals, and
corals have the ability to metabolize estradiol and
testosterone (Atkinson and Atkinson 1992; Blomquist
et al. 2006; Tarrant et al. 1999, 2003; Twan et al.
2003, 2006).

Efflux transporter proteins

Many toxic compounds are pumped against concen-
tration gradients across membranes in an energy-
dependent process. This first line of cellular defense,
against amphipathic or slightly lipophilic compounds
in particular, is mediated by efflux proteins known as
ABC or multidrug efflux transporters, including the
p-glycoproteins (PGP/ABCB), mitoxantrone resis-
tance protein (MXR/ABCG2), and multidrug resis-
tance proteins (MRP/ABCC; Dean et al. 2001). Efflux
transporters function to export both unmodified
substrates and substrates modified by other defen-
some enzymes (Deeley et al. 2006). In embryos,
efflux transporters may provide the primary defense
against exogenous toxicants but also play important
roles in developmental programs by establishing
morphogen gradients (Hamdoun and Epel 2007).

In chordates, the ABC transporters are organized
into eight subfamilies designated ABC A through H
(Annilo et al. 2006). A subset of these families
includes proteins known to export toxicants: the
ABCB, ABCC, and ABCG transporters. These pro-
teins are commonly called multidrug resistance trans-
porters after their ability to pump out multiple
therapeutic drugs, a major obstacle to the efficacy of
the treatment of several pathogens (Dean et al. 2005).

Genome searches revealed that sea anemones have
64 ABC genes organized into six subfamilies,
including the three multidrug transporter subfamilies

(ABC B, C, and G; Table 1, Supplemental Table S1).
There is considerable variation in the total number of
ABC genes within eukaryotic genomes, but the
relative proportions have tended to stay constant
(Annilo et al. 2006; Goldstone et al. 2006). The
ABC genes clustered in the ABCA (five genes),
ABCD (six genes), and ABCF (four genes) families
either do not have known function or do not have
known roles in detoxification and will not be
considered further here.

N. vectensis has seven ABCB genes, including two
related to the ABCB1 (pgp) proteins. The pgp
transporters are well known as multidrug resistance
proteins involved in the efflux of toxic compounds.
Additional genes related to known xenobiotic trans-
porters include six ABCC4 (MRP4)-like genes, found
in a sea anemone-specific cluster; six other ABCC-
like genes including one ABCC5 (MRP5)-like se-
quence; and 24 other genes that cluster in a large
anemone-specific clade within the ABCC family.
Finally, analyses conducted in this study identified
six ABCG sequences, including one sequence that
clusters closely with the vertebrate ABCG2s. In
vertebrates, ABCG2 proteins exhibit broad substrate
specificity among xenobiotic compounds and play
critical roles in the clearance of certain drugs
(Allikmets et al. 1998; Kusuhara and Sugiyama
2007; Miyake et al. 1999).

Other potentially important anemone transporters
include the organic anion polypeptides (OATP; solute
carrier family 21, SLC21) and organic anion and cation
transporters (OAT and OCT; solute carrier family 22,
SLC22). Both SLC21 and SLC22 are part of the major
facilitator superfamily. OAT substrates examined in
vertebrates include estrone sulfate, urate, prostaglan-
dins, heavy metals such as mercury and cadmium, and
the herbicide 2,4-dichlorophenoxyacetic acid (Eraly et

Table 1 Gene counts of xenobiotic transporter genes

Superfamily Gene family Human Urchin Anemone

ABC superfamily ABCB 11 12 7
ABCC 12 30 36
ABCG 5 9 6
Other 20 14 16
Total 48 65 65

Major facilitator SLC21A 11 30 17
SLC22 5 46 62

Data for human were taken from Dean and Annilo (2005) and for urchin from Goldstone et al. (2006)
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al. 2004; Kimura et al. 2002; Sweet 2005). OATPs
have partially overlapping substrate specificities for
steroid conjugates, bile salts, anionic oligopeptides,
and anionic xenobiotics including toxins and drugs
(Hagenbuch and Meier 2003; Jacobsson et al. 2007).
The anemone genome contains 17 OATP genes and
62 SLC22 (OCT and OAT) genes. However, orthol-
ogy among non-vertebrate SLC families is difficult to
assign, precluding any hypotheses regarding substrate
specificity.

Oxidative or reductive biotransformation

Cytochromes P450 Oxidative modification of chem-
icals to more hydrophilic products is often the initial
step leading to excretion. In bilaterians, this is carried
out by CYP and flavoprotein monooxygenase (FMO)
enzymes, especially members of the CYP1, CYP2,
CYP3, CYP6, CYP9, and CYP4 families. Toxicant
oxidation can, however, also lead to increased
toxicity; for example, oxidation of benzo[a]pyrene
by CYP1A leads to hepatotoxicity (Uno et al. 2001).

The sea anemone genome contains 82 CYP genes,
which are in general not classifiable into established
CYP families due to the low (<40%) identity with
other known CYPs. A large-scale reclassification of
metazoan CYPs taking into account recent genomic
data will be required to formally name the N.
vectensis CYPs (Nelson, personal communication).
However, broader classification into the CYP clan
framework (Nelson 1998, 2006) is possible: Clan 2,
containing CYP families 1, 2, 17, 18, 21, 33, 34, and
35; Clan 3, containing primarily CYPs 3, 5, 6, 9, 28,
309, 310, and 317; Clan 4, containing CYPs 4, 311,
313, 316, and 318; and the mitochondrial clan, CYPs
11, 12, 24, 27, 44, 49, 302, 314, and 315.

Sea anemone CYPs are principally part of Clan 2
and Clan 3, with 39 and 20 genes in these two Clans,
respectively, while there are only three Clan 4 genes
(Table 2, Fig. 3, Supplemental Figure S1, Supple-
mental Table S2). Many of the CYPs in these clans
are involved in detoxification of exogenous and
endogenous compounds (Lewis et al. 2004), although
the functional information is primarily from verte-
brates and insects. The anemone Clan 2 CYPs are
clustered more closely to the vertebrate CYP17s (and
thus the important xenobiotic-detoxifying CYP1s,
including aryl hydrocarbon hydroxylases) than to the
vertebrate CYP2s. However, it is not clear that CYP1

genes exist outside the deuterostomes (Goldstone et
al. 2007), and these sea anemone CYPs cannot be
considered early CYP1-like genes. The Clan 3 genes
are likewise less closely related to the vertebrate
CYP3 or insect CYP6 detoxification genes than to
other members of Clan 3, in this case, the CYP5-like
genes. CYP5 genes have unusual functionality in that
they catalyze a rearrangement of a prostaglandin
endoperoxide (Hecker and Ullrich 1989), rather than
a substrate oxidation. More generally, the sea anem-
one Clan 3 CYPs may oxidize prostaglandins, which
are potent chemical defenses in marine systems (Paul
and Puglisi 2004; Paul et al. 2006).

N. vectensis does not have a CYP19 (aromatase),
despite the fact that (low) aromatase activity has been
demonstrated in a scleractinian coral, Euphillia ancora
(Twan et al. 2003). CYP19 is not present in most
invertebrates with a sequenced genome (Goldstone,
Nelson, and Stegeman, unpublished data), although it
is present in amphioxus (Castro et al. 2005; Mizuta
and Kubokawa 2007). It is very possible that a
different CYP, not CYP19, possesses aromatase
activity.

Other redox enzymes Other proteins that oxidize or
reduce toxicants include the FMO (Ziegler 2002),
AKR (Jin and Penning 2007), aldehyde dehydro-
genases (ALDH), NQO, and epoxide hydrolase
(EPHX). In contrast to the CYPs, much less is known
about many of the substrates of these enzymes, even
in humans (Krueger and Williams 2005; Penning and
Drury 2007).

In addition to the 82 CYPs, analyses conducted in
this paper identified genes for six FMO enzymes.
Although both enzyme families are primarily mono-
oxygenases and have some overlapping substrate
specificities (Krueger and Williams 2005; Ziegler
2002), FMOs are generally thought to oxidize soft
nucleophiles, while CYPs often catalyze C–H ab-
straction (Cashman 2005). FMOs are less stable
enzymes than CYPs, which has contributed to the
relative lack of functional knowledge. The sea
anemone FMO enzymes are quite distinct from the
known human FMOs, and, as with the anemone
CYPs, specific functions cannot be easily guessed at.

The sea anemone genome has at least 12 AKR
genes, 21 ALDH, and one EPHX gene. These
numbers are comparable to deuterostome gene inven-
tories. In vertebrates, EPHX contributes to the toxicity
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of benzo[a]pyrene by converting the benzo[a]pyrene
epoxides produced by CYP1s to benzo[a]pyrene
dihydrodiols (Shimada 2006), which eventually can
be oxidized to redox-cycling benzo[a]pyrene quinones
by AKR (Palackal et al. 2001; Penning et al. 1999).

One of the most important ALDH reactions in
vertebrate development is the irreversible oxidation of
retinal to retinoic acid (Lee et al. 1991); retinoids play
very important roles in vertebrate patterning and are
also likely important in cnidarian development

(Bouzaiene et al. 2007; Johnson and Chun 1989;
Kostrouch et al. 1998; Muller 1984). ALDH enzymes
may also help maintain the cellular redox balance via
ROS scavenging and the production of reducing
equivalents as NADPH or NADH.

NQO enzymes catalyze the two-electron reduction
of quinones to hydroquinones, reducing the formation
of semiquinones and the potential for reactive oxygen
generation (Vasiliou et al. 2006). Similar to sea
urchins (Goldstone et al. 2006), analyses conducted
for this paper revealed that sea anemones do not have
NQO-like genes. This is in line with the observed lack
of NQO genes in the worm, fly, sea squirt, or plants
(Vasiliou et al. 2006).

Conjugative biotransformation

Sea anemones possess relatively few proteins with direct
homology to xenobiotic-conjugating enzymes, particu-
larly in comparison to the purple sea urchin (Table 2;
Goldstone et al. 2006). Sea anemones have genes for 23
GST, including five microsomal GSTs (MAPEG), nine
UGT genes, and 22 SULT genes. No NAT genes were
found. These numbers are far lower than the large
diversification of these gene families seen in sea urchins,
but comparable to the numbers observed in mammalian
genomes (the human genome contains 13 SULT,
13 UGT, and 21 GST genes; Gamage et al. 2006;
Mackenzie et al. 2005; Nebert and Vasiliou, 2004).

Cytosolic GSTs are soluble proteins that catalyze
the transfer of glutathione to an electrophilic substrate

Table 2 Gene counts of biotransformative genes in the humans, sea urchin, and sea anemone genomes

Classification Gene Human Urchin Anemone

Oxidative CYP Clan 2 21 85 39
CYP Clan 3 5 13 20
CYP Clan 4 12 10 3
FMO 6 16 6
ALDH 19 20 21

Conjugative GST 21 38 18
MGST 3 12 5
SULT 13 73 22
UGT 13a 50 9
NAT 2 1 0

Reductive AKR-like 8 10 12
EPHX 2 5 1
NOQ1 2 0 0

a Not including multiple first exon expression in UGT1

Sea Anemone
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Clan3

Clan4

Mito

Other

Human Tunicate

Sea Urchin

86 CYPs57 CYPs

82 CYPs120 CYPs

Fig. 3 Distribution of genes in CYP Clans in human, tunicate,
sea urchin, and sea anemone. Data for the tunicate and sea
urchin assignments were taken from Goldstone et al. (2006)
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(Hayes et al. 2005). Microsomal or membrane GSTs
(MAPEG) form an evolutionarily distinct class of
enzymes that exhibit both glutathione transferase and
lipid peroxidase activity (Bresell et al. 2005), thus
detoxifying both xenobiotic compounds and amelio-
rating oxidative stress. The majority (15) of the 18 sea
anemone GSTs are readily classifiable, including
three mu-class, three omega-class, six sigma-class,
one theta-class, one fungal-type, and one zeta-class.
The three remaining GSTs appear homologous to the
xenobiotic-metabolizing alpha/pi GSTs. This search
also found a sequence homologous to the translation
elongation factor 1g, which contains a GST domain
but does not have glutathione transferase activity. The
N. vectensis genome also codes for a total of five
MAPEG sequences, including one homologous to
vertebrate MAPEG1, one sequence homologous to
MAPEG3, and three sequences homologous to pros-
taglandin E synthase (PTGS). PTGS enzymes are
MAPEG superfamily members important to eicosa-
noid synthesis and involved in the vertebrate inflam-
mation response (Jakobsson et al . 1999).
Prostaglandins in corals are very important in chem-
ical defense (reviewed in Paul and Puglisi 2004; Paul
et al. 2006) and have been extensively studied in
gorgonians. A prostaglandin synthase with 50%
identity to mammalian PTGS has been cloned from
an Arctic soft coral (Koljak et al. 2001).

SULT and UGT enzymes catalyze the conjugation
of sulfuryl groups donated by 3′-phosphoadenosine-
5′-phosphosulfate or UDP-glucuronide, respectively,
to a wide variety of substrates, including both xeno-
biotics and endogenous products (Bock and Kohle
2004; Gamage et al. 2006; Runge-Morris and
Kocarek 2005). Cytosolic (soluble) SULTs are re-
sponsible for the metabolism of xenobiotic and small
endogenous substrates (SULT1 and SULT2), while
membrane-bound SULTs are involved in endogenous
peptide, lipid, and aminosugar sulfonation (Gamage et
al. 2006). I found 22 SULT genes in the sea anemone
genome, all of which are more closely related to the
SULT genes involved in energy metabolism rather
than those SULT genes known from vertebrate studies
to participate in detoxification reactions. The anemo-
ne genes are divided among the SULT3A family
(eight genes), SULT3B (two genes), SULT4 (four
genes), and carbohydrate keratan/chondroitin SULTs
(eight genes). Chondroitin sulfation has been demon-
strated in the nematocysts of Hydra magnipapillata

(Yamada et al. 2007), and it is possible that the N.
vectensis genes are involved in similar functions.

The sea anemone UGT genes are likewise not
closely related to the UGT families with known
xenobiotic-metabolizing or detoxification roles.
UGT1 genes in mammals consist of one gene with
as many as 14 different first exons, complicating the
assignment of UGT homology (Mackenzie et al.
2005). Based on our previous analysis of the large
number of distinct genes in the sea urchin, exon
duplication like that observed in the mammalian UGT
families is not the only method of UGT diversification.
However, the nine anemone UGTs are not classifiable
to any of the known vertebrate UGT families, and thus,
no function can even be hinted at. This finding is not
unique to anemones, as other marine genomes contain
what appear to be lineage-specific gene family expan-
sions that are not readily assignable to known UGT
functional classes (J. Goldstone, unpublished data).

Antioxidant proteins

ROS, including superoxide, hydrogen peroxide, and
hydroxyl radicals, are derived from a variety of
cellular processes, including leakage from mitochon-
drial respiration. Reactive oxygen can also be pro-
duced by exposure to toxicants and to ultraviolet
radiation. ROS contribute to diseases and pathologies
generally deriving from altered gene expression or
damage to biomolecules, including proteins, lipids,
and DNA (Halliwell and Gutteridge 1999; Lesser
2006). General antioxidant defensive genes include
superoxide dismutase (SOD), catalases (CAT), and
peroxidases, including glutathione peroxidase (GPX),
peroxiredoxin, and thioredoxins (TXNs).

The sea anemone genome has a total of six SOD
genes: three Cu/Zn SOD genes, one Mn SOD gene,
two Fe SODs, as well as an SOD copper chaperone
homolog (which contains an SOD domain but has no
dismutase activity). Both EST and cDNA libraries
support the expression of all six SOD forms
under normal conditions (A. Reitzel, A. Tarrant, J.
Goldstone, unpublished data). In addition, there is one
CAT, 12 glutathione peroxidase genes, and six other
heme peroxidase genes. This abundance of antioxi-
dant defense genes is complemented by a complete
glutathione system (glutathione reductase and 4
gamma-glutamyl transferases), as well as TXN and
thioredoxin reductase (TXNRD).
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Metal detoxification

Heavy metals are important aquatic pollutants result-
ing from sewage, urban and agricultural runoff, and
antifouling paint. Bioconcentration of heavy metals
can lead to tissue concentrations that are ten- to
10,000-fold higher than environmental levels, result-
ing in a variety of toxic effects. Four phytochelatin
synthase (PCS) homologs are present in the N.
vectensis genome and expressed under normal con-
ditions (A. Reitzel, A. Tarrant, J. Goldstone, unpub-
lished data). Phytochelatins are metal-binding
peptides composed primarily of glutathione groups
that are important metal detoxifying genes in plants
and fungi. Until PCS was discovered in the nematode
Caenorhabditis elegans (Clemens et al. 2001), it was
believed that phytochelatins were present only in
plants and fungi. Now, it is clear that many other
lineages contain PCS homologs (Clemens 2006),
including the sea urchin (Goldstone et al. 2006).
Currently sequenced vertebrate genomes do not
contain a gene homologous to PCS, nor do insect
genomes, suggesting that phytochelatin synthesis
ability was lost independently in some protostome
and deuterostome lineages.

No metallothionein (MT) genes, neither plant- nor
fungi- nor metazoan-related, were found in the sea
anemone genome despite extensive searching, per-
haps because of the presence of the alternative metal-
complexing phytochelatin system. The absence of MT
genes is apparently due to gene loss, as MT proteins
are important metal detoxification proteins in plants
(Cobbett and Goldsbrough 2002), mollusks (Amiard
et al. 2006), sea urchins (Nemer et al. 1985), and
vertebrates, and are also present in sponges (Berthet et
al. 2005; Philp 1999).

Active efflux of toxic metals is another important
route to detoxification. Both OAT and ABC efflux
proteins (see above) export metals (Leslie et al. 2001;
Sweet 2005), and the anemone contains genes homo-
logous to the transporters (within both the OAT and
ABC families) known to facilitate metal export.

Heat shock proteins

Heat shock proteins (HSP) have been implicated in the
response to various toxicants, including cadmium,
arsenic, and free radicals (Feder and Hofmann 1999).
The induction of HSP mRNA and protein by heat

shock factor 1 appears to be part of generalized cellular
stress response, and HSPs may not only act as
chaperones but also assist in refolding of partially
denatured proteins (Kim et al 2006). Sea anemones
have several families of heat shock proteins, including
HSP 90 and 70 and small alpha crystalline HSPs
(HSP20s). The largest family of heat shock proteins is
the HSP20 family, containing at least 18 genes. Sea
anemones also have at least four HSP90 genes and nine
HSP70s. Various coral and anemone HSP60, HSP70,
and HSP90 proteins and cDNA sequences have been
shown to be strongly induced not only by heat or cold
shock (Choresh et al. 2007, 2004, 2001; Hashimoto et
al. 2004; Robbart et al. 2004; Rossi and Snyder 2001;
Rossi et al. 2006; Sharp et al. 1997, 1994; Snyder and
Ross 2004) but also by PCB118 (Wiens et al. 2000).

Discussion

The chemical defensome is an integrated network of
chemical sensing and response proteins that function
as an organized defense against toxic chemicals, both
endo- and exogenous (Goldstone et al. 2006).
Elucidation of the chemical stress-response repertoire
of N. vectensis provides a framework for studies on a
number of cnidarian-specific questions as well as on
broader evolutionary questions. Characterization of
these stress-response genes in N. vectensis facilitates
the use of this and other anemones as sentinel species
for changing environmental stressors. N. vectensis is a
hardy species, tolerating extremes of temperatures
unknown to other members of the family Edwardsiidae,
which are restricted to temperate and polar coastal seas
with less dramatic temperature and salinity variations
(Daly 2002). Identification of molecular responses to
chemical stress will help us to develop markers that
will allow N. vectensis and other anemones to act as
sentinels of environmental contamination.

The major components of this defensive gene
network are conserved in the sea anemone genome
(Fig. 4), indicating that they must have origins prior
to the cnidarian–bilaterian split. Interphyla compari-
son of the components and linkages within the
chemical defensome will help us understand the early
evolution of the chemical stress response. Despite the
fact that the individual genes within the defensome
network may vary across organisms, this network
may be comprised of evolutionarily conserved mod-
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ules, which are retained across evolution. Comparing
the susceptibility of sea anemone embryos with that
of deuterostome and protosome embryos, for a range
of chemicals, could lead to fundamental insights into
how these defensome “kernels” function to protect
embryos from the myriad chemical challenges that
could derail development. Predictions of defensome
interactions (e.g., the roles of nuclear receptors in
simultaneously modulating multiple parts of the
defensome) are testable using microarray analysis of
gene expression in combination with gene knock-
down and protein overexpression.

Signaling network Ligand-activated transcription fac-
tors form a significant component of the defensome,
integrating the stress response and potentially activat-
ing many different pathways simultaneously. The
evolutionary history of both the bZIP (Amoutzias et
al. 2007) and bHLH-PAS (Simionato et al. 2007)
receptor superfamilies is complicated, but most major
clades of these receptors are present in cnidaria.

Although some of the known components of the
vertebrate and invertebrate xenobiotic receptor path-
ways are missing, homologs of most important stress
receptors are present, including AHR, ARNT, HIF1α,
MTF, and NRF2. The deuterostome xenobiotic-
responsive NR1H and NR1I subfamilies are missing,
however, and it is not currently known whether other
NRs are functioning as xenobiotic receptors. Cnidaria
have been shown to have a retinoid response, including
a functional homolog of the RXR (Bouzaiene et al.
2007; Johnson and Chun 1989; Kostrouch et al. 1998;
Muller 1984).

Gene family diversification Many defense gene fam-
ilies have undergone diversification and expansion in
marine invertebrates in comparison to vertebrate
genomes. In general, analysis of entire genomes is
required to determine that a specific family or
superfamily has undergone diversification, and thus
current examples of such events are scattered. Class
or order level diversification may be presumed, based
on the model organisms with sequenced genomes, but
caution should be exercised when extrapolating.
Although there is general conformity in the presence
of higher order gene groups, in many cases, gene
orthology is more difficult to determine.

For example, the sea anemone contains 82 CYP
genes and those related to CYP gene families 1–4
constitute a large proportion (76%) of the total,
suggesting evolutionary pressure to maintain broad
functionality in these important defense gene families.
Multiple gene duplications in the toxicologically
important CYP families appear to have taken place
in many different lineages, leading to taxon-specific
gene clades that are related to known CYP families
yet distinct enough to preclude definitive assignment
of names based on current CYP nomenclature guide-
lines. The extensive birth–death process of CYP
diversification is not solely represented by inverte-
brates—within the vertebrates, there is significant
evidence for extensive gene duplication and loss with-
in xenobiotic-metabolizing CYP families (Thomas
2007).

In N. vectensis, particular examples of family
diversification relative to known sequences are the
CYPs and the ABC transporters. Other defensome
gene families do not appear significantly expanded,
nor do they have genes distributed into completely
novel subfamilies. This observation is interesting in

Sea Anemone

Human

receptors

transporters

oxidative

conjugative

antioxidant

other

270 genes218 genes

Tunicate

266 genes

Sea Urchin

423 genes

Fig. 4 Gene count comparisons for various classes of
defensome genes. The area of each circle is proportional to
the total number of genes classified into the defensome.
Receptors include bHLH-ZIP, NR, and CNC receptors. Trans-
porters are ABC and OAT transporters; oxidative and reductive
modification genes include CYP, FMO, ALDH, EH, and AKR;
conjugative genes are GST, MAPEG, UGT, and SULT;
antioxidant genes are SOD, CAT, PXR, and GPX. Other genes
include PCS, HSP20, HSP70, and HSP90
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light of the fact that N. vectensis lives in the
challenging environment of a temperate estuary and
ranges from subtropical to subarctic estuaries (Hand
and Uhlinger 1994).

Symbiosis An important consideration for the study
of cnidarian chemical defense genes is that many
species are host to photosynthetic endosymbionts
(zooxanthellae or zoochorellae). There are unique
aspects of both normal physiology and toxicological
responses that are related to the presence of endo-
symbionts. Notably, photosynthesis produces oxygen,
and surrounding host tissues require additional pro-
tection against ROS to withstand hyperoxygenation,
such as additional superoxide dismutase genes.
Indeed, Allemand and coworkers have characterized
multiple SOD forms in the Mediterranean sea
anemone Anemone viridis. They found up to seven
SOD activity bands in various tissues and detected
several forms of CuZnSOD, MnSOD, and FeSOD in
the various compartments (Richier et al. 2003). Two
of the CuZnSODs were cloned and encode both extra-
and intracellular CuZnSODs with different putative
transcription binding sites (Plantivaux et al. 2004).

Although N. vectensis is an apparently asymbiotic
anemone, the genome has genes for six different
SODs, all of which are expressed under normal
conditions. This abundance of SOD genes may be a
general pattern, particularly in anthozoans. Interest-
ingly, greater diversity in SOD activities was found in
a symbiotic anemone species (A. viridis) than in an
asymbiotic species (Actinia schmidti), and the asym-
biotic anemone experienced significantly greater
oxidative protein damage upon exposure to hyperoxia
(Richier et al. 2005). Thus, the presence of photosyn-
thetic endosymbionts and the concomitant possibility
of hyperoxia may have driven the evolution of
multiple additional SOD forms in cnidaria. Several
different catalase forms were also characterized in
A. viridis, with tissue-specific distributions and
activities (Merle et al. 2007). Inhibition of the host
anemone catalase led to symbiont expulsion, sug-
gesting an active response to increased oxidative
stress.

A second effect of algal symbiosis is the sensitivity
of symbiotic cnidarian species to herbicidal contam-
ination (Jones 2005; Jones and Kerswell 2003).
Notably, there is increasing distribution of herbicides
such as the s-triazine Irgarol 1051 that have been

incorporated into marine antifouling paints along with
copper (Carbery et al. 2006; Gardinali et al. 2004),
and there is significant runoff of herbicide-containing
waste from agricultural regions. Irgarol 1051 is a
photosystem II binding agent that inhibits photosynthet-
ic electron transport, resulting in a shortage of NADPH
and the formation of singlet oxygen (Fufezan et al.
2002). Acute exposure of coral to Irgarol 1051 resulted
in induction of SOD and MXR (ABCG) proteins and
decreases of GPX, CAT, and certain CYP proteins
(Downs and Downs 2007). While other herbicides
have been investigated (e.g., diuron; Harrington et al.
2005; Negri et al. 2005; Raberg et al. 2003), there
have been relatively few investigations of the molecular
mechanisms of herbicide toxicity in cnidaria, and
it is generally thought that damage is primarily a
result of the disruption of host–algal symbiosis
(Jones 2005).

Reactive oxygen and UV ROS production can also be
an important consequence of UV exposure (Lesser
2006; Mopper and Kieber 2000). While UV responses
have been studied in a number of coral species, many
coral physiological responses to UV appear to be
related to the physiological responses of their algal
symbionts (Baruch et al. 2005; Torres et al. 2007;
Verde and McCloskey 2002). UV has been shown to
interfere with pattern formation in regenerating hydra
and promote budding of intact hydra, possibly in
response to tissue damage (Ghaskadbi et al. 2005;
Znidaric et al. 1992). Both exogenous hydrogen
peroxide and UV treatments have been shown to
increase DNA strand breaks in cnidaria, demonstrat-
ing the potential for genotoxic ROS effects (Baruch et
al. 2005; Mitchelmore and Hyatt 2004)

A very important protective mechanism in corals,
as well as in diverse other marine organisms, is the
accumulation of sunscreening compounds known as
mycosporine-like amino acids (MAAs; Shick and
Dunlap 2002). MAAs may facilitate larval survival
(Wellington and Fitt 2003), as well as adult UV
tolerance (Ferrier-Pages et al. 2007; Torres et al.
2007), and may also contribute to antioxidant capac-
ity (Dunlap and Yamamoto 1995; Yakovleva et al.
2004). In contrast to other animals, N. vectensis
apparently possesses the shikimic acid pathway thought
to be necessary for MAA production (Starcevic et al.
2008), presumably obtained via lateral gene transfer
from bacteria. Many cnidaria have been thought to
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accumulate MAAs from their symbionts (Shick and
Dunlap 2002) or from their diet, as is the case for sea
urchins (Carroll and Shick 1996). Given the presence
of the MAA biosynthetic pathway in the N. vectensis
genome and the clustering of sea anemone MAA
complement by anemone phylogenetic distribution
rather than endosymbiont identity, presence, or other
environmental factors (Shick et al. 2002), it is likely
that the ability of cnidaria to biosynthesize MAAs is
not restricted to N. vectensis.

In contrast to tropical corals and many littoral
anemones, N. vectensis is a burrowing anemone, and
it is possible that N. vectensis adult may be able to
avoid UV damage despite living in shallow ponds.
However, larval N. vectensis may require more
protection from ROS than adults, leading to the
apparent diversification of ROS defenses. Examina-
tion of the UV-stress response of N. vectensis will aid
in understanding the different roles that antioxidant
enzymes and sunscreening compounds may play in
protecting sea anemones. Comparisons of N. vectensis,
an apparently asymbiotic anemone, with symbiotic
anemones (e.g., A. viridis) or symbiotic reef-building
corals could elucidate the protective mechanisms
required by symbiotic cnidaria and shed light on the
role of antioxidant enzymes in thermotolerance and
bleaching (Downs et al. 2002; Merle et al. 2007;
Richier et al. 2005; Richier et al. 2003).

Molecular toxicology Many toxicological studies of
cnidaria involve metals, particularly copper, cadmi-
um, and zinc. In particular, the acute and structural
effects of copper, cadmium, and zinc have been
investigated in various hydrozoan species, including
both freshwater and marine hydra (Holdway et al.
2001; Karntanut and Pascoe 2000, 2002, 2005) and a
variety of anthozoa, including scleractinian corals
(Mitchelmore et al. 2007). Other biological responses
to heavy metals in cnidaria include coral bleaching
(Jones 1997) and effects on coral metabolism (Alutoin
et al. 2001; Nystrom et al. 2001), larval mortality, and
inhibition of reproduction, including settlement, mo-
tility, and fertilization of larvae (Negri and Heyward
2000, 2001; Reichelt-Brushett and Harrison 2000,
2005). Few studies have examined molecular bio-
markers or molecular mechanisms of metal stress
(Mitchelmore et al. 2002; Morgan et al. 2001).

The availability of the N. vectensis genome will
make many mechanistic studies possible and should

spur the development of metal stress biomarkers in
various species. In particular, the presence of multiple
genes for phytochelatin synthase provides obvious
markers for metal stress, despite the lack of metal-
othionein genes.

As with metal contamination, there are few studies
of either molecular markers or mechanisms of
exposure to organic contaminants other than herbi-
cides in cnidaria (Rougee et al. 2006). A number of
biochemical studies of cnidarian CYP biochemistry have
been carried out, however. CYP carbon monoxide
difference spectra have been observed in six different
species of sea anemone (Heffernan and Winston 1998,
2000; Sole and Livingstone 2005) and three different
species of scleractinian corals (Favia fragum, Side-
rastrea sidea, and Montastraea faveolata; Garcia et al.
2005; Gassman and Kennedy 1992; Ramos and Garcia
2007). Furthermore, benzo[a]pyrene hydroxylase ac-
tivities have been observed in sea anemones, likely due
to the action of CYP mixed-function oxygenases
(Heffernan et al. 1996; Winston et al. 1998). The
presence of inducible (versus constituent) CYP content
in corals has also been demonstrated in coral due to
benzo[a]pyrene or fuel oil exposure (Ramos and
Garcia 2007; Rougee et al. 2006). The same PAH
exposures induced components of the reactive oxygen
defense systems, including CAT, SOD, and GST.
Finally, an important molecular marker of genotoxic
damage, the Comet assay of DNA damage, has been
assessed in cnidaria in response to benzo[a]pyrene
exposures (Mitchelmore and Hyatt 2004). Benzo[a]
pyrene was found to increase DNA strand breaks in the
temperate anemone Anthopleura elegantissima, sug-
gesting also that cnidaria, like vertebrates, are capable
of bioactivating benzo[a]pyrene to genotoxic metabo-
lites, likely by CYPs.

More subtle effects of organic contamination might
include in particular disruption of endogenous signal-
ing pathways by exogenous hormones or hormone
mimetics. Recent research indicates that cnidaria are
susceptible to this sort of signal disruption, although
the precise mechanisms are unknown (Fukuhori et al.
2005; Pachura-Bouchet et al. 2006; Pascoe et al.
2002; Tarrant 2005, 2007; Tarrant et al. 2004). In
particular, Tarrant et al (2004) observed that spawning
and growth rates were reduced in corals exposed to
exogenous steroidal estrogens. As noted above,
cnidaria do not posses a homolog of the vertebrate
estrogen receptor, although there may be other nuclear
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receptors that function as a steroid receptors (Reitzel
et al. 2008b; Tarrant 2007). Cnidaria are steroid-rich
organisms (Withers et al. 1982), but the roles these
steroids play in normal physiology are not clear
(Tarrant 2005). Steroids and secosteroids from gorgo-
nian and soft corals have been show to have
antimicrobial and antifouling activity (Qi et al. 2008;
Sica and Musumeci 2004), suggesting that many of
these compounds may be produced for chemical
defense. CYP enzymes often participate in steroid
synthesis and modification, and the diversity of N.
vectensis CYPs may relate to the diversity of
cnidarian steroids, although the steroid content of N.
vectensis has not been investigated.

N. vectensis is a physical stress-tolerant organism,
tolerating a wide range of environmental conditions
(Sheader et al. 1997). With this robustness to physical
stress, N. vectensis is in a prime position to act as a
sentinel species toward chemical stress in estuaries. N.
vectensis is also an excellent laboratory model, with
simple maintenance needs, and the generation of
clonal stocks by forced regeneration allows great
scope for genetic manipulation. Furthermore, this sea
anemone is an excellent model for the study of
embryonic development (Matus et al. 2006). With
the description of these chemical defense genes, we
can study the evolution of cellular defense during
embryonic development. Development inherently is a
robust process; which parts of the process are more
susceptible to disruption and from which stressors are
not clear (Hamdoun and Epel 2007). The description
of this defense gene set will allow us to examine the
evolution of generalized cellular stress responses in
bilaterian embryos and to understand how these stress
responses function in adult cnidaria.
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