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Abstract New chemicals are being added each year
to the existing burden of toxic substances in the
environment. This has led to increased pollution of
ecosystems as well as deterioration of the air, water,
and soil quality. Excessive agricultural and industrial
activities adversely affect biodiversity, threatening the
survival of species in a particular habitat as well as
posing disease risks to humans. Some of the chem-
icals, e.g., pesticides and heavy metals, may be
genotoxic to the sentinel species and/or to non-target
species, causing deleterious effects in somatic or germ
cells. Test systems which help in hazard prediction
and risk assessment are important to assess the
genotoxic potential of chemicals before their release
into the environment or commercial use as well as
DNA damage in flora and fauna affected by contam-
inated/polluted habitats. The Comet assay has been
widely accepted as a simple, sensitive, and rapid tool
for assessing DNA damage and repair in individual
eukaryotic as well as some prokaryotic cells, and has
increasingly found application in diverse fields
ranging from genetic toxicology to human epidemi-

ology. This review is an attempt to comprehensively
encase the use of Comet assay in different models
from bacteria to man, employing diverse cell types to
assess the DNA-damaging potential of chemicals and/
or environmental conditions. Sentinel species are the
first to be affected by adverse changes in their
environment. Determination of DNA damage using
the Comet assay in these indicator organisms would
thus provide information about the genotoxic poten-
tial of their habitat at an early stage. This would allow
for intervention strategies to be implemented for
prevention or reduction of deleterious health effects
in the sentinel species as well as in humans.
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Introduction

Ostling and Johanson (1984) were the first to quantify
DNA damage in cells using a microgel electrophore-
sis technique known as “single cell gel electrophore-
sis or Comet assay”. However, the neutral conditions
they used, allowed the detection of only DNA double-
strand breaks. Later, the assay was adapted under
alkaline conditions by Singh et al. (1988), which led
to a sensitive version of the assay that could assess
both double- and single-strand DNA breaks as well as
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the alkali labile sites expressed as frank strand breaks
in the DNA. Since its inception, however, the assay has
been modified at various steps (lysis, electrophoresis) to
make it suitable for assessing various kinds of damage in
different cells (Collins 2004; Speit and Hartmann 2005).
The assay is now a well-established, simple, versatile,
rapid, visual, and a sensitive, extensively used tool to
assess DNA damage and repair quantitatively as well as
qualitatively in individual cell populations (Olive and
Banath 2006). Some other lesions of DNA damage
such as DNA cross-links (e.g., thymidine dimers) and
oxidative DNA damage may also be assessed using
lesion-specific antibodies or specific DNA repair
enzymes in the Comet assay. It has gained wide
acceptance as a valuable tool in fundamental DNA
damage and repair studies (Speit and Hartmann 2005),
genotoxicity testing (Moller 2005), and human bio-
monitoring (Kassie et al. 2000; Moller 2006a).

Relative to other genotoxicity tests, such as
chromosomal aberrations, sister chromatid exchanges,
alkaline elution, and micronucleus assay, the advan-
tages of the Comet assay include its demonstrated
sensitivity for detecting low levels of DNA damage
(one break per 1010 Da of DNA; Gedik et al. 1992),

requirement for small number of cells (~10,000) per
sample, flexibility to use proliferating as well as non-
proliferating cells, low cost, ease of application, and
the short time needed to complete a study. It can be
conducted on cells that are the first site of contact
with mutagenic/carcinogenic substances (e.g., oral
and nasal mucosal cells). The data generated at
single cell level allow for robust types of statistical
analysis.

A limitation of the Comet assay is that aneugenic
effects, which may be a possible mechanism for
carcinogenicity (COM 2000), and epigenetic mecha-
nisms (indirect) of DNA damage such as effects on
cell-cycle checkpoints are not detected. The other
drawbacks such as single cell data (which may be rate
limiting), small cell sample (leading to sample bias),
technical variability, and interpretation are some of its
disadvantages. However, its advantages far outnum-
ber the disadvantages, and hence, it has been widely
used in fields ranging from molecular epidemiology
to genetic toxicology.

The present review deals with various models
ranging from bacteria to man used in the Comet
assay for assessing DNA damage (Fig. 1).
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Fig. 1 Schematic diagram of the use of Comet assay in assessing DNA damage in different models from bacteria to humans
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Bacteria

The first study to assess the genetic damage in
bacteria treated with 12.5–100 rad of X-rays using
Comet assay was conducted by Singh et al. (1999). In
the study, neutral Comet assay was used for direct
(visual) determination of DNA double-strand breaks
in the single electrostretched DNA molecule of
Escherichia coli JM101. Significant increase in the
DNA breaks was induced by a dose as low as 25 rad,
which was directly correlated to X-ray dosage. The
study supported a hypothesis that strands of the
electrostretched human DNA in the Comet assay
represented individual chromosomes.

Plant models

Plant bioassays help detect genotoxic contamination
in the environment (Maluszynska and Juchimiuk
2005). Plant systems can provide information about
a wide range of genetic damage, including gene
mutations and chromosome aberrations. The mitotic
cells of plant roots have been used for the detection of
clastogenicity of environmental pollutants, especially
for in situ monitoring of water contaminants. Roots of
Vicia faba and Allium cepa have long been used for
assessment of chromosome aberrations (Grant 1999)
and micronucleus (Ma et al. 1995). During the last
decade, the Comet assay has been extensively applied
to plants (leaves, shoot, and roots) to detect DNA
damage arising due to chemicals and heavy metals in
polluted soil (Table 1).

Comet assay in lower plants

Fungi

Schizosaccharomyces pombe has been used as a model
organism to investigate DNA damage due to chlori-
nated disinfectant, alum, and polymeric coagulant
mixture in drinking water samples (Banerjee et al.
2008). The authors observed a significantly higher (P<
0.001) DNA damage in chlorinated water (i.e., tap
water) when compared to untreated (negative control)
or distilled water (laboratory control). Hahn and Hock
(1999) used mycelia of Sordaria macrospora grown
and treated with a variety of DNA-damaging agents
directly on agarose minigels for assessment of geno-

toxicity using the Comet assay. DNA strand breaks
were detected by an increase in the DNA migration
from the nucleus. This model allowed for the rapid and
sensitive detection of DNA damage by a number of
chemicals simultaneously.

Algae

Aquatic unicellular plants like algae provide informa-
tion of potential genotoxicity of the water in which
they grow. Being single-celled, they can be used as a
model for assessment of DNA damage and monitor-
ing of environmental pollution utilizing Comet assay.
Unicellular green alga Chlamydomonas reinhardtii
was used for evaluation of DNA damage due to
known genotoxic chemicals and also demonstrated
that oxidative stress was better managed by the algal
cells under light than dark conditions (Erbes et al.
1997). The Comet assay was found to be useful for
evaluating chemically induced DNA damage and
repair in Euglena gracilis, and responses were more
sensitive than those of human lymphocytes under the
same treatment conditions (Aoyama et al. 2003). The
ease of culturing and handling E. gracilis as well as
its sensitivity makes it a useful tool for testing the
genotoxicity of chemicals and monitoring environ-
mental pollution. A modified version of the Comet
assay was used as an alternative technique to assess
DNA damage due to UV radiation in Rhodomonas sp.
(Cryptophyta), a marine unicellular flagellate (Sastre
et al. 2001).

Comet assay in higher plants

V. faba has been widely used for the assessment of
DNA damage using Comet assay. Strand breaks and
abasic (AP) sites in meristematic nuclei of V. faba root
tips were studied by the neutral and alkaline Comet
assay (Angelis et al. 2000; Menke et al. 2000). The
alkaline electrophoresis procedure was found to be
most sensitive at low doses, while the neutral elec-
trophoresis procedure yielded an optimal dose–
response curve within a wider dose range. Angelis
et al. (2000) also suggested that the Comet assay was
able to detect a phenomenon resembling clastogenic
adaptation at molecular level. Gichner and Plewa
(1998) developed a sensitive method for isolation of
nuclei from leaf tissue of Nicotiana tabacum. The
method resulted in high resolution and constant, low
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tail moment values for negative controls, and hence
could be incorporated for in situ plant environmental
monitoring.

The Comet assay has also been used to study the
effect of age of plant on DNA integrity (Koppen et al.
1999) as well as kinetics of DNA repair (Gichner et
al. 2000) in isolated nuclei from leaves of tobacco
plants. A small but significant increase in DNA
damage compared to controls was noted in heterezy-
gous tobacco and potato plants grown on soil
contaminated with heavy metal (Gichner et al.
2006). The tobacco and potato plants with increased
DNA damage were also found to be severely injured
(inhibited growth, distorted leaves), which may be
associated with necrotic or apoptotic DNA fragmen-
tation. No DNA damage was observed in the root or
shoot cells of Phaeseolus vulgaris treated with
different concentrations of uranium (Vandenhove et
al. 2006). The ornamental plant Impatiens balsamina
was used as a model to understand the genotoxic
effect of Cr+6 and airborne particulate matter (Poli et
al. 1999), which produced increased strand breaks in
plant parts (stem, root, and leaves). Thus, this plant
could be used for environmental biomonitoring
studies involving air pollution and heavy metals.

The major drawback with plant models was the fact
that exposure needs to be given in the soil, and it is
difficult to say whether the result demonstrates syner-
gies with other chemicals in the soil or non-availability
of the toxicant due to its soil binding affinity. Therefore,
Vajpayee et al. (2006) used Bacopa monnieri L., a
wetland plant, as a model for the assessment of
ecogenotoxicity using the Comet assay. In vivo
exposure to cadmium (0.01–500 μM) for 2, 4, and
18 h resulted in dose- and time-dependent increases in
DNA damage in the isolated roots and leaf nuclei, with
roots showing greater DNA damage than leaves. In
vitro (acellular) exposure of nuclei from leaves of B.
monneiri to 0.001–200 μM cadmium resulted in
significant (P<0.05) levels of DNA damage.

These studies revealed that DNA damage mea-
sured in plants using the Comet assay is a good model
for assessment of genotoxicity of polluted environ-
ment, as in situ monitoring and screening can be
accomplished. Higher plants can be used as an
alternative first-tier assay system for the detection of
possible genetic damage resulting from polluted
waters/effluents due to industrial activity or agricul-
tural runoffs.T
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Animal models

To assess safety/toxicity of chemicals/finished prod-
ucts, animal models have long been used. With the
advancements in technology, knockouts and transgen-
ic models have become common to mimic the effects
in humans. Comet assay has globally been used for
assessment of DNA damage in various animal models
(Table 1).

Lower animals

Tetrahymena thermophila is a unicellular protozoan
widely used for genetic studies due to its well-
characterized genome. Its uniqueness lies in the fact
that it has a somatic and a germ nucleus in the same
cell. Therefore, it has been validated as a model
organism for assessing DNA damage using a modi-
fied Comet assay protocol standardized with known
mutagens such as phenol, hydrogen peroxide, and
formaldehyde (Lah et al. 2004). The method was then
used for the assessment of genotoxic potential of
influent and effluent water samples from a local
municipal wastewater treatment plant (Lah et al.
2004). The method provided an excellent, low-level
detection of genotoxicants and proved to be a cost-
effective and reliable tool for genotoxicity screening
of wastewater.

Invertebrates

Studies have been carried out on various aquatic
(marine and freshwater) and terrestrial invertebrates
(Table 1). The genotoxicity assessment in marine and
freshwater invertebrates using the assay has been
reviewed (Cotelle and Ferard 1999; Lee and Steinert
2003; Mitchelmore and Chipman 1998a). Cells from
hemolymph, embryos, gills, digestive glands, and
coelomocytes from mussels (Mytilus edulis; Rank et
al. 2005), zebra mussel (Dreissena polymorpha),
clams (Mya arenaria), and polychaetes (Nereis
virens) have been used for ecogenotoxicity studies
using the Comet assay. DNA damage has also been
assessed in earthworms (Salagovic et al. 1996;
Rajaguru et al. 2003) and fruit fly, Drosophila,
(Bilbao et al. 2002; Mukhopadhyay et al. 2004).
The Comet assay has been employed to assess the
extent of DNA damage at polluted sites in comparison
to reference sites in the environment, and in the

laboratory, it has been widely used as a mechanistic
tool to determine pollutant effects and mechanisms of
DNA damage (Mitchelmore and Hyatt 2004).

Comet assay in Mussels

Freshwater and marine mussels have been used to
study the adverse effect of contaminants in the aquatic
environment, as they are important pollution indicator
organisms. These sentinel species are adversely
affected by pollution in the water bodies and thus
provide the potential for environmental biomonitor-
ing. The Comet assay in mussels can be used to detect
a reduction in water quality caused by chemical
pollution (Frenzilli et al. 2001; Jha et al. 2005; Rank
et al. 2005; Steinert et al. 1998). Mytilus edulis has
been widely used for Comet assay studies to evaluate
DNA strand breaks in gill and digestive gland nuclei
due to polycyclic aromatic hydrocarbons (PAHs)
including benzo[a]pyrene (B[a]P; Large et al. 2002)
and oil spills with petroleum hydrocarbons
(Hamouten et al. 2002). However, the damage
returned to normal levels after continued exposure to
high dose (20 ppb-exposed diet) of B[a]P for 14 days.
This was attributed to an adaptive response in mussels
to prevent the adverse effects of DNA damage (Large
et al. 2002). The green-lipped mussels (Perna viridis)
also showed a similar result to B[a]P in water (Siu et
al. 2004).

Significant levels of interindividual variability,
including seasonal variations in DNA damage, have
been reported from some studies in both laboratory
and field (Wilson et al. 1998; Shaw et al. 2000, 2004;
Frenzilli et al. 2001). Baseline monitoring has thus to
be carried out over long time intervals. Temperature-
dependent DNA damage was observed in hemocytes
of freshwater mussel Dreissena polymorpha
(Buschini et al. 2003), showing that the mussels are
sensitive towards change in water temperatures. Thus,
monitoring ecogenotoxicity with these species should
take into account variations in temperatures. Findings
have also suggested that antioxidant supplementation
can improve the sensitivity of the Comet assay by
lowering the baseline damage in untreated animals
(Wilson et al. 1998).

Villela et al. (2006) used the golden mussel
(Limnoperna fortunei) as a potential indicator organ-
ism for freshwater ecosystems due to its sensitivity to
water contaminants. Comet assay in haemocytes of
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freshwater Zebra mussel, D. polymorpha Pallas, was
used as a tool in determining the potential genotoxicity
of water pollutants (Bolognesi et al. 2004; Klobucar
et al. 2003; Pavlica et al. 2001; Riva et al. 2007).
Klobucar et al. (2003) suggested the use of Comet
assay in haemocytes from caged, non-indigenous
mussels as a sensitive tool for monitoring genotoxicity
of freshwater. DNA damage and repair studies in vent
mussels, Bathymodiolus azoricus, have been carried
out to study the genotoxicity of naturally contaminated
deep-sea environment (Dixon et al. 2004; Pruski and
Dixon 2003). The vent mussels demonstrated similar
sensitivity to environmental mutagens as that of coastal
mussels and thus could be used for ecogenotoxicity
studies of deep sea waters using the Comet assay.

In vitro Comet assay has also been used in cells of
mussels. Dose–response increases in DNA strand
breakages were recorded in digestive gland cells
(Mitchelmore et al. 1998b), hemocytes (Rank and
Jensen 2003), and gill cells (Wilson et al. 1998, Rank
and Jensen 2003) of M. edulis exposed to both direct
(hydrogen peroxide and 3-chloro-4-(dichloromethyl)-5-
hydroxy-2[5H]-furanone) and indirect (B[a]P, 1-nitro-
pyrene, nitrofurantoin and N-nitrosodimethylamine)
acting genotoxicants. Digestive gland cells of Unio
tumidus were also used for in vitro studies of DNA
damage and repair due to pro-oxidative effect of
polyphenolic compounds (Labieniec and Gabryelak
2004, 2006). Wilson et al. (1998) demonstrated
potential application of the Comet assay to gill cells
of M. edulis as a potential in vitro screen for agents
destined for release or disposal into the marine
environment.

Comet assay in other bivalves

Coughlan et al. (2002) showed that the Comet assay
could be used as a tool for the detection of DNA
damage in clams (Tapes semidecussatus) as biomoni-
tor organisms for sediments. Significant DNA strand
breaks were observed in cells isolated from haemo-
lymph, gill, and digestive gland from clams exposed
to polluted sediment (Coughlan et al. 2002; Hartl et
al. 2004). Comet assay was used for the assessment of
sperm DNA quality of cryopreserved semen in Pacific
oyster (Crassostrea gigas), as it is widely used for
artificial fertilization (Gwo et al. 2003). Gielazyn et
al. (2003) demonstrated the use of lesion-specific
DNA repair enzyme formamidopyrimidine glycosy-

lase (Fpg) to enhance the usefulness and sensitivity of
the Comet assay in studying oxidative DNA damage
in isolated hemocytes from oyster (Crassostrea
virginica) and clam (Mercenaria mercenaria).

The studies in mussels have shown the Comet
assay to be a sensitive, but nonspecific, molecular
biomarker of genotoxicity. One of the drawbacks
when applying single-cell gel electrophoresis to field
populations may be the adapability of the animals to
high concentrations of contaminants (e.g., B[a]P),
which may pose a major problem (Large et al. 2002).
Also, seasonal variation and temperature altered both
DNA damage baseline levels in untreated animals and
cell sensitivity towards environmental pollutants
under in vitro conditions (Buschini et al. 2003; Hartl
et al. 2004). The Comet assay detecting DNA strand
breaks has demonstrated that higher basal levels of
DNA damage are observed in marine invertebrates;
hence, the protocol followed in these animals should
be considered for biomonitoring the ecogenotoxicity
of a region (Machella et al. 2006).

Comet assay in earthworm

The Comet assay applied to earthworms is a valuable
tool for monitoring and detection of genotoxic
compounds in terrestrial ecosystems (Salagovic et al.
1996; Zang et al. 2000; Table 1). As the worms feed
on the soil they live in, they are a good indicator of the
genotoxic potential of the contaminants present in the
soil and thus used as a sentinel species. Verschaeve et
al. (1993) demonstrated a dose–response with the
extent of DNA damage in coelomic leucocytes
(coelomocytes) of earthworms (Eisenia foetida) from
soil treated with different chemicals as an indication of
soil pollution.

Coelomocytes from E. foetida demonstrated in-
creased DNA damage when worms were exposed to
soil samples from polluted coke oven sites (Salagovic
et al. 1996) or industrialized contaminated areas (Xiao
et al. 2006) and even sediment samples from polluted
river system (Rajaguru et al. 2003). An insecticide,
parathion, produced DNA strand breaks at all time
points and doses in the sperm cells of E. foetida
(Bustos-Obregon and Goicochea 2002), while dose–
effect relationships were displayed by two pesticides,
Imidacloprid and RH-5849, in the same species (Zang
et al. 2000), showing that pesticides could also have
adverse effects on non-target species. In vitro exposure
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of coelomocytes primary cultures to nickel chloride as
well as whole animals either in spiked artificial soil
water or in spiked cattle manure substrates exhibited
increased DNA strand breaks due to the heavy metal
(Reinecke and Reinecke 2004). The eleocytes, a subset
of coelomocytes, exhibited increased DNA strand
breaks under both in vitro and in vivo conditions and
could be used as a sensitive biomarker for genotoxicity
in earthworms (Di Marzio et al. 2005). Another
earthworm, Aporrectodea longa (Ude), when exposed
to soil samples spiked with B[a]P and/or lindane,
demonstrated intestinal cells to be more sensitive to the
effect of the genotoxicants than the crop/gizzard cells
(Martin et al. 2005).

Fourie et al. (2007) used five earthworm species
(Amynthas diffringens, Aporrectodea caliginosa, Den-
drodrilus rubidus, Eisenia foetida, and Microchaetus
benhami) to study genotoxicity of sublethal concen-
trations of cadmium sulphate, with significant DNA
damage being detected in E. foetida followed by D.
rubidus and A. caliginosa. The study showed a
difference in sensitivity of species present in an
environment and its influence on the genotoxicity risk
assessment. Hence, for environmental biomonitoring,
specific species have to be kept in mind to reduce false
negative results.

Comet assay in Drosophila

The simple genetics and developmental biology of
Drosophila melanogaster has made it the most widely
used insect model and has been recommended as an
alternate animal model by the European Centre for the
Validation of Alternative Methods (ECVAM; Benford et
al. 2000). Recently, Drosophila has evolved as a model
organism in toxicological studies (Mukhopadhyay
et al. 2003; Nazir et al. 2003). D. melanogaster has
also been used as an in vivo model for assessment of
genotoxicity using Comet assay (Bilbao et al. 2002;
Mukhopadhyay et al. 2004; Siddique et al. 2005a,
b; Table 1). Neuroblast cells of third instar larvae,
DNA repair deficient in nucleotide excision repair
(mus201), and a mechanism of damage bypass
(mus308) have been used for mechanistic studies
(Bilbao et al. 2002).

Third instar larvae of D. melanogaster (Oregon R
+) were validated for genotoxicity assessment using a
modified Comet assay (Siddique et al. 2005a, b). As
the cells of Drosophila are smaller than mammalian

cells, modifications in the Comet assay were done,
e.g., higher concentration of agarose (for the smaller
size of Drosophila cells), removal of dimethyl
sulfoxide (DMSO) from lysing solution (DMSO is
toxic to the cells), and lower electrophoresis time (for
improved performance of the assay). This modified
protocol was validated in gut and brain cells using
well-known alkylating agents, i.e., ethyl methanesul-
fonate (EMS), methyl methanesulfonate (MMS), N-
ethyl-N-nitrosourea (ENU), and cyclophosphamide
(CP), which were mixed in standard Drosophila diet
and produced a significant dose-dependent response
(Siddique et al. 2005a, b). Cypermethrin, a synthetic
pyrethroid, even at low concentrations (at 0.002
ppm), and leachates of industrial waste produced
significant dose-dependent increase in DNA damage
in the brain ganglia and anterior midgut of D.
melanogaster (Mukhopadhyay et al. 2004; Siddique
et al. 2005b). Results from Comet assay have also
shown a direct correlation between the concentrations
of cisplatin adducts and DNA damage in somatic cells
of D. melanogaster (García Sar et al. 2008).

In vitro studies using Drosophila S2 cells demon-
strated that the ectopically expressed DNA glycosy-
lases (dOgg1 and RpS3) reduced the oxidized
guanosine (8-OxoG) but contributed to increased
DNA degradation due to one of the constituents of
the DNA repair system (Radyuk et al. 2006).

The studies in Drosophila have shown it to be a
good alternate to animal model for the assessment of
in vivo genotoxicity of chemicals using the Comet
assay.

Comet assay in other invertebrates

Nereis virensa, a polychaete, plays an important role
in the distribution of pollutants in sediments due to
their unique property of bioturbation. These worms
are similar to earthworms in soil and can be used for
genotoxicity assessment of sediments. Intracoelomic
injection of B[a]P was given to the worms, and
Comet assay was conducted on coelomocytes (De
Boeck and Kirsch-Volders 1997). Nereis species was,
however, not found to be suitable for assessing PAH
genotoxicity probably due to its lack of metabolic
capability to convert B[a]P to its toxic metabolite (De
Boeck and Kirsch-Volders 1997).

DNA damage was assessed in neuroblast cells of
brains of first instars of grasshoppers (Chorthippus
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brunneus) exposed to various doses of zinc from a
polluted site to understand the mechanism of toxicity
in insects due to industrial pollutants (Augustyniak
et al. 2006).

The estuarine grass shrimp, Palaemonetes pugio,
exposed to coal combustion residues from coal-fired
electrical generation, were studied for DNA damage
using Comet assay. Chronic exposure caused DNA
damage in hepatopancreas cells of adult shrimps as
compared to reference shrimp (Kuzmick et al. 2007).
Comet assay in planarians is an important test for
environmental monitoring studies, as these are simple
organism with high sensitivity, low cost, and high
proliferative rate (Prá et al. 2005). The genotoxic
potential of water from Diluvio’s Basin was evaluated
in planarians where increase in pollutants towards the
basin led to an increase in the DNA damage in these
species (Prá et al. 2005). Significant increase of
primary DNA damage was observed in planarian
cells due to Norflurazon, a bleaching herbicide
(Horvat et al. 2005), and copper sulfate (Guecheva
et al. 2001) when compared to the control animals.

These studies have also shown the use of Comet
assay in biomonitoring diverse environmental con-
ditions utilizing sentinel species.

Vertebrates

Studies of vertebrate species where the Comet assay
is used include fishes, amphibians, birds, and mam-
mals. Cells (blood, gills, kidneys, and livers) of
different fishes, tadpoles and adult frogs, as well as
rodents have been used for assessing in vivo and in
vitro genotoxicity of chemicals, and human biomoni-
toring has also been carried out employing the Comet
assay (Table 1).

Comet assay in fishes

Various fishes (freshwater and marine) have been
used for environmental biomonitoring, as they are
endemic organisms, which serve as sentinel species
for a particular aquatic region, to the adverse effects
of chemicals and environmental conditions. The
Comet assay has found wide application as a simple
and sensitive method for evaluating in vivo as well as
in vitro DNA damage in different tissues (gills, liver,
blood) of fishes exposed to various xenobiotics in the
aquatic environment (Table 1).

Environmental biomonitoring to assess the geno-
toxic potential of river waters has been carried out in
hepatocytes of chub (Leuciscus cephalus; Winter et al.
2004), erythrocytes of mullet (Mugil sp.), sea catfish
(Netuma sp.; de Andrade et al. 2004a, b), bullheads
(Ameiurus nebulosus), and carps (Cyprinus carpio;
Pandrangi et al. 1995; Buschini et al. 2004). Basal
level of DNA damage has been shown to be
influenced by various factors, such as temperature of
water in erythrocytes of mullet and sea catfish (de
Andrade et al. 2004a, b), age and gender in dab
(Limanda limanda; Akcha et al. 2003), and exhaus-
tive exercise in chub (Aniagu et al. 2006). Therefore,
these factors should be accounted for during environ-
mental biomonitoring studies for genotoxicity. The
sensitivity of the assay may be affected by high intra-
individual variability (Akcha et al. 2003). The
protocol and experimental conditions used for the
Comet assay for monitoring marine ecosystems may
lead to differences in the results obtained (Belpaeme
et al. 1998). The use of chemical and mechanical
procedures to obtain cell suspension may also lead to
DNA damage (Kosmehl et al. 2006). Anesthesia did
not contribute towards DNA damage in vivo in
methyl methanesulfonate (MMS)-treated fishes, and
the anesthetic benzocaine did not alter the DNA
damage in erythrocytes after in vitro exposure to
MMS or H2O2 (de Miranda Cabral Gontijo et al.
2003). Hence, keeping in mind animal welfare, multi-
sampling in the same fish can be conducted.

In vitro studies on fish hepatocytes (Risso-de
Faverney et al. 2001), primary hepatocytes and gill
cells (Schnurstein and Braunbeck 2001), as well as
established cell lines (with metabolic competence;
Nehls and Segner 2001, 2005) using the Comet assay
have also been conducted to assess the genotoxicity
of chemicals in water samples. The antioxidant
potential of indolinic and quinolinic nitroxide radicals
(Villarini et al. 1998), tannins (Fedeli et al. 2004), and
low concentrations (<10 μM) of diaryl tellurides and
ebselen, an organoselenium compound (Tiano et al.
2000), in oxidative DNA damage has been studied in
nucleated trout (Oncorhynchus mykiss) erythrocytes
for use of these compounds in biological systems.
Kammann et al. (2000) demonstrated the Comet assay
in isolated leukocytes of carp as an in vitro model for
evaluating genotoxicity of marine sediment extracts
and increased sensitivity of the method with the use of
DNA repair inhibitor, 1-beta-D-arabinofuranosylcyto-
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sine (ara C). Comet assay with fish cell lines may be a
suitable tool for in vitro screening of environmental
genotoxicity; however, the metabolizing capabilities of
the cell line need to be taken into account.

Cryopreservation has been shown to induce DNA
strand breaks in spermatozoa of trout (Cabrita et al.
2005; Labbe et al. 2001), sea bass (Dicentrarchus
labrax; Zilli et al. 2003), and gilthead sea bream
(Sparus aurata; Cabrita et al. 2005). The DNA
damage was prevented by the addition of cryopre-
servants such as bovine serum albumin and dimethyl
sulfoxide (Zilli et al. 2003). These studies have
demonstrated the sperm Comet assay as a useful
model in determining the DNA integrity in frozen
samples for commercially cultured species.

These studies have demonstrated the usefulness of
the Comet assay in fishes as a model for monitoring
genotoxicity of aquatic habitats using these indicator
animals.

Comet assay in amphibians

Comet assay in amphibians has been carried out at adult
and larval stages for eco-genotoxicity of aquatic
environments, and studies until 1999 have been well
reviewed by Cotelle and Ferard (1999). The animals
chosen for the Comet assay act as sensitive bioindica-
tors of aquatic and agricultural ecosystems (Table 1).
The animals were either collected from the site (in situ)
or exposed to chemicals under laboratory/natural
conditions.

Erythrocytes from tadpole of two sentinal species
Rana clamitans and Rana pipiens have been used for
in situ genotoxicity monitoring of water bodies
(Ralph and Petras 1997). R. clamitans tadpoles
collected from agricultural regions showed signifi-
cantly higher (P<0.001) DNA damage than tadpoles
collected from sites of little or no agriculture.
Similarly, R. pipiens tadpoles collected from indus-
trial sites showed significantly higher (P<0.001)
DNA strand breaks than samples from the agricultural
areas. The higher levels of DNA damage may be due
to the pesticides used in the agricultural region.
Variation in DNA damage due to sampling time
(Ralph and Petras 1997) and during various meta-
morphosis states (Ralph and Petras 1998a) was also
observed. Hence, for biomonitoring environmental
genotoxicity using the Comet assay, pooling of early
tadpole phases could be helpful. Studies have also

been conducted on caged tadpoles in areas where
indigenous population is not present due to ecological
imbalance from pollution. R. clamitans and American
toad (Bufo americanus) tadpoles were caged at
polluted reference site and demonstarted significant
(P<0.05) increases in DNA damage, relative to
control tadpoles in the laboratory (Ralph and Petras
1998b). These results demonstrated that caged tad-
poles could be used for monitoring genotoxicity of
water habitats that do not support the survival of
tadpoles, e.g., large lakes and aquatic areas near high
industrial activity.

Huang et al. (2007) have shown the genotoxicity of
petrochemicals in liver and erythrocytes of toad Bufo
raddeis. DNA damage was found to be positively
correlated to the concentration of petrochemicals in
liver, pointing to the fact that liver is the site for
metabolism and may be a good marker for studying
genotoxicity of compounds which require metabolic
activation. Effect of polyploidy on bleomycin-induced
DNA damage and repair in Xenopus laevis (pseudo-
tetraploid) and Xenopus tropicalis (diploid) was
studied using Comet assay (Banner et al. 2007). The
X. tropicalis was more sensitive with lower capacity
for repair than X. laevis, showing that polyploidy
protects DNA damage and allows rapid repair, and
hence, these species may be used as a good model for
DNA damage and repair studies.

Comet assay in birds

There are few studies involving Comet assay in birds
(Table 1). Genetic damage due to a mining accident
involving heavy metals has been reported in free-living,
nestling white storks (Ciconia ciconia) and black kites
(Milvus migrans) from southwestern Spain (Baos et al.
2006; Pastor et al. 2001a, b, 2004); however, species-
specific and intraspecies differences were observed.
Faullimel et al. (2005) showed that the neutral Comet
assay could be used to study the impact of freezing
and thawing on DNA integrity in breast fillets and
liver cells of frozen chicken. Frankic et al. (2006)
reported that T-2 toxin and deoxynivalenol (DON)
induced DNA fragmentation in chicken spleen leuko-
cytes which was abrograted by dietary nucleotides.
Kotłowska et al. (2007) have demonstrated increased
DNA fragmentation in turkey sperm after 48 h of
liquid storage and might be helpful in evaluating the
DNA integrity for artificial insemination.
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Comet assay in rodents

Mice and rats have been widely used as animal models
for the assessment of in vivo genotoxicity of chemicals
using the Comet assay (Table 1). The in vivo Comet
assay has been accepted by the UK Committee on
Mutagenicity testing of chemicals in food, consumer
products, and environment (COM 2000) as a test for
assessing DNA damage and is recommended for
follow-up testing of positive in vitro findings. A
positive result in the in vivo Comet assay assumes
significance if mutagenic potential of a chemical has
already been demonstrated in vitro. Within a battery of
tests, Comet assay finds place as a supplemental in
vivo test which has been accepted by international
guidelines (Brendler Schwaab et al. 2005). There are
specific guidelines for the performance of Comet assay
in vivo for reliable results (Tice et al. 2000; Hartmann
et al. 2003; Burlinson et al. 2007).

Multiple organs of mouse/rat including brain, blood,
kidney, lungs liver, and bone marrow have been utilized
for the comprehensive understanding of the systemic
genotoxicity of chemicals (Meng et al. 2004; Patel et al.
2006; Sasaki et al. 2000; Sekihashi et al. 2002). The
most important advantage of the use of Comet assay is
that DNA damage in any organ can be evaluated
without the need for mitotic activity and DNA damage
in target as well as non-target organs can also be seen
(Sasaki et al. 2000). A comprehensive data on
chemicals representing different classes, e.g., PAHs,
alkylating compounds, nitroso compounds, food addi-
tives, etc., that caused DNA strand breaks in various
organs of mice were compiled by Sasaki et al. (2000,
2002). The mouse or rat organs exhibiting increased
levels of DNA damage were not necessarily the target
organs for carcinogenicity. Therefore, for the predic-
tion of carcinogenicity of a chemical, organ-specific
genotoxicity was necessary but not sufficient (Sasaki et
al. 2002). The Comet assay can be used as an in vivo
test apart from the cytogenetic assays in hematopoietic
cells and also for those compounds which have poor
systemic bioavailability.

Different routes of exposure in rodents have been
used, e.g., intraperitoneal (Ansari et al. 2004; Patel et
al. 2006), oral (Risom et al. 2007; Wang et al. 2006),
and inhalation (Meng et al. 2005; Valverde et al.
2002), to study the genotoxicity of different chem-
icals. The route of exposure is an important determi-
nant of the genotoxicity of a chemical due to its mode

of action (Sekihashi et al. 2002). The in vivo comet
assay helps in hazard identification and assessment of
dose–response relationship as well as mechanistic
understanding of a substance’s mode of action.
Besides being used for testing the genotoxicity of
chemicals in laboratory-reared animals, Comet assay
in wild mice can be used as a valuable test in
pollution monitoring and environmental conservation
(Mateos et al. 2008).

In vivo Comet assay in rodents is an important test
model for genotoxicity studies, as many rodent
carcinogens are also human carcinogens, and hence,
this model not only provides an insight into the
genotoxicity of human carcinogens but also is suited
for studying their underlying mechanisms.

Comet assay in humans

Comet assay is a valuable method for detection of
occupational and environmental exposures to genotox-
icants in humans and can be used as a tool in risk
assessment for hazard characterization (Albertini et al.
2000; Dusinska and Collins 2008; Moller 2005, 2006a;
Table 1). DNA damage assessed by the Comet assay
gives an indication of recent exposure and at an early
stage where it could also undergo repair (Maluf and
Erdtmann 2001), and thus, it provides an opportunity
for intervention strategies to be implemented timely.
The assay can be conducted in the same population
after removal of genotoxicant/dietary intervention to
detect the extent of reduction in DNA damage. The
assay is a noninvasive technique compared to other
DNA damage techniques (chromosomal aberrations,
micronucleus), which require larger sample (~2–3 ml)
as well as proliferating cell population (or cell culture).
Human biomonitoring using the Comet assay is
advantageous, as it is rapid, cost-effective, easy
compilation of data and concordance with cytogenetic
assays (Faust et al. 2004a).

The assay has been widely used in studying DNA
damage and repair in healthy individuals (Bajpayee et
al. 2002, 2005; Betti et al. 1995; Collins 2004) in
clinical studies (Corrie et al. 2005; Wynne et al. 2007;
McKenna et al. 2008) as well as in dietary intervention
studies (Glei et al. 2005; Moller et al. 2004; Moller and
Loft 2002; Porrini et al. 2005; Wilms et al. 2005) and
in monitoring the risk of DNA damage resulting from
occupational (Güerci et al. 2006; Garaj-Vrhovac and
Zeljezic 2002; Piperakis et al. 2006; Srám and Binková
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2000), environmental (Gutiérrez-Castillo et al. 2006;
Pandey et al. 2005), oxidative DNA damage (Cavallo
et al. 2006b; Palus et al. 2005), exposures or lifestyle
(Avogbe et al. 2005; Dhawan et al. 2001). White blood
cells or lymphocytes are the most frequently used cell
type for Comet assay in human biomonitoring studies
(reviewed by Angerer et al. 2007; Faust et al. 2004a, b;
Moller 2006b); however, other cells have also been
used, e.g., buccal cells (Szeto et al. 2005), nasal
(Mussali- Galante et al. 2005), sperm (Delbes et al.
2007; Fraser 2004; Schmid et al. 2007; Singh et al.
2003), epithelial (Graham-Evans et al. 2004; Emri et
al. 2004; Rojas et al. 2000), and placental cells
(Augustowska et al. 2007).

The Comet assay has been used as a test to predict the
risk for development of diseases (renal cell carcinoma,
cancers of the bladder, oesophagus, and lung) due to
susceptibility of the individual to DNA damage
(Djuzenova et al. 1999; Lin et al. 2007; Schabath et
al. 2003; Shao et al. 2005). The in vitro Comet assay is
proposed as an alternative to cytogenetic assays in
early genotoxicity/photogenotoxicity screening of drug
candidates (Witte et al. 2007) as well for neurotoxicity.
Certain factors like age, diet, lifestyle (alcohol and
smoking), as well as diseases have been shown to
influence the Comet assay parameters, and for inter-
pretation of responses, these factors need to be
accounted for during monitoring human genotoxicity
(Anderson 2001; Moller et al. 2000).

Human biomonitoring studies using the Comet
assay provide an efficient tool for measuring human
exposure to genotoxicants, thus helping in risk
assessment and hazard identification.

Specificity, sensitivity, and limitations of the Comet
assay

The Comet assay has found worldwide acceptance for
detecting DNA damage and repair in prokaryotic and
eukaryotic cells. However, there are issues relating to
the specificity, sensitivity, and limitations of the assay
which need to be addressed by the genetic toxicolo-
gists before it gets accepted in the regulatory
framework including interlaboratory validation of in
vitro and in vivo Comet assay.

The variability in the results of the Comet assay is
largely due to its sensitivity and minor differences in
the conditions of various laboratories as well as the

effect of confounding factors in human studies
(lifestyle, age, diet, interindividual, and seasonal
variation). Prospective cohort studies have not been
conducted to find the predictive value of the Comet
assay in human biomonitoring, further limiting its
application (Moller 2006a). Cell to cell, gel to gel,
culture to culture, animal to animal variability as well
as use of various image analysis systems or visual
scoring (Forchhammer et al. 2008) and use of
different Comet parameters, e.g., Olive tail moment
and tail (%) DNA, are the other factors contributing to
interlaboratory differences in the results.

The limitation of the Comet assay is that it only
detects DNA damage in the form of strand breaks.
The alkaline (pH>13) version of the assay assesses
direct DNA damage or alkali labile sites, while
specific classes of DNA damage including base
oxidation and DNA adduct formation cannot be
measured. The specific and sensitive detection of
these lesions requires the use of lesion-specific
enzymes (Collins 2004). These enzymes are bacterial
glycosylase/endonuclease enzymes, which recognize
a particular damage and convert it into a break that
can then be measured in the Comet assay. Hence,
broad classes of oxidative DNA damage, alkylations,
and ultraviolet light-induced photoproducts can be
detected as increased amount of DNA in the tail
(Moller 2006a). Oxidized pyrimidines are detected
with use of endonuclease III, while oxidized purines
with formamidopyrimidine DNA glycosylase (FPG).
Modifications have been made in the protocol to
specifically detect double-strand breaks (neutral Com-
et assay; Singh 2000), single-strand breaks (at pH
12.1; Miyamae et al. 1997), DNA cross-links
(decrease in DNA migration due to cross-links, Singh
2000), and apoptosis (Singh 2000). Neutral comet
assay also helps to distinguish apoptosis from
necrosis as evidenced by the increased Comet score
in apoptotic cells and the almost zero Comet score in
necrotic cells (Yasuhara et al. 2003). An adaptation of
the Comet assay was also developed which enables
the discrimination of viable, apoptotic, and necrotic
single cells (Morley et al. 2006). Use of proteinase-K
specifically removes DNA–protein cross-links,
leading to increased migration but would not affect
the DNA–DNA cross-links, thereby indicating a
specific type of lesion (Singh 2000).

Tail (%) DNA and Olive tail moment give a good
correlation in genotoxicity studies (Kumaravel and
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Jha 2006), and as most studies have reported these
Comet parameters, it has been recommended that both
these parameters should be applied for routine use.
Since the OTM is reported as arbitrary units and
different image analysis systems give different values,
tail (%) DNA is considered a better parameter
(Kumaravel and Jha 2006).

It is therefore required that the in vitro and in vivo
testing be conducted according to the Comet assay
guidelines and appropriately designed multi-laborato-
ry international validation studies be carried out.

Guidelines for the in vitro as well as in vivo Comet
assay have been formulated (Hartmann et al. 2003;
Tice et al. 2000). Recently, issues relating to study
design and data analysis in Comet assay were
discussed by the International Workgroup on Geno-
toxicity Testing where particular attention was given
to the alkaline version (pH>13) of the in vivo Comet
assay and recommendations were made for a stan-
dardized protocol, which would be acceptable to
international agencies (Burlinson et al. 2007). It was
decided that a single dose should be replaced with
multiple dosing to avoid misinterpretation of data,
isolated cells or nuclei could be used for the studies,
cytotoxicity should be tested in the cells to prevent
mechanisms of apoptosis/necrosis from interfering
with the results, and scoring of comets could be
carried out both manually as well as with image
analysis systems. Consensus was also reached on the
need for an international validation study to strin-
gently evaluate the reliability and accuracy of the in
vivo Comet assay (as well as in vitro versions). These
recommendations are also aimed at reducing the
variability arising in inter-laboratories studies.

In vivo Comet assay has been accepted as the first-
tier screening assay for assessment of DNA damage
in rodents by the Committee on Mutagenicity, UK
(COM 2000), and international validation studies are
underway supported by ECVAM, Japanese Centre for
Validation of Alternative Methods (JaCVAM), US
Interagency Coordinating Committee on Validation of
Alternative Methods (ICCVAM), US National Toxi-
cology Program Interagency Centre for Evaluation of
Alternative Toxicological Methods (NICEATM), and
Japanese Environmental Mutagen Society (Burlinson
et al. 2007).

There has been only one multi-laboratory valida-
tion study in the European countries that has been
conducted to study the FPG-sensitive sites and

background level of base oxidation in DNA using
Comet assay in human lymphocytes (Gedik and
Collins 2005). It was found that half of the laborato-
ries demonstrated a dose–response effect. However,
many laboratories have carried out their own valida-
tion studies for DNA damage to optimize their
research work (Moller 2006a). Moller (2006b) has
critically evaluated the published Comet assay data on
human biomonitoring studies using blood cells from
22 countries and has established reference values for
DNA damage. The large number of biomonitoring
studies has indicated that the Comet assay is a useful
tool for detecting exposure, and its validation status as
a biomarker in biomonitoring is dependent on its
performance in cohort studies (Moller 2006a).

Conclusion

The Comet assay is now well established, and its
versatility has imparted a sensitive tool to the
toxicologists for assessing DNA damage. This has
been demonstrated with its wide applications in
assessing genotoxicity in plant and animal models,
both aquatic as well as terrestrial, in a variety of
organisms, tissues, and cell types. In vitro, in vivo, in
situ, and biomonitoring studies using the Comet assay
have proven it to be a Rossetta Stone in the garden of
Genetic Toxicology.

References

Akcha F, Vincent Hubert F, Pfhol-Leszkowicz A. Potential
value of the Comet assay and DNA adduct measurement
in dab (Limanda limanda) for assessment of in situ
exposure to genotoxic compounds. Mutat Res. 2003;534
(1–2):21–32.

Albertini RJ, Anderson D, Douglas GR, Hagmar L, Hemminki
K, Merlo F, et al. IPCS guidelines for the monitoring of
genotoxic effects of carcinogens in humans. Mutat Res.
2000;463:111–72.

Alink GM, Quik JT, Penders EJ, Spenkelink A, Rotteveel SG,
Maas JL, et al. Genotoxic effects in the Eastern mudmin-
now (Umbra pygmaea L.) after exposure to Rhine water,
as assessed by use of the SCE and Comet assays: a
comparison between 1978 and 2005. Mutat Res. 2007;631
(2):93–100.

Amado LL, Robaldo RB, Geracitano L, Monserrat JM,
Bianchini A. Biomarkers of exposure and effect in the
Brazilian flounder Paralichthys orbignyanus (Teleostei:

22 Cell Biol Toxicol (2009) 25:5–32



Paralichthyidae) from the Patos Lagoon estuary (Southern
Brazil). Mar Pollut Bull. 2006;52(2):207–13.

Anderson D. Factors that contribute to biomarker responses in
humans including a study in individuals taking vitamin C
supplementation. Mutat Res. 2001;480–481:337–47.

Angelis KJ, McGuffie M, Menke M, Schubert I. Adaptation to
alkylation damage in DNA measured by the Comet assay.
Environ Mol Mutagen. 2000;36(2):146–50.

Angerer J, Ewers U, Wilhelm M. Human biomonitoring: state
of the art. Int J Hyg Environ Health. 2007;210(3–4):
201–28.

Aniagu SO, Day N, Chipman JK, Taylor EW, Butler PJ, Winter
MJ. Does exhaustive exercise result in oxidative stress and
associated DNA damage in the chub (Leuciscus cepha-
lus)? Environ Mol Mutagen. 2006;47(8):616–23.

Annas A, Brittebo E, Hellman B. Evaluation of benzo(a)
pyrene-induced DNA damage in human endothelial cells
using alkaline single cell gel electrophoresis. Mutat Res.
2000;471(1–2):145–55.

Ansari KM, Chauhan LK, Dhawan A, Khanna SK, Das M.
Unequivocal evidence of genotoxic potential of argemone
oil in mice. Int J Cancer. 2004;112(5):890–5.

Ansari KM, Dhawan A, Khanna SK, Das M. In vivo DNA
damaging potential of sanguinarine alkaloid, isolated from
argemone oil, using alkaline Comet assay in mice. Food
Chem Toxicol. 2005;43(1):147–53.

Aoyama K, Iwahori K, Miyata N. Application of Euglena
gracilis cells to Comet assay: evaluation of DNA damage
and repair. Mutat Res. 2003;538(1–2):155–62.

Augustowska K, Magnowska Z, Kapiszewska M, Gregoraszczuk
EL. Is the natural PCDD/PCDF mixture toxic for human
placental JEG-3 cell line? The action of the toxicants
on hormonal profile, CYP1A1 activity, DNA damage
and cell apoptosis. Human Exp Toxicol. 2007;26
(5):407–17.

Augustyniak M, Juchimiuk J, Przybyłowicz WJ, Mesjasz-
Przybyłowicz J, Babczyńska A, Migula P. Zinc-induced
DNA damage and the distribution of metals in the brain
of grasshoppers by the Comet assay and micro-PIXE.
Comp Biochem Physiol C Toxicol Pharmacol. 2006;144
(3):242–51.

Avogbe PH, Ayi-Fanou L, Autrup H, Loft S, Fayomi B, Sanni
A, et al. Ultrafine particulate matter and high-level
benzene urban air pollution in relation to oxidative DNA
damage. Carcinogenesis. 2005;26(3):613–20.

Bajpayee M, Dhawan A, Parmar D, Pandey AK, Mathur N,
Seth PK. Gender-related differences in basal DNA
damage in lymphocytes of a healthy Indian population
using the alkaline Comet assay. Mutat Res. 2002;520
(1–2):83–91.

Bajpayee M, Pandey AK, Parmar D, Mathur N, Seth PK,
Dhawan A. Comet assay responses in human lymphocytes
are not influenced by the menstrual cycle: a study in
healthy Indian females. Mutat Res. 2005;565(2):163–72.

Bajpayee M, Pandey AK, Zaidi S, Musarrat J, Parmar D,
Mathur N, et al. DNA damage and mutagenicity induced
by endosulfan and its metabolites. Environ Mol Mutagen.
2006;47(9):682–92.

Bakare AA, Pandey AK, Bajpayee M, Bhargav D, Chowdhuri
DK, Singh KP, et al. DNA damage induced in human
peripheral blood lymphocytes by industrial solid waste

and municipal sludge leachates. Environ Mol Mutagen.
2007;48(1):30–7.

Banerjee P, Talapatra SN,Mandal N, SundaramG,Mukhopadhyay
A, Chattopadhyay D, et al. Genotoxicity study with special
reference to DNA damage by Comet assay in fission yeast,
Schizosaccharomyces pombe exposed to drinking water.
Food Chem Toxicol. 2008;46(1):402–7.

Banner SH, Ruben LN, Johnson RO. Bleomycin-induced DNA
damage and repair in Xenopus laevis and Xenopus tropicalis.
J Exp Zool Part A Ecol Genet Physiol. 2007;307(2):84–90.

Baos R, Jovani R, Pastor N, Tella JL, Jiménez B, Gómez G, et
al. Evaluation of genotoxic effects of heavy metals and
arsenic in wild nestling white storks (Ciconia ciconia) and
black kites (Milvus migrans) from southwestern Spain
after a mining accident. Environ Toxicol Chem. 2006;25
(10):2794–803.

Basaran N, Shubair M, Undeğer U, Kars A. Monitoring of
DNA damage in foundry and pottery workers exposed to
silica by the alkaline comet assay. Am J Ind Med. 2003;43
(6):602–10.

Belpaeme K, Delbeke K, Zhu L, Kirsch-Volders M. Cytoge-
netic studies of PCB77 on brown trout (Salmo trutta fario)
using the micronucleus test and the alkaline Comet assay.
Mutagenesis 1996;11(5):485–92.

Belpaeme K, Cooreman K, Kirsc-Volders M. Development and
validation of the in vivo alkaline Comet assay for
detecting genomic damage in marine flatfish. Mutat Res.
1998;415(3):167–84.

Benford DJ, Hanley AB, Bottrill K, Oehlschlager S, Balls M,
Branca F, et al. Biomarkers as predictive tools in toxicity
testing. Altern Lab Anim. 2000;28:119–31.

Betti C, Davini T, Giannessi L, Loprieno N, Barale R.
Comparative studies by Comet test and SCE analysis in
human lymphocytes from 200 healthy subjects. Mutat Res.
1995;343(4):201–7.

Bian Q, Xu LC, Wang SL, Xia YK, Tan LF, Chen JF, et al.
Study on the relation between occupational fenvalerate
exposure and spermatozoa DNA damage of pesticide
factory workers. Occup Environ Med. 2004;61(12):999–
1005.

Bilbao C, Ferreiro JA, Comendador MA, Sierra LM. Infuence
of mus201 and mus308 mutations of Drosophila mela-
nogaster on the genotoxicity of model chemicals in
somatic cells in vivo measured with the Comet assay.
Mutat Res. 2002;503:11–9.

Bolognesi C, Buschini A, Branchi E, Carboni P, Furlini M,
Martino A, et al. Comet and micronucleus assays in zebra
mussel cells for genotoxicity assessment of surface
drinking water treated with three different disinfectants.
Sci Total Environ. 2004;333(1–3):127–36.

Botta C, Iarmarcovai G, Chaspoul F, Sari-Minodier I, Pompili
J, Orsière T, et al. Assessment of occupational exposure to
welding fumes by inductively coupled plasma-mass
spectroscopy and by the alkaline Comet assay. Environ
Mol Mutagen. 2006;47(4):284–95.

Brendler Schwaab S, Hartmann A, Pfuhler S, Speit G. The in
vivo Comet assay: use and status in genotoxicity testing.
Mutagenesis 2005;20(4):245–54.

Buehrlen M, Harréus UA, Gamarra F, Hagen R, Kleinsasser
NH. Cumulative genotoxic and apoptotic effects of xeno-
biotics in a mini organ culture model of human nasal

Cell Biol Toxicol (2009) 25:5–32 23



mucosa as detected by the alkaline single cell microgel
electrophoresis assay and the annexin V-affinity assay.
Toxicol Lett. 2007;169(2):152–61.

Bürger S, Schindler D, Fehn M, Mühl B, Mahrhofer H, Flentje
M, et al. Radiation-induced DNA damage and repair in
peripheral blood mononuclear cells from Nijmegen break-
age syndrome patients and carriers assessed by the Comet
assay. Environ Mol Mutagen. 2006;47(4):260–70.

Burlinson B, Tice RR, Speit G, Agurell E, Brendler-Schwaab
SY, Collins AR, et al. In Vivo Comet Assay Workgroup,
part of the Fourth International Workgroup on Genotox-
icity Testing. Fourth International Workgroup on Geno-
toxicity testing: results of the In Vivo Comet Assay
Workgroup. Mutat Res. 2007;627(1):31–5.

Buschini A, Carboni P, Martino A, Poli P, Rossi C. Effects of
temperature on baseline and genotoxicant-induced DNA
damage in haemocytes of Dreissena polymorpha. Mutat
Res. 2003;537(1):81–92.

Buschini A, Martino A, Gustavino B, Monfrinotti M, Poli P,
Rossi C, et al. Comet assay and micronucleus test in
circulating erythrocytes of Cyprinus carpio specimens
exposed in situ to lake waters treated with disinfectants for
potabilization. Mutat Res. 2004;557(2):119–29.

Bustos-Obregon E, Goicochea RI. Pesticide soil contamination
mainly affects earthworm male reproductive parameters.
Asian J Androl. 2002;4(3):195–9.

Cabrita E, Robles V, Rebordinos L, Sarasquete C, Herráez MP.
Evaluation of DNA damage in rainbow trout (Oncorhyn-
chus mykiss) and gilthead sea bream (Sparus aurata)
cryopreserved sperm. Cryobiology. 2005;50(2):144–53.

Cavallo D, Ursini CL, Carelli G, Iavicoli I, Ciervo A, Perniconi
B, et al. Occupational exposure in airport personnel:
characterization and evaluation of genotoxic and oxidative
effects. Toxicology. 2006a;223(1–2):26–35.

Cavallo D, Ursini CL, Bavazzano P, Cassinelli C, Frattini A,
Perniconi B, et al. Sister chromatid exchange and
oxidative DNA damage in paving workers exposed to
PAHs. Ann Occup Hyg. 2006b;50(3):211–8.

Cavas T, Könen S. Detection of cytogenetic and DNA damage in
peripheral erythrocytes of goldfish (Carassius auratus)
exposed to a glyphosate formulation using the micronucleus
test and the Comet assay. Mutagenesis. 2007;22(4):263–8.

Cemeli E, Smith IF, Peers C, Urenjak J, Godukhin OV,
Obrenovitch TP, et al. Oxygen-induced DNA damage in
freshly isolated brain cells compared with cultured
astrocytes in the Comet assay. Teratog Carcinog Mutagen
2003;23(Suppl 2):43–52.

Chemeris NK, Gapeyev AB, Sirota NP, Gudkova OY, Kor-
nienko NV, Tankanag AV, et al. DNA damage in frog
erythrocytes after in vitro exposure to a high peak-power
pulsed electromagnetic field. Mutat Res. 2004;558
(1–2):27–34.

Chen Z, Lou J, Chen S, Zheng W, Wu W, Jin L, et al.
Evaluating the genotoxic effects of workers exposed to
lead using micronucleus assay, Comet assay and TCR
gene mutation test. Toxicology. 2006;223(3):219–26.

Clements C, Ralph S, Petras M. Genotoxicity of select
herbicides in Rana catesbeiana tadpoles using the alkaline
single-cell gel DNA electrophoresis (Comet) assay. Envi-
ron Mol Mutagen. 1997;29(3):277–88.

Collins AR. The Comet assay for DNA damage and repair
principles, applications, and limitations. Mol Biotechnol.
2004;26:249–60.

COM (Committee on Mutagenicity of Chemicals in Food,
Consumer Products and the Environment), COM guidance
on a strategy for testing of chemicals for mutagenicity,
United Kingdom, December 2000.

Conners DE, Black MC. Evaluation of lethality and genotox-
icity in the freshwater mussel Utterbackia imbecillis
(Bivalvia: Unionidae) exposed singly and in combination
to chemicals used in lawn care. Arch Environ Contam
Toxicol. 2004;46(3):362–71.

Cordelli E, Cinelli S, Lascialfari A, Ranaldi R, Pacchierotti F.
Melphalan-induced DNA damage in p53(+/−) and wild
type mice analysed by the Comet assay. Mutat Res.
2004;550(1–2):133–43.

Cordelli E, Fresegna AM, D’Alessio A, Eleuteri P, Spano M,
Pacchierotti F, et al. ReProComet: a new in vitro method
to assess dna damage in mammalian sperm. Toxicol Sci.
2007;99(2):545–52. October 1.

Corrie PG, Shaw J, Spanswick VJ, Sehmbi R, Jonson A, Mayer
A, et al. Phase I trial combining gemcitabine and
treosulfan in advanced cutaneous and uveal melanoma
patients. Br J Cancer. 2005;92(11):1997–2003.

Cotelle S, Ferard JF. Comet assay in genetic ecotoxicology: a
review. Environ Mol Mutagen. 1999;34:246–55.

Coughlan BM, Hartl MG, O’Reilly SJ, Sheehan D, Morthersill
C, van Pelt FN, et al. Detecting genotoxicity using the
Comet assay following chronic exposure of Manila clam
Tapes semidecussatus to polluted estuarine sediments. Mar
Pollut Bull. 2002;44(12):1359–65.

Dailianis S, Piperakis SM, Kaloyianni M. Cadmium effects on
ros production and DNA damage via adrenergic receptors
stimulation: role of Na+ /H+ exchanger and PKC. Free
Radic Res. 2005;39(10):1059–70.

da Silva J, Herrmann SM, Heuser V, Peres W, Possa Marroni N,
González-Gallego J, et al. Evaluation of the genotoxic
effect of rutin and quercetin by comet assay and
micronucleus test. Food Chem Toxicol. 2002;40(7):941–7.

de Andrade VM, de Freitas TR, da Silva J. Comet assay using
mullet (Mugil sp.) and sea catfish (Netuma sp.) eryth-
rocytes for the detection of genotoxic pollutants in aquatic
environment. Mutat Res. 2004a;560(1):57–67.

de Andrade VM, Silva J, Silva FR, Heuser VD, Dias JF,
Yoneama ML, et al. Fish as bioindicators to assess the
effects of pollution in two southern Brazilian rivers using
the Comet assay and micronucleus test. Environ Mol
Mutagen. 2004b;44(5):459–68.

De Boeck M, Kirsch-Volders M. Nereis virens (Annelida:
Polychaeta) is not an adequate sentinel species to assess
the genotoxicrisk (Comet assay) of PAH exposure to the
environment. Environ Mol Mutagen. 1997;30:82–90.

Delbes G, Hales BF, Robaire B. Effects of the chemotherapy
cocktail used to treat testicular cancer on sperm chromatin
integrity. J Androl. 2007;28(2):241–51.

de Miranda Cabral Gontijo AM, Barreto RE, Speit G,
Valenzuela Reyes VA, Volpato GL, Favero Salvadori
DM. Anesthesia of fish with benzocaine does not
interfere with comet assay results. Mutat Res. 2003;534
(1–2):165–72.

24 Cell Biol Toxicol (2009) 25:5–32



Dhawan A, Mathur N, Seth PK. The effect of smoking and eating
habits on DNA damage in Indian population as measured in
the Comet assay. Mutat Res. 2001;474(1–2):121–8.

Dhawan A, Anderson D, de Pascual-Teresa S, Santos-Buelga
C, Clifford MN, Ioannides C. Evaluation of the antigeno-
toxic potential of monomeric and dimeric flavanols, and
black tea polyphenols against heterocyclic amine-induced
DNA damage in human lymphocytes using the Comet
assay. Mutat Res. 2002;515(1–2):39–56.

Dhawan A, Taurozzi JS, Pandey AK, Shan W, Miller SM,
Hashsham SA, et al. Stable colloidal dispersions of C60
fullerenes in water: evidence for genotoxicity. Environ Sci
Technol. 2006;40(23):7394–401.

Di Marzio WD, Saenz ME, Lemière S, Vasseur P. Improved
single-cell gel electrophoresis assay for detecting DNA
damage in Eisenia foetida. Environ Mol Mutagen.
2005;46(4):246–52.

Dixon DR, Pruski AM, Dixon LR. The effects of hydrostatic
pressure change on DNA integrity in the hydrothermal-vent
mussel Bathymodiolus azoricus: implications for future
deep-sea mutagenicity studies. Mutat Res. 2004;552
(1–2):235–46.

Djuzenova CS, Schindler D, Stopper H, Hoehn H, Flentje M,
Oppitz U. Identification of ataxia telangiectasia hetero-
zygotes, a cancer-prone population, using the single-cell
gel electrophoresis (Comet) assay. Lab Invest. 1999;79
(6):699–705.

Djuzenova CS, Mühl B, Fehn M, Oppitz U, Müller B, Flentje
M. Radiosensitivity in breast cancer assessed by the
Comet and micronucleus assays. Br J Cancer. 2006;94
(8):1194–203.

Dusinská M, Collins A, Kazimírová A, Barancoková M,
Harrington V, Volkovová K, et al. Genotoxic effects of
asbestos in humans. Mutat Res. 2004;553(1–2):91–102.

Dusinska M, Collins AR. The comet assay in human biomoni-
toring: gene–environment interactions. Mutagenesis. 2008
(March 7, in press) DOI 10.1093/mutage/gen007.

Emri G, Schaefer D, Held B, Herbst C, Zieger W, Horkay I, et
al. Low concentrations of formaldehyde induce DNA
damage and delay DNA repair after UV irradiation in
human skin cells. Exp Dermatol. 2004;13(5):305–15.

Erbes M, Wessler A, Obst U, Wild A. Detection of primary
DNA damage in Chlamydomonas reinhardtii by means of
modified microgel electrophoresis. Environ Mol Mutagen.
1997;30(4):448–58.

Eren K, Ozmeriç N, Sardaş S. Monitoring of buccal epithelial
cells by alkaline Comet assay (single cell gel electropho-
resis technique) in cytogenetic evaluation of chlorhex-
idine. Clin Oral Investig. 2002;6(3):150–54.

Faullimel C, Ennahar S, Aoude-Werner D, Guterl P, Marchioni
E. DNA Comet assay for the detection of time–tempera-
ture abuse during the storage of poultry. J Food Prot.
2005;68(7):1414–20.

Faust F, Kassie F, Knasmüller S, Boedecker RH, Mann M,
Mersch-Sundermann V. The use of the alkaline Comet
assay with lymphocytes in human biomonitoring studies.
Mutat Res. 2004a;566(3):209–29.

Faust F, Kassie F, Knasmüller S, Kevekordes S, Mersch-
Sundermann V. Use of primary blood cells for the
assessment of exposure to occupational genotoxicants in

human biomonitoring studies. Toxicology. 2004b;198(1–
3):341–50.

Fedeli D, Berrettini M, Gabryelak T, Falcioni G. The effect of
some tannins on trout erythrocytes exposed to oxidative
stress. Mutat Res. 2004;563(2):89–96.

Feng S, Kong Z, Wang X, Zhao L, Peng P. Acute toxicity and
genotoxicity of two novel pesticides on amphibian, Rana
N. Hallowell. Chemosphere 2004;56(5):457–63.

Flamand N, Marrot L, Belaidi JP, Bourouf L, Dourille E, Feltes
M, et al. Development of genotoxicity test procedures with
Episkin, a reconstructed human skin model: towards new
tools for in vitro risk assessment of dermally applied
compounds? Mutat Res. 2006;606(1–2):39–51.

Folkmann JK, Loft S, Møller P. Oxidatively damaged DNA in
aging dyslipidemic ApoE−/− and wild-type mice. Muta-
genesis. 2007a;22(2):105–10.

Folkmann JK, Risom L, Hansen CS, Loft S, Møller P.
Oxidatively damaged DNA and inflammation in the liver
of dyslipidemic ApoE−/− mice exposed to diesel exhaust
particles. Toxicology. 2007b;237(1–3):134–44.

Forchhammer L, Brauner EV, Folkmann JK, Danielsen PH,
Nielsen C, Jensen A, et al. Variation in assessment of
oxidatively damaged DNA in mononuclear blood cells by
the comet assay with visual scoring. Mutagenesis. 2008
(March 7, in press) DOI 10.1093/mutage/gen006.

Fourie F, Reinecke SA, Reinecke AJ. The determination of
earthworm species sensitivity differences to cadmium
genotoxicity using the Comet assay. Ecotoxicol Environ
Saf. 2007;67(3):361–8.

Fracasso ME, Doria D, Franceschetti P, Perbellini L, Romeo L.
DNA damage and repair capacity by Comet assay in
lymphocytes of white-collar active smokers and passive
smokers (non- and ex-smokers) at workplace. Toxicol
Lett. 2006;167(2):131–41.

Frankic T, Pajk T, Rezar V, Levart A, Salobir J. The role of
dietary nucleotides in reduction of DNA damage induced
by T-2 toxin and deoxynivalenol in chicken leukocytes.
Food Chem Toxicol. 2006;44(11):1838–44.

Fraser L. Structural damage to nuclear DNA in mammalian
spermatozoa: its evaluation techniques and relationship
with male infertility. Pol J Vet Sci. 2004;7(4):311–21.

Frenzilli G, Nigro M, Scarcelli V, Gorbi S, Regoli F. DNA
integrity and total oxyradical scavenging capacity in the
Mediterranean mussel, Mytilus galloprovincialis: a field
study in a high eutrophicated coastal lagoon. Aquat
Toxicol. 2001;53:19–32.

Frenzilli G, Scarcelli V, Del Barga I, Nigro M, Förlin L,
Bolognesi C, et al. DNA damage in eelpout (Zoarces
viviparus) from Göteborg harbour. Mutat Res. 2004;552
(1–2):187–95.

Frenzilli G, Scarcelli V, Fornai F, Paparelli A, Nigro M. The
comet assay as a method of assessment of neurotoxicity:
usefulness for drugs of abuse. Ann N Y Acad Sci.
2006;1074:478–81.

Gabbianelli R, Lupidi G, Villarini M, Falcioni G. DNA damage
induced by copper on erythrocytes of gilthead sea bream
Sparus aurata and mollusk Scapharca inaequivalvis. Arch
Environ Contam Toxicol. 2003;45(3):350–6.

Gabbianelli R, Moretti M, Carpenè E, Falcioni G. Effect of
different organotins on DNA of mollusk (Scapharca

Cell Biol Toxicol (2009) 25:5–32 25

http://dx.doi.org/10.1093/mutage/gen007
http://dx.doi.org/10.1093/mutage/gen006


inaequivalvis) erythrocytes assessed by the comet assay.
Sci Total Environ. 2006;367(1):163–69.

Gambelunghe A, Piccinini R, Ambrogi M, Villarini M, Moretti
M, Marchetti C, et al. Primary DNA damage in chrome-
plating workers. Toxicology. 2003;188(2–3):187–95.

Garaj-Vrhovac V, Zeljezic D. Assessment of genome damage in
a population of Croatian workers employed in pesticide
production by chromosomal aberration analysis, micronu-
cleus assay and Comet assay. J Appl Toxicol. 2002;22
(4):249–55.

García Sar D, Montes-Bayón M, Aguado Ortiz L, Blanco-
González E, Sierra LM, Sanz-Medel A. In vivo detection
of DNA adducts induced by cisplatin using capillary
HPLC-ICP-MS and their correlation with genotoxic
damage in Drosophila melanogaster. Anal Bioanal Chem.
2008;390(1):37–44.

Gedik C, Ewen S, Collins A. Single-cell gel electrophoresis
applied to the analysis of UV-C damage and its repair in
human cells. Int J Radiat Biol. 1992;62:313–20.

Gedik CM, Collins A, ESCODD (European Standards Com-
mittee on Oxidative DNA Damage). Establishing the
background level of base oxidation in human lymphocytes
DNA: results of an interlaboratory validation study.
FASEB J 2005;19(1):82–4.

Gichner T. Differential genotoxicity of ethyl methanesulpho-
nate, N-ethyl-N-nitrosourea and maleic hydrazide in
tobacco seedlings based on data of the Comet assay and
two recombination assays. Mutat Res. 2003a;538(1–
2):171–9.

Gichner T. DNA damage induced by indirect and direct acting
mutagens in catalase-deficient transgenic tobacco. Cellular
and acellular Comet assays. Mutat Res. 2003b;535
(2):187–93.

Gichner T, Plewa MJ. Induction of somatic DNA damage as
measured by single cell gel electrophoresis and point
mutation in leaves of tobacco plants. Mutat Res. 1998;401
(1–2):143–52.

Gichner T, Ptácek O, Stavreva DA, Plewa MJ. Comparison of
DNA damage in plants as measured by single cell gel
electrophoresis and somatic leaf mutations induced by
monofunctional alkylating agents. Environ Mol Mutagen.
1999;33(4):279–86.

Gichner T, Ptácek O, Stavreva DA, Wagner ED, Plewa MJ. A
comparison of DNA repair using the Comet assay in
tobacco seedlings after exposure to alkylating agents or
ionizing radiation. Mutat Res. 2000;470(1):1–9.

Gichner T, Patková Z, Száková J, Demnerová K. Toxicity and
DNA damage in tobacco and potato plants growing on soil
polluted with heavy metals. Ecotoxicol Environ Saf.
2006;65(3):420–6.

Gichner T, Lovecká P, Kochánková L, Macková M, Demnerová
K. Monitoring toxicity, DNA damage, and somatic
mutations in tobacco plants growing in soil heavily
polluted with polychlorinated biphenyls. Mutat Res.
2007;629(1):1–6.

Gielazyn ML, Ringwood AH, Piegorsch WW, Stancyk SE.
Detection of oxidative DNA damage in isolated marine
bivalve hemocytes using the Comet assay and formami-
dopyrimidine glycosylase (Fpg). Mutat Res. 2003;542(1–
2):15–22.

Glei M, Habermann N, Osswald K, Seidel C, Persin C, Jahreis
G, et al. Assessment of DNA damage and its modulation
by dietary and genetic factors in smokers using the Comet
assay: a biomarker model. Biomarkers. 2005;10(2–
3):203–17.

Graham-Evans B, Cohly HH, Yu H, Tchounwou PB. Arsenic-
induced genotoxic and cytotoxic effects in human kerati-
nocytes, melanocytes and dendritic cells. Int J Environ Res
Public Health. 2004;1(2):83–9.

Grant WF. Higher plant assays for the detection of
chromosomal aberrations and gene mutations—a brief
historical background on their use for screening and
monitoring environmental chemicals. Mutat Res.
1999;426:107–12.

Guecheva T, Henriques JA, Erdtmann B. Genotoxic effects of
copper sulphate in freshwater planarian in vivo, studied
with the single-cell gel test (comet assay). Mutat Res.
2001;497(1–2):19–27.

Güerci AM, Grillo CA, Dulout FN, Seoane AI. Assessment of
genotoxic damage in lymphocytes of hospital workers
exposed to ionizing radiation in Argentina. Arch Environ
Occup Health. 2006;61(4):163–9.

Guo L, Wang LH, Sun B, Yang JY, Zhao YQ, Dong YX, et al.
Direct in vivo evidence of protective effects of grape seed
procyanidin fractions and other antioxidants against
ethanol-induced oxidative DNA damage in mouse brain
cells. J Agric Food Chem. 2007;55(14):5881–91.

Gutiérrez-Castillo ME, Roubicek DA, Cebrián-García ME, De
Vizcaya-Ruíz A, Sordo-Cedeño M, Ostrosky-Wegman P.
Effect of chemical composition on the induction of DNA
damage by urban airborne particulate matter. Environ Mol
Mutagen. 2006;47(3):199–211.

Gwo JC, Wu CY, Chang WS, Cheng HY. Evaluation of damage
in Pacific oyster (Crassostrea gigas) spermatozoa before
and after cryopreservation using Comet assay. Cryo
Letters. 2003;24(3):171–80.

Hahn A, Hock B. Assessment of DNA damage in filamentous
fungi by single cell gel electrophoresis, Comet assay.
Environ Toxicol Chem. 1999;18:1421–24.

Hamouten D, Payne JF, Rahimtula A, Lee K. Use of the Comet
assay to assess DNA damage in hemocytes and digestive
gland cells of mussels and clams exposed to water
contaminated with petroleum hydrocarbons. Mar Environ
Res. 2002;54(3–5):471–4.

Hartl MG, Coughlan BM, Sheehan D, Mothersill C, van Pelt
FN, O’Reilly SJ, et al. Implications of seasonal priming
and reproductive activity on the interpretation of Comet
assay data derived from the clam, Tapes semidecussatus
Reeves 1864, exposed to contaminated sediments. Mar
Environ Res. 2004;57(4):295–310.

Hartl MG, Kilemade M, Sheehan D, Mothersill C, O’Halloran
J, O’Brien NM, et al. Hepatic biomarkers of sediment-
associated pollution in juvenile turbot, Scophthalmus
maximus L. Mar Environ Res. 2007;64(2):191–208.

Hartmann A, Agurell E, Beevers C, Brendler-Schwaab S,
Burlinson B, Clay P, et al. Recommendations for conduct-
ing the in vivo alkaline comet assay. Mutagenesis.
2003;18:45–51.

Heuser VD, Erdtmann B, Kvitko K, Rohr P, da Silva J.
Evaluation of genetic damage in Brazilian footwear-

26 Cell Biol Toxicol (2009) 25:5–32



workers: biomarkers of exposure, effect, and susceptibility.
Toxicology. 2007;232(3):235–47.

Hoffmann H, Högel J, Speit G. The effect of smoking on DNA
effects in the Comet assay: a meta-analysis. Mutagenesis.
2005a;20(6):455–66.

Hoffmann H, Isner C, Högel J, Speit G. Genetic polymor-
phisms and the effect of cigarette smoking in the Comet
assay. Mutagenesis. 2005b;20(5):359–64.

Hook SE, Lee RF. Interactive effects of UV, benzo[alpha]
pyrene, and cadmium on DNA damage and repair in
embryos of the grass shrimp Paleomonetes pugio. Mar
Environ Res. 2004;58(2–5):735–39.

Horvat T, Kalafatić M, Kopjar N, Kovacević G. Toxicity testing
of herbicide norflurazon on an aquatic bioindicator species
—the planarian Polycelis felina (Daly). Aquat Toxicol.
2005;73(4):342–52.

Huang D, Zhang Y, Wang Y, Xie Z, Ji W. Assessment of the
genotoxicity in toad Bufo raddei exposed to petrochemical
contaminants in Lanzhou Region, China. Mutat Res.
2007;629(2):81–8.

Jacobsen NR, Saber AT, White P, Møller P, Pojana G, Vogel
U, et al. Increased mutant frequency by carbon black, but
not quartz, in the lacZ and cII transgenes of muta mouse
lung epithelial cells. Environ Mol Mutagen. 2007;48
(6):451–61.

Jha AN, Dogra Y, Turner A, Millward GE. Impact of low doses
of tritium on the marine mussel, Mytilus edulis: genotoxic
effects and tissue-specific bioconcentration. Mutat Res.
2005;586(1):47–57.

Kamer I, Rinkevich B. In vitro application of the Comet assay
for aquatic genotoxicity: considering a primary culture
versus a cell line. Toxicol In Vitro. 2002;16(2):177–84.

Kammann U, Riggers JC, Theobald N, Steinhart H. Genotoxic
potential of marine sediments from the North Sea. Mutat
Res. 2000;467(2):161–8.

Kang MH, Park YK, Kim HY, Kim TS. Green vegetable drink
consumption protects peripheral lymphocytes DNA dam-
age in Korean smokers. Biofactors. 2004;22(1–4):245–7.

Kassie F, Parzefall W, Knasmüller S. Single cell gel electro-
phoresis assay: a new technique for human biomonitoring
studies. Mutat Res. 2000;463(1):13–31.

Kim YD, Eom SY, Ogawa M, Oyama T, Isse T, Kang JW, Zhang
YW, Kawamoto T, Kim H. Ethanol-induced oxidative DNA
damage and CYP2E1 expression in liver tissue of Aldh2
knockout mice. J Occup Health. 2007;49(5):363–9.

Kleinsasser NH, Juchhoff J, Wallner BC, Bergner A, Harréus
UA, Gamarra F, et al. The use of mini-organ cultures of
human upper aerodigestive tract epithelia in ecogenotox-
icology. Mutat Res. 2004;561(1–2):63–73.

Klobucar GI, Pavlica M, Erben R, Papes D. Application of
the micronucleus and Comet assays to mussel Dreis-
sena polymorpha haemocytes for genotoxicity monitor-
ing of freshwater environments. Aquat Toxicol. 2003;64
(1):15–23.

Kopjar N, Garaj-Vrhovac V. Assessment of DNA damage in
nuclear medicine personnel—comparative study with the
alkaline Comet assay and the chromosome aberration test.
Int J Hyg Environ Health. 2005;208(3):179–91.

Koppen G, Toncelli LM, Triest L, Verschaeve L. The Comet
assay: a tool to study alteration of DNA integrity in

developing plant leaves. Mech Ageing Dev. 1999;110(1–
2):13–24.

Kosmehl T, Hallare AV, Reifferscheid G, Manz W, Braunbeck T,
Hollert H. A novel contact assay for testing genotoxicity of
chemicals and whole sediments in zebrafish embryos.
Environ Toxicol Chem. 2006;25(8):2097–106.

Kotłowska M, Dietrich G, Wojtczak M, Karol H, Ciereszko A.
Effects of liquid storage on amidase activity, DNA
fragmentation and motility of turkey spermatozoa. Ther-
iogenology. 2007;67(2):276–86.

Kumaravel TS, Jha AN. Reliable Comet assay measurements
for detecting DNA damage induced by ionising radiation
and chemicals. Mutat Res. 2006;605(1–2):7–16.

Kuzmick DM, Mitchelmore CL, Hopkins WA, Rowe CL.
Effects of coal combustion residues on survival, antioxi-
dant potential, and genotoxicity resulting from full-life-
cycle exposure of grass shrimp (Palaemonetes pugio
Holthius). Sci Total Environ. 2007;373(1):420–30.

Labbe C, Martoriati A, Devaux A, Maisse G. Effect of sperm
cryopreservation on sperm DNA stability and progeny
development in rainbow trout. Mol Reprod Dev. 2001;60
(3):397–404.

Labieniec M, Gabryelak T. Response of DNA, proteins and
membrane bilayer in the digestive gland cells of freshwa-
ter mussel Unio tumidus to tannins exposure. Toxicol In
Vitro. 2004;18(6):773–81.

Labieniec M, Gabryelak T. Oxidatively modified proteins and
DNA in digestive gland cells of the fresh-water mussel
Unio tumidus in the presence of tannic acid and its
derivatives. Mutat Res. 2006;603(1):48–55.

Labieniec M, Biernat M, Gabryelak T. Response of digestive
gland cells of freshwater mussel Unio tumidus to phenolic
compound exposure in vivo. Cell Biol Int. 2007;31
(7):683–90.

Laffon B, Fraga-Iriso R, Pérez-Cadahía B, Méndez J. Genotox-
icity associated to exposure to Prestige oil during
autopsies and cleaning of oil-contaminated birds. Food
Chem Toxicol. 2006a;44(10):1714–23.

Laffon B, Teixeira JP, Silva S, Roma-Torres J, Pérez-Cadahía
B, Méndez J, et al. Assessment of occupational genotoxic
risk in the production of rubber tyres. Ann Occup Hyg.
2006b;50(6):583–92.

Lah B, Malovrh S, Narat M, Cepeljnik T, Marinsek-Logar R.
Detection and quantification of genotoxicity in wastewa-
ter-treated Tetrahymena thermophila using the Comet
assay. Environ Toxicol. 2004;19(6):545–53.

Large AT, Shaw JP, Peters LD, McIntosh AD, Webster L, Mally
A, et al. Different levels of mussel (Mytilus edulis) DNA
strand breaks following chronic field and acute laboratory
exposure to polycyclic aromatic hydrocarbons. Mar
Environ Res. 2002;54(3–5):493–7.

Lee RF, Steinert S. Use of the single cell gel electrophoresis/
Comet assay for detecting DNA damage in aquatic (marine
and freshwater) animals. Mutat Res. 2003;544:43–64.

Lee RF, Maruya KA, Bulski K. Exposure of grass shrimp to
sediments receiving highway runoff: effects on reproduc-
tion and DNA. Mar Environ Res. 2004;58(2–5):713–7.

Lehmann J, Pollet D, Peker S, Steinkraus V, Hoppe U. Kinetics
of DNA strand breaks and protection by antioxidants in
UVA- or UVB-irradiated HaCaT keratinocytes using the

Cell Biol Toxicol (2009) 25:5–32 27



single cell gel electrophoresis assay. Mutat Res. 1998;407
(2):97–108.

Lin X, Wood CG, Shao L, Huang M, Yang H, Dinney CP, et al.
Risk assessment of renal cell carcinoma using alkaline
Comet assay. Cancer. 2007;110(2):282–8.

Lu Y, Morimoto K, Takeshita T, takeuchi T, Saito T. Genotoxic
effects of a-endosulfan and b-endosulfan on human
HepG2 cells. Environ Health Perspect. 2000;108:559–61.

Ma T, Xu Z, Xu C, McConnell H, Rabago EV, Arreola GA, et
al. The improved Allium/Vicia root tip micronucleus assay
for clastogenicity of environmental pollutants. Mutat Res.
1995;334:185–95.

Machella N, Battino M, Pisanelli B, Regoli F. Influence of the
SCGE protocol on the amount of basal DNA damage
detected in the Mediterranean mussel, Mytilus gallopro-
vincialis. Environ Mol Mutagen. 2006;47(8):579–86.

Mamaca E, Bechmann RK, Torgrimsen S, Aas E, Bjørnstad A,
Baussant T, et al. The neutral red lysosomal retention
assay and Comet assay on haemolymph cells from mussels
(Mytilus edulis) and fish (Symphodus melops) exposed to
styrene. Aquat Toxicol. 2005;75(3):191–201.

Maluf SW, Erdtmann B. Genomic instability in Down
syndrome and Fanconi anemia assessed by micronucleus
analysis and single-cell gel electrophoresis. Cancer Genet
Cytogenet. 2001;124(1):71–5.

Maluszynska J, Juchimiuk J. Plant genotoxicity: a molecular
cytogenetic approach in plant bioassays. Arh Hig Rada
Toksikol. 2005;56(2):177–84.

Martin FL, Cole KJ, Muir GH, Kooiman GG, Williams JA,
Sherwood RA, et al. Primary cultures of prostate cells and
their ability to activate carcinogens. Prostate Cancer
Prostatic Dis. 2002;5(2):96–104.

Martin FL, Piearce TG, Hewer A, Phillips DH, Semple KT. A
biomarker model of sublethal genotoxicity (DNA single-
strand breaks and adducts) using the sentinel organism
Aporrectodea longa in spiked soil. Environ Pollut.
2005;138(2):307–15.

Mastaloudis A, Yu TW, O’Donnell RP, Frei B, Dashwood RH,
Traber MG. Endurance exercise results in DNA damage as
detected by the Comet assay. Free Radic Biol Med.
2004;36(8):966–75.

Masuda S, Deguchi Y, Masuda Y, Watanabe T, Nukaya H,
Terao Y, et al. Genotoxicity of 2-[2-(acetylamino)-4-[bis
(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-
bromo-4-chloro-2H-benzotriazole (PBTA-6) and 4-amino-
3,3¢-dichloro-5,4¢-dinitro-biphenyl (ADDB) in goldfish
(Carassius auratus) using the micronucleus test and the
Comet assay. Mutat Res. 2004;560(1):33–40.

Mateos S, Daza P, Domínguez I, Cárdenas JA, Cortés F.
Genotoxicity detected in wild mice living in a highly
polluted wetland area in south western Spain. Environ
Pollut 2008 (in press) DOI 10.1016/j.envpol.2007.09.008.

McKelvey-Martin VJ, Green MH, Schmezer P, Pool-Zobel BL,
De Méo MP, Collins A. The single cell gel electrophoresis
assay (Comet assay): a European review. Mutat Res.
1993;288(1):47–63.

McKelvey-Martin VJ, Melia N, Walsh IK, Johnston SR,
Hughes CM, Lewis SE, et al. Two potential clinical
applications of the alkaline single-cell gel electrophoresis
assay: (1). Human bladder washings and transitional cell

carcinoma of the bladder; and (2). Human sperm and male
infertility. Mutat Res. 1997;375(2):93–104.

McKenna DJ, McKeown SR, McKelvey-Martin VJ. Potential
use of the comet assay in the clinical management of
cancer. Mutagenesis. 2008 (February 5, in press) DOI
10.1093/mutage/gem054.

Meng Z, Qin G, Zhang B, Bai J. DNA damaging effects of
sulfur dioxide derivatives in cells from various organs of
mice. Mutagenesis. 2004;19(6):465–8.

Meng Z, Qin G, Zhang B. DNA damage in mice treated with
sulfur dioxide by inhalation. Environ Mol Mutagen. 2005;46
(3):150–5.

Menke M, Meister A, Schubert I. N-Methyl-N-nitrosourea-
induced DNA damage detected by the Comet assay in Vicia
faba nuclei during all interphase stages is not restricted to
chromatid aberration hot spots. Mutagenesis. 2000;15
(6):503–6.

Migliore L, Fontana I, Trippi F, Colognato R, Coppedè F,
Tognoni G, et al. Oxidative DNA damage in peripheral
leukocytes of mild cognitive impairment and AD patients.
Neurobiol Aging. 2005;26(5):567–73.

Mitchelmore CL, Chipman JK. DNA strand breakage in aquatic
organisms and the potential value of the Comet assay in
environmental monitoring. Mutat Res. 1998a;399:135–47.

Mitchelmore CL, Birmelin C, Livingstone DR, Chipman JK.
Detection of DNA strand breaks in isolated mussel
(Mytilus edulis L.) digestive gland cells using the “Comet”
assay. Ecotoxicol Environ Saf. 1998b;41(1):51–8.

Mitchelmore CL, Hyatt S. Assessing DNA damage in cnidar-
ians using the Comet assay. Mar Environ Res. 2004;58(2–
5):707–11.

Miyamae Y, Iwasaki K, Kinae N, Tsuda S, Murakami M,
Tanaka M, et al. Detection of DNA lesions induced by
chemical mutagens by the single cell gel electrophoresis
(Comet) assay: relationship between DNA migration and
alkaline conditions. Mutat Res. 1997;393:107–13.

Moller P. Genotoxicity of environmental agents assessed by the
alkaline Comet assay. Basic Clin Pharmacol Toxicol.
2005;96:1–42.

Moller P. The alkaline Comet assay: towards validation in
biomonitoring of DNA damaging exposures. Basic Clin
Pharmacol Toxicol. 2006a;98(4):336–45.

Moller P. Assessment of reference values for DNA damage
detected by the Comet assay in human blood cell DNA.
Mutat Res. 2006b;612(2):84–104.

Moller P, Loft S. Oxidative DNA damage in human white
blood cells in dietary antioxidant intervention studies. Am
J Clin Nutr. 2002;76(2):303–10.

Moller P, Knudsen LE, Loft S, Wallin H. The Comet assay as a
rapid test in biomonitoring occupational exposure to
DNA-damaging agents and effect of confounding factors.
Cancer Epidemiol Biomarkers Prev. 2000;9(10):1005–15.

Moller P, Viscovich M, Lykkesfeldt J, Loft S, Jensen A,
Poulsen HE. Vitamin C supplementation decreases oxida-
tive DNA damage in mononuclear blood cells of smokers.
Eur J Nutr. 2004;43(5):267–74.

Morley N, Rapp A, Dittmar H, Salter L, Gould D, Greulich
KO, et al. UVA-induced apoptosis studied by the new apo/
necro-Comet-assay which distinguishes viable, apoptotic
and necrotic cells. Mutagenesis. 2006;21(2):105–14.

28 Cell Biol Toxicol (2009) 25:5–32

http://dx.doi.org/10.1016/j.envpol.2007.09.008
http://dx.doi.org/10.1093/mutage/gem054


Mouchet F, Gauthier L, Mailhes C, Ferrier V, Devaux A.
Comparative study of the Comet assay and the micronu-
cleus test in amphibian larvae (Xenopus laevis) using
benzo(a)pyrene, ethyl methanesulfonate, and methyl meth-
anesulfonate: establishment of a positive control in the
amphibian Comet assay. Environ Toxicol. 2005a;20
(1):74–84.

Mouchet F, Gauthier L, Mailhes C, Jourdain MJ, Ferrier V,
Devaux A. Biomonitoring of the genotoxic potential of
draining water from dredged sediments, using the Comet
and micronucleus tests on amphibian (Xenopus laevis)
larvae and bacterial assays (Mutatox and Ames tests).
Toxicol Environ Health A. 2005b;68(10):811–32.

Mouchet F, Gauthier L, Mailhes C, Ferrier V, Devaux A.
Comparative evaluation of genotoxicity of captan in
amphibian larvae (Xenopus laevis and Pleurodeles waltl)
using the Comet assay and the micronucleus test. Environ
Toxicol. 2006;21(3):264–77.

Mouchet F, Gauthier L, Baudrimont M, Gonzalez P, Mailhes
C, Ferrier V, et al. Comparative evaluation of the toxicity
and genotoxicity of cadmium in amphibian larvae
(Xenopus laevis and Pleurodeles waltl) using the Comet
assay and the micronucleus test. Environ Toxicol. 2007;22
(4):422–35.

Mukhopadhyay I, Saxena DK, Bajpai VK, Kar Chowdhuri D.
Argemone oil induced cellular damage in the reproductive
tissues of transgenic Drosophila melanogaster: protective
role of 70 kDa heat shock protein. J Biochem Mol Toxicol.
2003;17:223–33.

Mukhopadhyay I, Chowdhuri DK, Bajpayee M, Dhawan A.
Evaluation of in vivo genotoxicity of cypermethrin in
Drosophila melanogaster using the alkaline Comet assay.
Mutagenesis. 2004;19(2):85–90.

Mussali-Galante P, Avila-Costa MR, Piñón-Zarate G, Martínez-
Levy G, Rodríguez-Lara V, Rojas-Lemus M, et al. DNA
damage as an early biomarker of effect in human health.
Toxicol Ind Health. 2005;21(7–8):155–66.

Nazir A, Saxena DK, Kar Chowdhuri D. Induction of hsp70 in
transgenic Drosophila: biomarker of exposure against
phthalimide group of chemicals. Biochim Biophys Acta.
2003;1621:218–25.

Nehls S, Segner H. Detection of DNA damage in two cell lines
from rainbow trout, RTG-2 and RTL-W1, using the Comet
assay. Environ Toxicol. 2001;16(4):321–9.

Nehls S, Segner H. Comet assay with the fish cell line rainbow
trout gonad-2 for in vitro genotoxicity testing of xeno-
biotics and surface waters. Environ Toxicol Chem.
2005;24(8):2078–87.

Nigro M, Frenzilli G, Scarcelli V, Gorbi S, Regoli F. Induction
of DNA strand breakage and apoptosis in the eel Anguilla
anguilla. Mar Environ Res. 2002;54(3–5):517–20.

O’Donovan M. An evaluation of chromatin condensation and
DNA integrity in the spermatozoa of men with cancer
before and after therapy. Andrologia. 2005;37(2–3):83–90.

Olive PL, Banath JP. The Comet assay: a method to measure
DNA damage in individual cells. Nature Protocols 2006;1
(1):23–9.

Ostling O, Johanson KJ. Microelectrophoretic study of radiation-
induced DNA damages in individual mammalian cells.
Biochem Biophys Res Commun. 1984;123(1):291–8.

Palus J, Rydzynski K, Dziubaltowska E, Wyszynska K,
Natarajan AT, Nilsson R. Genotoxic effects of occupa-
tional exposure to lead and cadmium. Mutat Res.
2003;540(1):19–28.

Palus J, Lewinska D, Dziubaltowska E, Stepnik M, Beck J,
Rydzynski K, et al. DNA damage in leukocytes of workers
occupationally exposed to arsenic in copper smelters.
Environ Mol Mutagen. 2005;46(2):81–7.

Pandey AK, Bajpayee M, Parmar D, Rastogi SK, Mathur N, Seth
PK, et al. DNA damage in lymphocytes of rural Indian
women exposed to biomass fuel smoke as assessed by the
Comet assay. Environ Mol Mutagen. 2005;45(5):435–41.

Pandey AK, Bajpayee M, Parmar D, Rastogi SK, Mathur N,
Seth PK, et al. DNA damage in lymphocytes of Indian
rickshaw pullers as measured by the alkaline Comet assay.
Environ Mol Mutagen. 2006;47(1):25–30.

Pandrangi R, Petras M, Ralph S, Vrzoc M. Alkaline single cell
gel (Comet) assay and genotoxicity monitoring using
bullheads and carp. Environ Mol Mutagen. 1995;26
(4):345–56.

Park YK, Park E, Kim JS, Kang MH. Daily grape juice
consumption reduces oxidative DNA damage and plasma
free radical levels in healthy Koreans. Mutat Res.
2003;529(1–2):77–86.

Pastor N, López-Lázaro M, Tella JL, Baos R, Forrero MG,
Hiraldo F, et al. DNA damage in birds after the mining
waste spill in southwestern Spain: a Comet assay
evaluation. J Environ Pathol Toxicol Oncol. 2001a;20
(4):317–24.

Pastor N, López-Lázaro M, Tella JL, Baos R, Hiraldo F, Cortés
F. Assessment of genotoxic damage by the Comet assay in
white storks (Ciconia ciconia) after the Doñana ecological
disaster. Mutagenesis. 2001b;16(3):219–23.

Pastor N, Baos R, López-Lázaro M, Jovani R, Tella JL, Hajji
N, et al. A 4 year follow-up analysis of genotoxic
damage in birds of the Doñana area (south west Spain)
in the wake of the 1998 mining waste spill. Mutagenesis.
2004;19(1):61–5.

Patel S, Pandey A, Bajpayee M, Parmar D, Dhawan A.
Cypermethrin-induced DNA damage in organs and tissues
of the mouse: evidence from the comet assay. Mutat Res.
2006;607(2):176–83.

Patel S, Bajpayee M, Pandey A, Parmar D, Dhawan A. In vitro
induction of cytotoxicity and DNA strand breaks in CHO
cells exposed to cypermethrin, pendimethalin, and dichlor-
ovous. Toxicol In vitro. 2007;21:1409–12.

Pavlica M, Klobucar GI, Mojas N, Erben R, Papes D. Detection
of DNA damage in haemocytes of zebra mussel using
Comet assay. Mutat Res. 2001;490(2):209–14.

Paz-y-Mino C, Arévalo M, Sanchez ME, Leone PE. Chromo-
some and DNA damage analysis in individuals occupa-
tionally exposed to pesticides with relation to genetic
polymorphism for CYP 1A1 gene in Ecuador. Mutat Res.
2004;562(1–2):77–89.

Picada JN, Flores DG, Zettler CG, Marroni NP, Roesler R,
Henriques JA. DNA damage in brain cells of mice treated
with an oxidized form of apomorphine. Brain Res Mol
Brain Res. 2003;114(1):80–5.

Piperakis SM, Kontogianni K, Siffel C, Piperakis MM.
Measuring the effects of pesticides on occupationally

Cell Biol Toxicol (2009) 25:5–32 29



exposed humans with the Comet assay. Environ Toxicol.
2006;21(4):355–9.

Pitozzi V, Giovannelli L, Bardini G, Rotella CM, Dolara P.
Oxidative DNA damage in peripheral blood cells in type 2
diabetes mellitus: higher vulnerability of polymorphonu-
clear leukocytes. Mutat Res. 2003;529(1–2):129–33.

Poli P, Buschini A, Restivo FM, Ficarelli A, Cassoni F, Ferrero
I, et al. Comet assay application in environmental
monitoring: DNA damage in human leukocytes and plant
cells in comparison with bacterial and yeast tests.
Mutagen. 1999;14:547–55.

Popanda O, Ebbeler R, Twardella D, Helmbold I, Gotzes F,
Schmezer P, et al. Radiation-induced DNA damage and
repair in lymphocytes from breast cancer patients and their
correlation with acute skin reactions to radiotherapy. Int J
Radiat Oncol Biol Phys. 2003;55(5):1216–25.

Porrini M, Riso P, Brusamolino A, Berti C, Guarnieri S, Visioli
F. Daily intake of a formulated tomato drink affects
carotenoid plasma and lymphocyte concentrations and
improves cellular antioxidant protection. Br J Nutr.
2005;93(1):93–9.

Prá D, Lau AH, Knakievicz T, Carneiro FR, Erdtmann B.
Environmental genotoxicity assessment of an urban stream
using freshwater planarians. Mutat Res. 2005;585(1–
2):79–85.

Pruski AM, Dixon DR. Effects of cadmium on nuclear integrity
and DNA repair efficiency in the gill cells of Mytilus
edulis L. Aquat Toxicol. 2002;57(3):127–37.

Pruski AM, Dixon DR. Toxic vents and DNA damage: first
evidence from a naturally contaminated deep-sea environ-
ment. Aquat Toxicol. 2003;64(1):1–13.

Qiao M, Chen Y, Wang CX, Wang Z, Zhu YG. DNA damage
and repair process in earthworm after in-vivo and in vitro
exposure to soils irrigated by wastewaters. Environ Pollut.
2007;148(1):141–7.

Radyuk SN, Michalak K, Rebrin I, Sohal RS, Orr WC. Effects
of ectopic expression of Drosophila DNA glycosylases
dOgg1 and RpS3 in mitochondria. Free Radic Biol Med.
2006;41(5):757–64.

Rajaguru P, Kalpana R, Hema A, Suba S, Baskarasethupathi B,
Kumar PA, et al. Genotoxicity of some sulfur dyes on
tadpoles (Rana hexadactyla) measured using the Comet
assay. Environ Mol Mutagen. 2001;38(4):316–22.

Rajaguru P, Suba S, Palanivel M, Kalaiselvi K. Genotoxicity of
a polluted river system measured using the alkaline Comet
assay on fish and earthworm tissues. Environ Mol
Mutagen. 2003;41(2):85–91.

Ralph S, Petras M. Genotoxicity monitoring of small bodies of
water using two species of tadpoles and the alkaline single cell
gel (Comet) assay. EnvironMolMutagen. 1997;29(4):418–30.

Ralph S, Petras M. Comparison of sensitivity to methyl
methanesulphonate among tadpole developmental stages
using the alkaline single-cell gel electrophoresis (Comet)
assay. Environ Mol Mutagen. 1998a;31(4):374–82.

Ralph S, Petras M. Caged amphibian tadpoles and in situ
genotoxicity monitoring of aquatic environments with the
alkaline single cell gel electrophoresis (Comet) assay.
Mutat Res. 1998b;413(3):235–50.

Rank J, Jensen K. Comet assay on gill cells and hemocytes
from the blue mussel Mytilus edulis. Ecotoxicol Environ
Saf. 2003;54(3):323–9.

Rank J, Jensen K, Jespersen PH. Monitoring DNA damage
in indigenous blue mussels (Mytilus edulis) sampled
from coastal sites in Denmark. Mutat Res. 2005;585
(1–2):33–42.

Reinecke SA, Reinecke AJ. The Comet assay as biomarker of
heavy metal genotoxicity in earthworms. Arch Environ
Contam Toxicol. 2004;46(2):208–15.

Ribeiro DA, Pereira PC, Machado JM, Silva SB, Pessoa AW,
Salvadori DM. Does toxoplasmosis cause DNA damage?
An evaluation in isogenic mice under normal diet or
dietary restriction. Mutat Res. 2004;559(1–2):169–76.

Ribeiro DA, Calvi SA, Picka MM, Persi E, de Carvalho TB,
Caetano PK, et al. DNA damage and nitric oxide synthesis
in experimentally infected Balb/c mice with Trypanosoma
cruzi. Exp Parasitol. 2007;116(3):296–301.

Risom L, Møller P, Dybdahl M, Vogel U, Wallin H, Loft S.
Dietary exposure to diesel exhaust particles and oxida-
tively damaged DNA in young oxoguanine DNA
glycosylase 1 deficient mice. Toxicol Lett. 2007;175
(1–3):16–23.

Risso-de Faverney C, Devaux A, Lafaurie M, Girard JP,
Bailly B, Rahmani R. Cadmium induces apoptosis and
genotoxicity in rainbow trout hepatocytes through gen-
eration of reactive oxygene species. Aquat Toxicol.
2001;53(1):65–76.

Riva C, Binelli A, Cogni D, Provini A. Evaluation of DNA
damage induced by decabromodiphenyl ether (BDE-209)
in hemocytes of Dreissena polymorpha using the Comet
and micronucleus assays. Environ Mol Mutagen. 2007;48
(9):735–43.

Rojas E, Valverde M, Lopez MC, Naufal I, Sanchez I, Bizarro
P, et al. Evaluation of DNA damage in exfoliated tear duct
epithelial cells from individuals exposed to air pollution
assessed by single cell gel electrophoresis assay. Mutat
Res. 2000;468(1):11–7.

Roy LA, Steinert S, Bay SM, Greenstein D, Sapozhnikova Y,
Bawardi O, et al. Biochemical effects of petroleum
exposure in hornyhead turbot (Pleuronichthys verticalis)
exposed to a gradient of sediments collected from a natural
petroleum seep in CA, USA. Aquat Toxicol 2003;65
(2):159–69.

Salagovic J, Gilles J, Verschaeve L, Kalina I. The Comet assay
for the detection of genotoxic damage in the earthworms: a
promising tool for assessing the biological hazards of
polluted sites. Folia Biol (Praha). 1996;42(1–2):17–21.

Sánchez P, Peñarroja R, Gallegos F, Bravo JL, Rojas E,
Benítez-Bribiesca L. DNA damage in peripheral lympho-
cytes of untreated breast cancer patients. Arch Med Res.
2004;35(6):480–3.

Sardas S, Izdes S, Ozcagli E, Kanbak O, Kadioglu E. The role
of antioxidant supplementation in occupational exposure
to waste anaesthetic gases. Int Arch Occup Environ
Health. 2006;80(2):154–9.

Sasaki YF, Sekihashi K, Izumiyama F, Nishidate E, Saga A,
Ishida K, et al. The comet assay with multiple mouse
organs: comparison of comet assay results and carcinoge-
nicity with 208 chemicals selected from the IARC
monographs and U.S. NTP Carcinogenicity Database. Crit
Rev Toxicol. 2000;30(6):629–799.

Sasaki YF, Kawaguchi S, Kamaya A, Ohshita M, Kabasawa K,
Iwama K, et al. The comet assay with 8 mouse organs:

30 Cell Biol Toxicol (2009) 25:5–32



results with 39 currently used food additives. Mutat Res.
2002;519:103–98.

Sastre MP, Vernet M, Steinert S. Single-cell gel/Comet assay
applied to the analysis of UV radiation-induced DNA
damage in Rhodomonas sp. (Cryptophyta). Photochem
Photobiol. 2001;74(1):55–60.

Schabath MB, Spitz MR, Grossman HB, Zhang K, Dinney CP,
Zheng PJ, et al. Genetic instability in bladder cancer
assessed by the Comet assay. J Natl Cancer Inst. 2003;95
(7):540–7.

Schmid TE, Eskenazi B, Baumgartner A, Marchetti F, Young S,
Weldon R, et al. The effects of male age on sperm DNA
damage in healthy non-smokers. Hum Reprod. 2007;22
(1):180–7.

Schnurstein A, Braunbeck T. Tail moment versus tail length
—application of an in vitro version of the Comet assay
in biomonitoring for genotoxicity in native surface
waters using primary hepatocytes and gill cells from
zebrafish (Danio rerio). Ecotoxicol Environ Saf. 2001;49
(2):187–96.

Sekihashi K, Yamamoto A, Matsumura Y, Ueno S, Watanabe-
Akanuma M, Kassie F, et al. Comparative investigation of
multiple organs of mice and rats in the Comet assay. Mutat
Res. 2002;517(1–2):53–75.

Shadnia S, Azizi E, Hosseini R, Khoei S, Fouladdel S,
Pajoumand A, et al. Evaluation of oxidative stress and
genotoxicity in organophosphorus insecticide formulators.
Hum Exp Toxicol. 2005;24(9):439–45.

Shao L, Lin J, Huang M, Ajani JA, Wu X. Predictors of
esophageal cancer risk: assessment of susceptibility to
DNA damage using Comet assay. Genes Chromosomes
Cancer. 2005;44(4):415–22.

Sharma S, Nagpure NS, Kumar R, Pandey S, Srivastava SK,
Singh PJ, et al. Studies on the genotoxicity of endosulfan
in different tissues of fresh water fish Mystus vittatus using
the Comet assay. Arch Environ Contam Toxicol. 2007;53
(4):617–23.

Shaw JP, Large AT, Chipman JK, Livingstone DR, Peters LD.
Seasonal variation in mussel Mytilus edulis digestive
gland cytochrome P4501A- and 2E-immunoidentified
protein levels and DNA strand breaks (Comet assay).
Mar Environ Res. 2000;50(1–5):405–9.

Shaw JP, Large AT, Donkin P, Evans SV, Staff FJ, Livingstone
DR, et al. Seasonal variation in cytochrome P450
immunopositive protein levels, lipid peroxidation and
genetic toxicity in digestive gland of the mussel Mytilus
edulis. Aquat Toxicol. 2004;67(4):325–36.

Shen H, Ong C. Detection of oxidative DNA damage in human
sperm and its association with sperm function and male
infertility. Free Radic Biol Med. 2000;28(4):529–36.

Siddique HR, Chowdhuri DK, Saxena DK, Dhawan A.
Validation of Drosophila melanogaster as an in vivo
model for genotoxicity assessment using modified alkaline
Comet assay. Mutagenesis. 2005a;20(4):285–90.

Siddique HR, Gupta SC, Dhawan A, Murthy RC, Saxena DK,
Chowdhuri DK. Genotoxicity of industrial solid waste
leachates in Drosophila melanogaster. Environ Mol
Mutagen. 2005b;46(3):189–97.

Singh NP. Microgels for estimation of DNA strand breaks,
DNA protein crosslinks and apoptosis. Mutat Res.
2000;455(1–2):111–27.

Singh NP, McCoy MT, Tice RR, Schneider EL. A simple
technique for quantitation of low levels of DNA damage in
individual cells. Exp Cell Res. 1988;175(1):184–91.

Singh NP, Stephens RE, Singh H, Lai H. Visual quantification
of DNA double-strand breaks in bacteria. Mutat Res.
1999;429:159–68.

Singh NP, Muller CH, Berger RE. Effects of age on DNA
double-strand breaks and apoptosis in human sperm. Fertil
Steril. 2003;80(6):1420–30.

Siu WH, Cao J, Jack RW, Wu RS, Richardson BJ, Xu L, et al.
Application of the Comet and micronucleus assays to the
detection of B[a]P genotoxicity in haemocytes of the
green-lipped mussel (Perna viridis). Aquat Toxicol.
2004;66(4):381–92.

Speit G, Witton-Davies T, Heepchantree W, Trenz K, Hoffmann
H. Investigations on the effect of cigarette smoking in the
Comet assay. Mutat Res. 2003;542(1–2):33–42.

Speit G, Hartmann A. The Comet assay: a sensitive genotox-
icity test for the detection of DNA damage. Methods Mol
Biol. 2005;291:85–95.

Srám RJ, Binková B. Molecular epidemiology studies on
occupational and environmental exposure to mutagens
and carcinogens, 1997–1999. Environ Health Perspect.
2000;108:57–70.

Steinert SA, Streib-Montee R, Leather JM, Chadwick DB.
DNA damage in mussels at sites in San Diego Bay. Mutat
Res. 1998;399:65–85.

Struwe M, Greulich KO, Suter W, Plappert-Helbig U. The
photo Comet assay—a fast screening assay for the
determination of photogenotoxicity in vitro. Mutat Res.
2007;632(1–2):44–57.

Sul D, Lee D, Im H, Oh E, Kim J, Lee E. Single strand DNA
breaks in T- and B-lymphocytes and granulocytes in
workers exposed to benzene. Toxicol Lett. 2002;134(1–
3):87–95.

Szeto YT, Benzie IF, Collins AR, Choi SW, Cheng CY, Yow
CM, et al. A buccal cell model Comet assay: development
and evaluation for human biomonitoring and nutritional
studies. Mutat Res. 2005;578(1–2):371–81.

Taban IC, Bechmann RK, Torgrimsen S, Baussant T, Sanni S.
Detection of DNA damage in mussels and sea urchins
exposed to crude oil using Comet assay. Marine Environ
Res. 2004;58:701–5.

Tiano L, Fedeli D, Santroni AM, Villarini M, Engman L, Falcioni
G. Effect of three diaryl tellurides, and an organoselenium
compound in trout erythrocytes exposed to oxidative stress
in vitro. Mutat Res. 2000;464(2):269–77.

Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A,
Kobayashi H, et al. The single cell gel/comet assay:
guidelines for in vitro and in vivo genetic toxicology
testing. Environ Mol Mutagen. 2000;35:206–21.

Tovalin H, Valverde M, Morandi MT, Blanco S, Whitehead L,
Rojas E. DNA damage in outdoor workers occupationally
exposed to environmental air pollutants. Occup Environ
Med. 2006;63(4):230–6.

Ursini CL, Cavallo D, Colombi A, Giglio M, Marinaccio A,
Iavicoli S. Evaluation of early DNA damage in healthcare
workers handling antineoplastic drugs. Int Arch Occup
Environ Health. 2006;80(2):134–40.

Vajpayee P, Dhawan A, Shanker R. Evaluation of the alkaline
Comet assay conducted with the wetlands plant Bacopa

Cell Biol Toxicol (2009) 25:5–32 31



monnieri L. as a model for ecogenotoxicity assessment.
Environ Mol Mutagen. 2006;47(7):483–9.

Valverde M, Fortoul TI, Díaz-Barriga F, Mejía J, del Castillo ER.
Genotoxicity induced in CD-1 mice by inhaled lead:
differential organ response. Mutagenesis. 2002;17(1):55–61.

Vandenhove H, Cuypers A, Van Hees M, Koppen G, Wannijn
J. Oxidative stress reactions induced in beans (Phaseolus
vulgaris) following exposure to uranium. Plant Physiol
and Biochem. 2006;44:795–805.

Vanzella TP, Martinez CB, Cólus IM. Genotoxic and mutagenic
effects of diesel oil water soluble fraction on a neotropical
fish species. Res. 2007;631(1):36–43.

Verschaeve L, Gilles J, Schoeters J, Van Cleuvenbergen R, De
Fre’ R. The single cell gel electrophoresis technique or
Comet test for monitoring dioxin pollution and effects. In:
Fiedler H, Frank H, Hutzinger O, Parzefall W, Riss A,
editors. Organohalogen compounds 11. Austria: Federal
Environmental Agency; 1993. p. 213–6.

Villarini M, Moretti M, Damiani E, Greci L, Santroni AM,
Fedeli D, et al. Detection of DNA damage in stressed trout
nucleated erythrocytes using the Comet assay: protection
by nitroxide radicals. Free Radic Biol Med. 1998;24(7–
8):1310–5.

Villela IV, de Oliveira IM, da Silva J, Henriques JA. DNA
damage and repair in haemolymph cells of golden mussel
(Limnoperna fortunei) exposed to environmental contam-
inants. Mutat Res. 2006;605(1–2):78–86.

Villela IV, de Oliveira IM, Silveira JC, Dias JF, Henriques JA, da
Silva J. Assessment of environmental stress by the micro-
nucleus and Comet assays on Limnoperna fortunei exposed
to Guaíba hydrographic region samples (Brazil) under
laboratory conditions. Mutat Res. 2007;628(2):76–86.

Wang XF, Xing ML, Shen Y, Zhu X, Xu LH. Oral
administration of Cr(VI) induced oxidative stress, DNA
damage and apoptotic cell death in mice. Toxicology.
2006;228(1):16–23.

Wang H, Chen W, Zheng H, Guo L, Liang H, Yang X, et al.
Association between plasma BPDE-Alb adduct concen-
trations and DNA damage of peripheral blood lympho-
cytes among coke oven workers. Occup Environ Med.
2007;64(11):753–58.

Wilms LC, Hollman PC, Boots AW, Kleinjans JC. Protection
by quercetin and quercetin-rich fruit juice against induc-
tion of oxidative DNA damage and formation of BPDE-
DNA adducts in human lymphocytes. Mutat Res.
2005;582(1–2):155–62.

Wilson JT, Pascoe PL, Parry JM, Dixon DR. Evaluation of the
Comet assay as a method for the detection of DNA
damage in the cells of a marine invertebrate, Mytilus

edulis L. (Mollusca: Pelecypoda). Mutat Res. 1998;399
(1):87–95.

Winter MJ, Day N, Hayes RA, Taylor EW, Butler PJ, Chipman
JK. DNA strand breaks and adducts determined in feral
and caged chub (Leuciscus cephalus) exposed to rivers
exhibiting variable water quality around Birmingham, UK.
Mutat Res. 2004;552(1–2):163–75.

Wirnitzer U, Gross-Tholl N, Herbold B, von Keutz E. Photo-
chemically induced DNA effects in the comet assay with
epidermal cells of SKH-1 mice after a single oral
administration of different fluoroquinolones and 8-
methoxypsoralen in combination with exposure to UVA.
Mutat Res. 2006;609(1):1–10.

Witte I, Plappert U, de Wall H, Hartmann A. Genetic toxicity
assessment: employing the best science for human safety
evaluation part III: the comet assay as an alternative to in
vitro clastogenicity tests for early drug candidate selection.
Toxicol Sci. 2007;97(1):21–6.

Wynne P, Newton C, Ledermann JA, Olaitan A, Mould TA,
Hartley JA. Enhanced repair of DNA interstrand cross-
linking in ovarian cancer cells from patients following
treatment with platinum-based chemotherapy. Br J Cancer.
2007;97(7):927–33.

Xiao RY, Wang Z, Wang CX, Yu G, Zhu YG. Genotoxic risk
identification of soil contamination at a major industrial-
ized city in northeast China by a combination of in vitro
and in vivo bioassays. Environ Sci Technol. 2006;40
(19):6170–75.

Yasuhara S, Zhu Y, Matsui T, Tipirneni N, Yasuhara Y, Kaneki
M, et al. Comparison of comet assay, electron microscopy,
and flow cytometry for detection of apoptosis. J Histo-
chem Cytochem. 2003;51(7):873–85.

Yusuf AT, Vian L, Sabatier R, Cano JP. In vitro detection of
indirect acting genotoxins in the Comet assay using
HepG2 cells. Mutat Res. 2000;468:227–34.

Zang Y, Zhong Y, Luo Y, Kong ZM. Genotoxicity of two novel
pesticides for the earthworm, Eisenia fetida. Environ
Pollut. 2000;108(2):271–8.

Zeljezic D, Garaj-Vrhovac V. Chromosomal aberration and
single cell gel electrophoresis (Comet) assay in the
longitudinal risk assessment of occupational exposure to
pesticides. Mutagenesis. 2001;16(4):359–63.

Zeljezic D, Garaj-Vrhovac V. Genotoxicity evaluation of
pesticide formulations containing alachlor and atrazine in
multiple mouse tissues (blood, kidney, liver, bone marrow,
spleen) by comet assay. Neoplasma. 2004;51(3):198–203.

Zilli L, Schiavone R, Zonno V, Storelli C, Vilella S. Evaluation
of DNA damage in Dicentrarchus labrax sperm following
cryopreservation. Cryobiology. 2003;47(3):227–35.

32 Cell Biol Toxicol (2009) 25:5–32


	Comet assay: a reliable tool for the assessment of DNA damage in different models
	Abstract
	Introduction
	Bacteria
	Plant models
	Comet assay in lower plants
	Fungi
	Algae

	Comet assay in higher plants

	Animal models
	Lower animals
	Invertebrates
	Comet assay in Mussels
	Comet assay in other bivalves
	Comet assay in earthworm
	Comet assay in Drosophila
	Comet assay in other invertebrates

	Vertebrates
	Comet assay in fishes
	Comet assay in amphibians
	Comet assay in birds
	Comet assay in rodents
	Comet assay in humans


	Specificity, sensitivity, and limitations of the Comet assay
	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


