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Abstract
The aim of the present work is to investigate an environmentally benign method for the catalytic conversion of biomass 
derived compounds into fine chemicals. Levulinic acid (LA) is one of the key biomass-derived chemicals that can be con-
verted into biofuels and various other value-added chemicals. n -Butyl levulinate ester is an important chemical used in the 
production of fuel additives, solvents, plasticizing agents, and odorous substances. The work presented here focused on the 
esterification of n-butyl levulinate by reaction of LA and n-butanol in the presence of synthesized 20% tungstophosphoric 
acid (TPA) supported zeolite β (TPA-Zβ), CsTPA-Zβ and Cs-Zβ catalysts. Various catalyst characterization techniques have 
been used, specifically, XRD, SEM–EDS, FT-IR, nitrogen physisorption and  NH3 -TPD. The highest % yield of n -butyl 
levulinate is obtained with shorter reaction time in the case of a 20% TPA supported zeolite β catalyst, calcined at 300 °C. 
The addition of Cs ions to TPA appears to improve catalytic performance.
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1 Introduction

There is a growing interest in the development of environ-
mentally benign methods for the conversion of biomass-
based derivatives into fine chemicals and valeric biofuels 
to control industrial pollution. Levulinic acid (LA) is one 
of the most important chemicals that can be derived from 
lignocellulose, a low cost and widely available carbon 
source. As reported by the Department of Energy, United 
States, LA is a promising building block for chemistry in 
2004 and again in 2010 [1]. Its use for the production of 
industrially valuable chemicals is of great current research 
interest. Levulinic esters are one of the significant deriva-
tives of LA and are obtained by the esterification reaction 
of LA in the presence of a suitable acid catalyst, such 
as sulphuric, polyphosphoric or p-toluenesulfonic acid in 
a homogeneous medium [2, 3]. However, heterogeneous 
catalysts, are preferable over the homogeneous ones due 
to their notable merits in terms of easy separation, regen-
eration, pollution abatement due to non-corrosive nature 
and lack of hazardous waste generation. Very few reports 
are available on the esterification reaction of LA with 
n-butanol to produce n-butyl levulinate using heterogene-
ous catalysts [2, 4–7].

Zeolites are a class of crystalline nanoporous solids 
that are extensively used as solid acids. In addition, their 
regular and uniform pores provide highly shape-selective 
properties that control selective product formation [8]. 
Zeolite beta (Zβ), one among the over 260 unique zeolitic 

structures produced, is a large pore size zeolite. It contains 
an interconnected three-dimensional (3D) channel system 
with 12-membered ring openings with an average diam-
eter of 0.67 nm. This zeolite has gained much interest in 
the last two decades. Zeolite H-Zβ is a crystalline solid 
containing more than one polymorph within the structure, 
resulting in crystallographic defects, and possesses unique 
acidic properties [9, 10]. The large pore openings and high 
surface area of H-Zβ zeolite make it a very promising solid 
acid catalyst for several shape-selective organic transfor-
mations which are of significant interest for industrial 
applications in the area of fine chemical synthesis, petro-
leum chemistry, refining processes, etc. [11].

Heteropoly acid (HPA) compounds are an established 
non-corrosive acid catalysts with high acidic properties in 
homogeneous and heterogeneous catalysis [12]. HPAs are 
also known for their Brønsted acidity (presence of hydrated 
and non-hydrated protons), particularly, a 12-tungstophos-
phoric acid (TPA), which belongs to the HPA family and 
exhibits super acidity and relatively high thermal stability 
compared to other HPA systems. The origin of the strong 
acidity of HPAs is shown in Fig. 1 [13–17].

Specifically, the catalytic activity of heteropoly acids in 
an organic solvent is much higher compared to mineral acids 
like sulfuric acid [16, 18, 19]. The salient features shown 
in Fig. 1 makes them a good catalyst to perform reactions 
through a mild chemical (‘Chemie Douce’) approach. Fur-
thermore, the other advantage of heteropoly acid is that 
minimal or no side reactions occur. Specifically, nitration, 

Fig. 1  Origin of strong acidity 
of heteropoly acids
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sulfonation or chlorination, which are common issues with 
mineral acids [18, 19].

The Keggin structure of TPA possesses a central  PO4 tet-
rahedron, connected to twelve  WO6 octahedra (Fig. 2). The 
overall -3 charge of heteropoly anion needs cations (mono/
polyvalent) for electroneutrality. The neutralization of this 
negative charge with three protons  (H+) leads to genera-
tion of Brønsted acidity [12]. However, these solid acids, in 
general, possess a low surface area, low thermal stability, 
porosity and high solubility in polar solvents [12]. To cir-
cumvent these drawbacks, HPAs are supported by entrap-
ping the TPA salt on a support matrix, for example, on tita-
nia, zirconia, mesoporous silica etc. Supported heteropoly 
acid salts possess more surface acidic sites as compared 
to their bulk analogues and are proven efficient catalysts 
for several organic transformations [20, 21]. Zeolites with 
well-defined pores are also used as support system for TPA, 
and several shape-selective catalysts have been reported 
popularly referred as intrazeolite heteropoly acids [22]. For 
example, incorporation of 12-phosphomolybdic acid into the 
super cages of Y-type zeolite, employing “ship-in-a-bottle” 
synthesis method, was found to be a good catalyst for liq-
uid phase reactions [22]. Similarly, using sol–gel methods, 
Keggin-type HPAs were incorporated into a silica matrix 
and tested for Friedel–Crafts alkylation reactions. The nature 
of counter ion is a key parameter that affects acidity, ther-
mal stability, porosity and solubility to a large extent. HPAs 
act as acid catalysts due to the lower charge density on the 
surface of the HPA molecule, for example,  H3PW12O40 and 
 H3PMo12O40 resulting in no charge localization, making the 
protons mobile, resulting in strong Brønsted acidity. Salts 
containing small cations become readily soluble in an aque-
ous medium and have a lower surface area than the salts 
of large monovalent cations such as  K+,  NH4

+,  Cs+, etc. 
Literature reveals that the  Cs+ salt,  Cs2.5H0.5  [PW12O40] 

exhibits high hydrophobicity and high surface area (com-
pared to pure HPA salts), in the range of 100–200  m2g−1 and 
is known to be an efficient solid acid catalyst for numerous 
organic transformations [16].

Here, an attempt has been made for the synthesis of 
n-butyl levulinate from LA and n-butanol by combining the 
properties of TPA and H-Zβ, by supporting TPA/CsTPA 
on zeolite β (H-Zβ) catalysts via an esterification reaction. 
The resultant catalyst is environmentally friendly because 
HPA and zeolites are non-corrosive, easily separable, reus-
able, and the acidity of this catalyst falls within the range of 
superacid. Bokade et al. have used supported dodecatungsto 
phosphoric acid (DTPA) on acid-treated clay for LA esteri-
fication [23]. To the best of the authors’ knowledge, there 
are no studies reported on LA esterification using caesium 
exchanged heteropoly acid supported zeolite H-Zβ (Zβ) 
catalyst to obtain n-butyl levulinate. In the present study, 
we also attempted to synthesize n-butyl levulinate from lev-
ulinic acid (LA) and n-butanol using various catalysts [20% 
TPA supported zeolite β (TPA-Zβ), 20% Cs exchanged TPA 
supported on Zβ (CsTPA-Zβ) and 20% Cs supported zeolite 
β 20% (Cs-Zβ)] via esterification reaction (Scheme 1).

The synthesized catalysts are characterized by various 
techniques such as X-ray diffraction (XRD),  N2 sorption iso-
therm analysis to determine the surface area, ammonia tem-
perature program desorption  (NH3-TPD) analysis to measure 
the acidity, Fourier transform infrared spectroscopic (FT-IR 
and ATR-FTIR) analysis to confirm functional groups pre-
sent in the materials, etc.

2  Experimental Section

2.1  Materials and Methods

The zeolites H-Beta [Zβ; Si/Al = 25] was received from Sud-
Chemie India Pvt Ltd., Vadodara, Gujarat, INDIA. Levulinic 
acid, n-butanol, Caesium carbonate and 12-tungsto phos-
phate hydrate were obtained from Alfa Aesar, USA. All the 
reagents were of analytical grade and used without further 
purification. The solvents were distilled before use.

2.1.1  Catalyst Preparation

The Cs salt of 12-TPA supported on zeolite H-Zβ catalyst 
was prepared by a two-step impregnation method. Ini-
tially zeolite β was impregnated with the Cs precursor, fol-
lowed by TPA with nominal Cs:TPA ratio of 2:1 to obtain 
 Cs2H[PW12O40] in the final catalyst. In a typical procedure, 
the calculated amount of  CsCO3 is dissolved in distilled 
water, added to the Zβ and suspended in distilled water with 
vigorous stirring. The required amount of aq. TPA solution 
was added dropwise to obtain a Cs salt of TPA equivalent 

Fig. 2  Molecular image of Keggin structure showing a location of 
elements in the Heteropoly tungstate crystal
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to 20 wt% on zeolite H-Zβ. The excess water was removed 
by stirring on a hot plate. The catalyst products were dried 
at 120 °C for overnight and finally calcined at 300 °C for 
2 h. The catalyst obtained after calcination is denoted as 
CsTPA-Zβ and the procedure is given schematically in 
Fig. 3. Cs supported Zβ (Cs-Zβ) was prepared in the similar 
manner, without adding TPA, and the Cs content was kept 
similar to that of the CsTPA-Zβ catalyst. Similarly, 20 wt% 
TPA supported Zβ (TPA-Zβ) was prepared without adding 
Cs and labelled as TPA-ZβRT (RT refers to room tempera-
ture). Subsequently, this TPA-ZβRT was calcined at differ-
ent temperatures (300, 400, 500, 600 and 750 °C) and the 

resultant catalysts are denoted as TPA-Zβ300, TPA-Zβ400, 
TPA-Zβ500, TPA-Zβ600, TPA-Zβ750.

2.1.2  Characterization Techniques

Advance D8, Series II Bruker powder X-ray diffractometer 
with Cu-Kα radiation (λ = 1.5418 Å), equipped with a nickel 
filter, was used to determine the phase purity and crystal-
linity of the synthesized zeolite-based catalysts. The wide-
angle scan was made from 2θ value 10º to 80°. Surface area 
analysis was carried out on Micromeritics adsorption equip-
ment (Model ASAP 2000) at – 196 ºC, using nitrogen. The 

Scheme 1  Cs exchanged TPA 
supported zeolite catalyzed 
esterification of levulinic acid

Fig. 3  Synthesis of Cs salt 
of TPA supported on Zβ 
(CsTPA-Zβ) catalyst
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surface area of the catalysts was determined using the data 
obtained from the nitrogen sorption isotherms employing the 
Brunauer–Emmett–Teller (BET) method. The pore volume 
analysis was carried out using the Barrett-Joyner-Halenda 
(BJH) method. The elemental analysis was carried out based 
on SEM-EDAX measurements using JEOL Make micro-
scope (Model JSM 6010) and the images and data are pro-
vided as supplementary information (Fig. S1). The acidity 
of the catalysts was investigated using Quantachrome (USA) 
Make instrument by  NH3-TPD method. For this purpose, 
the sample was subjected to ammonia adsorption at 120 ºC 
and then desorption was carried out to 700 ºC, at a heating 
rate of 10 ºC/min. TPD profiles are provided in supplemen-
tary information (Fig. S2). The ATR-FTIR spectrum of the 
catalyst were obtained using Perkin Elmer FT-IR spectrum 
GX. FT-IR spectrum of selected samples was recorded using 
a pellet prepared by mixing 200 mg of KBr and 0.3 mg of 
catalyst sample.

2.1.3  Typical Procedure for the Esterification of LA 
with n‑Butanol

The esterification reaction was carried out with the calcined 
catalysts using the methods reported in earlier work [2]. Typ-
ically, the esterification of LA was performed in a round 
bottom (RB) flask connected to a condenser, equipped with a 
magnetic stirrer in an oil bath. Initially, the 50 mL RB-flask 
was charged with n-butanol, LA and the desired amount of 
preactivated catalyst. Afterwards, the system was heated to 
a specific temperature of 120 °C, and the reaction was per-
formed for a specific period of time. The crude products 
were recovered by evaporating the solvent under reduced 
pressure and recrystallized with ethanol to get pure n-butyl 
levulinate. The yield of the product formed was estimated 
by titration with 0.1 M KOH-EtOH solution. The ester yield 
was calculated using the following equation [20]:

where,  Ai = Initial acid value of the reaction mixture (i.e., 
before reaction),  At = Acid value of reaction mixture at time 
‘t’, M = Mole ratio of LA: alcohol.

The yield of the product formed was also determined 
using a gas chromatogram (GC) (Agilent-7890 A, equipped 
with a capillary column, HP-5, 30 m × 0.32 mm × 0.25 µm) 
with Helium gas as the carrier. Ethanol was used to wash 
the catalyst and subsequently dried overnight at 60 °C and 
subsequently reactivated by air at a specific temperature for 
4 h before being used to investigate the recyclability of the 
catalysts. The product, n-butyl levulinate, was characterized 
by comparing its physical data with the known compound 
[22] and spectral data.

% Yield = [
(

Ai − At

)

∕Ai] ×M × 100,

3  Results and Discussion

3.1  XRD

The XRD patterns of the TPA-Zβ samples calcined at 
300, 400, 500, 600 and 750 °C are shown in Fig. 4. It 
can be observed that TPA-Zβ catalysts treated between 
RT and 400 °C show a similar pattern to that of Zβ. No 
characteristic peak for TPA was observed, indicating that 
the active component (TPA) is highly dispersed and also 
possibly present as poorly crystalline on the Zβ support. 
However, increasing the calcination temperature beyond 
400 °C leads to the decomposition of the Keggin ion of 
TPA. This is clearly evident from the observed three addi-
tional peaks (in the magnified portion between 2θ values 
of 15 o and 30 o, as shown on the right side, in the Fig. 4).

Specifically, additional peaks are observed in the range 
of 2θ value from 22.5 to 25° for the catalysts calcined in 
the range of 500–750 °C, indicating the formation of the 
 WO3 phase in these catalysts [24, 25]. This is in agreement 
with the XRD pattern of  WO3 reported by Jagadeeswaraiah 
et al. [26]. However, the XRD reflections corresponding 
to Zβ support remained unchanged when the calcination 
temperature was increased to 750 °C. These results suggest 
that TPA on Zβ support is thermally stable up to 400 °C. 
In the case of CsTPA-Zβ and Cs-Zβ samples calcined at 
300 °C, the Keggin structure is preserved (pl. refer Fig. 5). 
No peaks related to caesium oxide were observed. This 
indicates that CsTPA is highly dispersed on zeolite sup-
port. In general, CsTPA shows a characteristic peak at 
2θ of ca  10o [17] and a similar peak is also observed in 
the CsTPA-Zβ catalyst, calcined at 300 °C. These results 
indicate that the Keggin structure of CsTPA remains intact 
on the Zβ support. (Fig. 5). This result is in line with the 
literature [27].

3.2  Nitrogen Physisorption Analysis

The results of  N2 sorption isotherms analysis as well as 
pore size distribution (see inset) of the catalysts are shown 
in Fig. 6. The BET surface area and pore volume along 
with ammonia uptake values of the catalysts are given in 
Table 1. The parent Zβ exhibited Type IV sorption iso-
therms [Fig. 6(A4)] [28].

A similar pattern is observed for Cs-TPA-Zβ, TPA-Zβ and 
Cs-Zβ catalysts. This reveals the absence of any structural 
changes in the zeolite framework due to impregnation of 
CsTPA, TPA and Cs etc. This is also evidenced by XRD 
analysis (vide supra). Impregnation of Cs on Zβ resulted in a 
low BET surface area (599  cm2/g) (BET surface area of Zβ is 
677  cm2/g) and pore volume (0.76 cc  g−1), which was due to 
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the blocking of some zeolite pores by  Cs+ ions, as observed 
by the low pore volume. In the case of TPA-Zβ, the BET 
surface area is reduced to 498  cm2/g. The pore volume also 
follows the same trend due to the presence of larger Keggin 
ions in the TPA-Zβ catalyst. Whereas, CsTPA-Zβ exhibited 
a moderate BET surface area of 574  cm2/g (between the 
surface areas of Cs-Zβ and TPA-Zβ). The higher surface 
area of CsTPA-Zβ than TPA-Zβ catalyst can be explained 
as follows: Heteropoly tungstate exhibits low surface area 
(< 10  m2/g) and when  Cs+ ions are incorporated into the 
secondary structure of the Keggin ion, enhancement of the 
surface area is generally observed [29]. A similar trend is 
observed for TPA and CsTPA supported on Zβ and other 
supported catalysts [30]. No significant difference was found 
between the pore volume and pore diameters of TPA-Zβ 
and CsTPA-Zβ catalysts. The ammonia TPD profiles of Zβ, 
TPA-Zβ and CsTPA-Zβ catalysts are presented in the sup-
plementary information (Fig. S1). Pure Zβ exhibited a strong 
desorption peak in the range of 120–550 °C with a shoulder 
around at 350 °C (related to moderate acidic sites). The total 
amount of ammonia desorbed in pure Zβ was found to be 
1.21 mmol  g−1. For the TPA-Zβ and CsTPA-Zβ catalysts, the 
desorption peaks were similar to those of the starting zeolite. 
However, the shoulder peak disappeared (merged with the 
main peak) in both catalysts, indicating a strong interaction 

between the Keggin primary units of heteropoly acid with 
zeolite. Since it is known that zeolites and HPAs are known 
for Bronsted acidity i.e., the main contributor to the acidity 
is the presence of protons. The total desorbed ammonia for 
TPA-Zβ and CsTPA-Zβ catalysts is 0.88 and 0.59 mmol  g−1, 

Fig. 4  X-ray diffraction patterns 
of TPA-Zβ catalysts calcined 
at different temperatures: 
(a) Zβ, (b) TPA-ZβRT, (c) 
TPA-Zβ300, (d) TPA-Zβ400, 
(e) TPA-Zβ500, (f) TPA-Zβ600, 
and (h) TPA-Zβ750. On the 
right, magnified range of the 
XRD pattern in the specific 
region is given

Fig. 5  XRD patterns of (a) CsTPA-Zβ, (b) TPA-Zβ, and (c) Cs-Zβ 
catalysts
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respectively. A minor decrease in the total acidity of the 
TPA-Zβ catalyst compared to the parent Zβ might be due 
to the presence of shared protons between the zeolite sur-
face and the Keggin ion (no shoulder peak was observed 
i.e., strong interactions). Therefore, the acidity of TPA-Zβ 
acidity comes from the shared protons. In contrast, in the 
case of Zβ, the free protons on the zeolite surface are the 
main contributor to the acidity. In the case of the CsTPA-Zβ 

catalyst, the total acidity decreased further (0.59 mmol  g−1) 
and is due to the presence of  Cs+ ions (which were replaced 
protons). Thus, it can be said that the residual protons shared 
between the zeolite and the Keggin unit contribute to the 
acidity of the CsTPA-Zβ catalyst. SEM–EDX images of 
Cs-Zβ, TPA-Zβ, and CsTPA-Zβ catalysts are presented in 
Fig. S2. All catalysts presented the presence of the respec-
tive elements used for their preparation.

Fig. 6  N2 adsorption–desorption isotherms of CsTPA-Zβ (A1), Cs-Zβ (A2), TPA-Zβ (A3), parent Zβ (A4) and pore size distribution (inset) of 
CsTPA-Zβ (B1), Cs-Zβ (B2), TPA-Zβ (B3), parent Zβ (B4)

Table 1  BET surface area, pore 
volume and acidity data of the 
catalysts

a BET method
b BJH method
c NH3-TPD method

Catalyst type BET surface area 
 (cm2/g)a

Pore vol. 
 (cm3/g)

Pore diameter 
(nm)b

Ammonia uptake (mmol/g)c

Zβ 677 0.84 4.35 1.21 (at 219 °C, weak and moderate)
TPA-Zβ 498 0.63 4.37 0.88 (at 199 °C, weak and moderate)
CsTPA-Zβ 574 0.74 4.57 0.59 (at 213 °C, weak)
Cs-Zβ 599 0.76 4.39 –
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3.3  FT‑IR and ATR FT‑IR Spectral Studies

FT-IR spectroscopy is a powerful tool not only for char-
acterizing organic molecules, but also it gives valuable 
information about inorganic compounds. The existence of 
the Keggin structure of HPAs in the synthesized catalysts 
is confirmed by ATR-FT-IR spectroscopy. The IR spectra 
of parent zeolite Zβ and synthesized Cs-Zβ, TPA-Zβ, and 
CsTPA-Zβ catalysts are depicted in Fig. 7.

The ATR-FT-IR spectrum of the CsTPA-Zβ sam-
ple exhibited characteristic bands in the range of 
1100–500   cm−1 (fingerprint region) of HPA. The peak 
observed at 1067  cm−1 is related to the P–O stretching 
vibration of the central  PO4 ion. Three additional bands at 
988, 889, and 806  cm−1 are ascribed to W =  Ot  (Ot = ter-
minal oxygen) asymmetric stretching, asymmetric stretch-
ing in W-Oc-W  (Oc = corner-sharing bridging oxygen), and 
the asymmetric stretching in W–Oe–W  (Oe = edge-sharing 
bridging oxygen atom), respectively [21, 31]. The band 
observed at 806  cm−1 corresponds to vas (W–O–W) for the 
Keggin-type polytungstate ion,  [PW12O40]−3. Further, the 
vas (P–O) band split into two bands and the band attrib-
uted to vas (W–O–W) was split into multiple bands due to 
change in symmetry of the heteropoly anion from Td to 
Cs. The band observed at 513  cm−1 is also due to O–P–O 

bending. These bands are observed for the CsTPA-Zβ and 
some bands are merged with the zeolite bands, indicating 
that the Keggin ion structure is unaltered after supporting 
on zeolite. ATR-FTIR spectrum of Zβ (Fig. 7b) shows a 
broad and large band in the range 1060–1090  cm−1, corre-
sponding to the asymmetric stretching of the external link-
ages [vas (O–T–O)], which is quite sensitive to the Si and 
Al of Zβ. The band observed at 1273  cm−1 is assigned to 
the asymmetric stretching of internal tetrahedra [32–34].

ATR-FT-IR spectra of all samples (Fig. 7b) exhibited 
bands at 794  cm−1 corresponding to the double ring of 
the zeolite and symmetric stretching vibrations of  SiO4 
and  AlO4. Bands at 564  cm−1 is assigned to the 5- and 
6-membered rings in the zeolite structure. The band 
observed at 478  cm−1 is assigned to O–T–O (T = Si, Al) 
bending modes. This band was identified as a character-
istic band corresponding to the pore opening of zeolite 
Hβ. The FT-IR spectra of all samples (Fig. 7a) showed a 
broad band in the range 3700–3000  cm−1 which attributed 
to the –OH stretching vibrations of the internal silanol 
groups and the surface silanol groups. The central band 
observed at 3628  cm−1 corresponds to the surface acidic 
Al–OH groups. The –OH bending vibrations of the water 
molecules are observed at 1631  cm−1 [35].
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Fig. 7  FT-IR spectra (a) of parent zeolite Zβ, CsTPA-Zβ (calcined 
at 300 °C), Cs-Zβ300 and TPA-ZβRT catalysts. For clarity we show 
a region of interest. On the left, the FT-IR spectrum region between 

4000 and 3000  cm−1 represents the hydroxyl region and, on the right, 
the ATR-FT-IR spectra (b) region between, 2000–400  cm−1, showing 
the zeolite ring and TPA structure vibrations
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3.4  Catalytic Activity

The catalytic activity results of the synthesized catalysts for 
the esterification of LA are discussed in the subsequent sec-
tions. All experiments were repeated twice and the errors 
between the two measurements were within ± 5%.

3.4.1  Effects of Time and Calcination Temperature 
on Catalytic Activity

The catalytic evaluation of the TPA-Zβ catalyst calcined at 
various temperatures is studied. Table 2 shows the activ-
ity results of the TPAZβ catalyst treated in the range of 
300–750 °C along with pure Zβ. The results are also shown 
in Fig. 8. In the case of parent Zβ, the conversion of LA is 
82% after 4 h of reaction time. However, the TPAZβ cata-
lyst calcined at 300 °C showed higher conversion (95.2%) 
within 2.5 h reaction time. Further increase in the reaction 
time to 4 h there is no significant change in the conversion 
was observed, but after 3 h a slight decrease in the conver-
sion of LA was observed this might be due to the presence 
of water accelerating the reversible reaction as reported by 
Zhao et al. [36]. When the calcination temperature of the 
catalyst was increased to 400 °C, the conversion decreased 
to 89.2%. This could be due to partial degradation of the 
Keggin heteropoly tungstate at 400 °C. When the calcina-
tion temperature was further increased to 500–750 °C, the 
conversion of LA decreased drastically and was only in the 
range of 24.8–29.4%. This can be attributed to the complete 
decomposition of the Keggin ion and the formation of the 
 WO3 phase on the zeolite surface. This was confirmed by 
the XRD patterns of the catalyst calcined in the range of 
300–750 °C (see Fig. 3). The data reveal that the optimum 
reaction time in the case of the TPA-Zβ catalyst calcined 
at 300 °C is 2.5 h. However, the activity of the recycled 

TPA-Zβ catalyst was (calcined at 300 °C) found to decrease 
slightly (85%).

3.4.2  Comparative Study and Catalyst Reusability

To improve the catalyst reusability, TPA was partially 
exchanged with the larger cation  Cs+ and then the LA ester-
ification reaction was performed. The reaction conditions, 
% LA conversion and yield of n-butyl levulinate are shown 
in Table 3.

The Cs-Zβ catalyst exhibited low activity (61.9% con-
version) compared to parent Zβ and other synthesized 
catalysts. This was due to the exchange of protons of zeo-
lite by  Cs+ ions, resulting in low acidity and activity. The 
maximum % LA conversion (97.6%) and 88.4% yield of 
n-butyl levulinate was observed in the case of CsTPA-Zβ 
catalyst within 4 h. While in the case of TPA-Zβ, the maxi-
mum conversion was 95.3% within 2.5 h (86.3% yield) 
(Table 1). The activity of TPA and the Cs salt of TPA 

Table 2  Influence of calcination temperature and reaction time of 
TPA-Zβ catalyst on % LA conversion

a Reaction conditions: LA:n-butanol:Catalysts ratio:1:7:10 wt.%; 
Reaction temperature:120 °C
b (Recycled)

Catalysts Time (h) %  Conversiona

H-Zβ 4.0 82.1
TPA-Zβ (300 °C) 4.0 95.3
TPA-Zβ (300 °C) 3.0 90.3
TPA-Zβ (300 °C) 2.5 95.2
TPA-Zβ (400 °C) 2.5 89.2
TPA-Zβ (500 °C) 2.5 29.4
TPA-Zβ (600 °C) 2.5 27.6
TPA-Zβ (750 °C) 2.5 24.8
TPA-Zβ (300 °C)b 2.5 85.0

Fig. 8  Effect of calcination temperature on % LA conversion after 
2.5 h

Table 3  Comparison of catalytic activity of synthesized catalysts 
towards the synthesis of n-butyl levulinate

a Reaction conditions: LA:n-butanol:catalyst ratio: 1:7:10 wt. %; 
Reaction temperature: 120 °C

Catalysts Time (h) % LA 
 conversiona

% Yield 
of n-butyl 
levulinate

H-Zβ 4.0 82.1 74.3
TPA-Zβ (300 °C, Fresh) 4.0 95.3 86.3
TPA-Zβ (300 °C, Recycled)
CsTPA-Zβ (300 °C, Fresh)

4.0
4.0

85.0
97.6

77.0
88.4

CsTPA-Zβ (300 oC, Recy-
cled)

4.0 95.8 86.7

Cs-Zβ 4.0 61.9 56.0
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supported on Zβ catalyst was found higher than that of 
zeolite Zβ (82.1% within 4 h) and Cs-Zβ (61.91 within 
4 h). Further, the TPA-Zβ catalyst (without  Cs+) exhibited 
a decrease in catalytic activity during the 2nd run (85.0%) 
compared to CsTPA-Zβ (95.8%). This might be due to the 
leaching of TPA in the TPA-Zβ catalyst. The Cs salt of 
TPA is insoluble in polar solvents and the activity of the 
catalyst remains the same without a marginal decrease in 
activity. Thus, the incorporation of Cs into TPA-Zβ leads 
to an improvement in catalyst performance, which can 
be attributed to the intermediate surface area and suit-
able acidity of CsTPA-Zβ compared to the parent Zβ and 
TPA-Zβ catalysts (Table 2). The CsTPA-Zβ catalyst exhib-
ited high activity despite having low acidity, which can 
be attributed to the high mobility of residual protons as 
reported in the literature [37].

For the reusability study, the CsTPA-Zβ catalyst was 
separated by simple filtration after 4 h reaction, washed at 
least three times with ethanol, and then dried in an oven at 
120 °C and then used for the esterification reaction with a 
fresh reaction mixture. Further, the catalyst was recycled 
for four successive runs without significant loss of activity 
(Fig. 9), indicating the efficiency of the catalyst. For the 
1st, 2nd, 3rd and 4th catalytic runs, the corresponding % 
LA conversion and n-butyl levulinate % yields are as fol-
lows: % LA conversion: 97.6%, 95.8% 94.6% and 94.6% 
and n-butyl levulinate % yield: 88.36%, 86.73%, 85.63% 
and 85.63%. (Fig. 9). The high activity of the recycled 
catalyst is due to the super acidity of CsTPA and the acid-
ity of the zeolite support. Thus, the catalyst can be reused.

4  Conclusion

An eco-friendly method was investigated for the esterifica-
tion of LA with n-butyl alcohol. For the esterification reac-
tion, TPA–Zβ with a calcination temperature of 300 °C 
was found to be optimal among all other TPA-Zβ catalysts. 
The activity of the catalysts depends on the intact Keg-
gin ion structure which in turn depends on the catalyst 
calcination temperature. XRD patterns showed that the 
Keggin structure of TPA is stable up to the calcination 
temperature of 300 °C beyond which formation of  WO3 
was observed due to decomposition of TPA. The role of 
Cs was investigated by comparing the activity of TPA-Zβ 
and CsTPA-Zβ catalysts. A higher catalytic activity was 
observed for CsTPA-Zβ than for TPA-Zβ (without  Cs+). 
The acidity of the residual protons plays an important role 
in the esterification of n-butyl levulinate. The residual pro-
tons shared between the zeolite and the Keggin unit are 
responsible for high activity of the CsTPA-Zβ catalyst. 
The CsTPA-Zβ catalyst was found to be the most efficient 
and reusable in the synthesis of n-butyl levulinate via LA 
esterification. Thus, the results clearly suggest that Cs con-
taining TPA-Zβ efficiently promotes the catalytic process 
and moreover, the addition of Cs ions with TPA seems to 
improve the catalytic performance of zeolite β catalyst.
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