

Selective Catalytic Oxidation of Ammonia over Cr‑Ce Mixed Oxide Catalysts in the Presence of Sulfur Dioxide

Fangyuan Zhou1 · Xiaoqiang Wang1,2,3 · Li Sun2 · Ruiwen Jia2 · Yue Liu1 · Zhongbiao Wu1

Received: 9 September 2023 / Accepted: 18 November 2023 / Published online: 26 December 2023 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

In this paper, the influence of SO_2 on the performances of selective catalytic oxidation (SCO) of NH₃ on Cr-Ce mixed oxide catalysts had been disclosed. Experimental results revealed that the existence of SO_2 could greatly suppress the unselective catalytic oxidation of ammonia over Cr-Ce mixed oxide catalysts with strong redox capacity, though the ammonia conversion rate was somewhat lowered after SO_2 introduction. As such, near or above 90% ammonia conversion and excellent N_2 selectivity within 350–450 °C could be achieved on $Cr_{10}Ce$ sample after 20 h reaction running in the presence of 350 ppm SO_2 . Characterization results indicated that SO_2 could induce the formation of surface sulfates on Cr_{10} Ce catalysts and enhance its surface acidity, which would inhibit the over-oxidation of $NH₃$. More importantly, the bulk-like sulfation of $Cr₁₀Ce$ samples was damped in the presence of SO_2 compared to pure CeO_2 , which allowed certain active oxygens participating in $NH₃$ -SCO reaction. DFT results also confirmed that the adsorbed $SO₂$ would preferentially interact with the oxygens around the interface of $CeO₂$ and $Cr₂O₃$, thereby preventing the retained active oxygens from being further sulfation. Therefore, the Cr-Ce mixed oxide catalysts showed promising application potential for eliminating NH_3 slip downstream NH_3 -SCR process.

Graphical abstract

Keywords Cr-Ce mixed oxide catalysts · NH₃-SCO · Ammonia slip · Sulfur dioxides

 \boxtimes Yue Liu yueliu@zju.edu.cn

- ¹ Department of Environmental Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
- ² Jiehua Holdings Co., LTD, 3 Jinji Road, Haining 314419, People's Republic of China
- ³ College of Biological, Chemical Science and Engineering, Jiaxing University, 899 Guangqiong Road, Jiaxing 314001, People's Republic of China

1 Introduction

As the "haze promoter", ammonia $(NH₃)$ has been included as a controlled indicator of air pollutants, which caused tremendous concerns on ecological environment and human health [[1–](#page-8-0)[5](#page-9-0)]. Apart from industrial production procedure, stock farming and agricultural fertilization, one of the primary sources of ammonia emissions is the ammonia slip during the industrial fue gas denitrifcation process when ammonia is used as reductant [[6–](#page-9-1)[9\]](#page-9-2). Owing to fuctuation of gaseous distribution and operational condition, over stoichiometric ratio of $NH₃$ had been injected to ensure the deNO_x efficiency during selective catalytic reduction (SCR) or selective non-catalytic reduction (SNCR) process, resulting in the emission of unreacted $NH₃$ so-called ammonia slip $[10, 11]$ $[10, 11]$ $[10, 11]$ $[10, 11]$ $[10, 11]$. The NH₃ slip would lead to the plug in the downstream air-preheater and form secondary inorganic aerosols [[11](#page-9-4)].

Nowadays, the $NH₃-SCO$ (selective catalytic oxidation of $NH₃$) catalyst installed at the tail-end of SCR units could be one promising way to solve the $NH₃$ slip problem [[2](#page-8-1)]. Commonly, the $NH₃$ -SCO reactions follow the internal SCR mechanism (i-SCR), which can be described as follows: the absorbed ammonia on catalysts is partly oxidized to NO*^x* and the resulted NO_x then reacts with $NH₃$ to produce $N₂$ and H_2O [\[12](#page-9-5), [13\]](#page-9-6). Generally, an excellent NH_3 -SCO catalyst should possess suitable redox ability, which could not only meet the requirement of deeply dehydrogenation of $NH₃$ but also suppress the over-oxidation to avoid the formation of byproducts, including N_2O , NO and NO_2 .

The most studied $NH₃-SCO$ catalysts included noblemetal based catalysts and transition metal-based catalysts [[12,](#page-9-5) [13](#page-9-6)]. Although possessing excellent low-temperature $NH₃-SCO$ activity, noble-metal based catalysts with narrow temperature window could be hardly affordable in $slip-NH₃$ control application [[12,](#page-9-5) [14\]](#page-9-7). As for transition metal-based catalysts, Cu-based catalysts had attracted lots of researchers' attention owing to the relatively well activity and N_2 selectivity $[12, 15]$ $[12, 15]$ $[12, 15]$. However, the coexistence of gaseous $SO₂$ in the flue gas is inevitable, which would exert serious deactivation effect on $NH₃$ -SCO activity due to the strong interaction between Cu active phase and SO_2 [[10,](#page-9-3) [16,](#page-9-9) [17](#page-9-10)].

In the previous literatures, chromic (Cr) based catalysts with excellent redox ability and exceptional resistance to sulfur and chlorine species, owing to its low interaction with $HCVSO₂$ [[18](#page-9-11), [19](#page-9-12)], had been widely reported in NH₃-SCR [\[19](#page-9-12)[–21](#page-9-13)], NO oxidation [\[22](#page-9-14)] and VOCs catalytic combustion [\[18,](#page-9-11) [23](#page-9-15), [24](#page-9-16)], etc. Additionally, due to good oxygen storage capacity, $CeO₂$ has been often applied as promoter or main active phase in $NH₃-SCR/SCO$ reactions $[25–28]$ $[25–28]$ $[25–28]$. Moreover, based on our previous works $[29, 30]$ $[29, 30]$ $[29, 30]$, CeO₂ could serve as the sacrifcial sites to promote the SCR performance of Cu or Mn based catalysts in the presence of $SO₂$. As such, the Cr-Ce mixed oxide catalysts might be one promising candidate to achieve well $NH₃-SCO$ performances, where the well redox capacity of Cr-Ce catalyst could efectively activate $NH₃$ and sulfation would also provide acidic sites to inhibit the over-oxidation of $NH₃$. However, what happens to the NH₃-SCO performance of Cr-Ce mixed oxide catalysts in the presence of $SO₂$ needs to be further investigated.

Therefore, in this manuscript, to deal with the challenges of $NH₃$ slip elimination, the Cr-Ce mixed oxide catalysts prepared by impregnation method were employed to investigate their activities and stabilities in the presence of $SO₂$ and H_2O during NH₃-SCO reaction process. Additionally,

various characterizations and density functional theory (DFT) simulations were then conducted to reveal the inherent mechanism for NH_3 -SCO reaction behaviors over Cr-Ce mixed oxide catalysts.

2 Experimental Section

Firstly, pure Cr_2O_3 and CeO_2 catalysts were prepared by the direct calcination of nitrate precursors. Then, various Cr*-*Ce mixed oxide catalysts were synthesized by impregnating $Cr(NO_3)_3.9H_2O$ on previous obtained CeO_2 support. And the obtained Cr*-*Ce mixed oxide catalysts were denoted as Cr_xCe, where *x* represented Cr/Ce molar ratio ($x = 1-20\%$). Moreover, the selected $Cr_{10}Ce$ catalyst after stability tests in the presence of 350 ppm SO_2 at 350 °C were denoted as $Cr_{10}Ce-U_v$, where *y* represented the duration of stability tests period $(y=10, 20$ and 30 h). To investigate the intrinsic mechanism of SO_2 influence on NH_3 -SCO performances, the samples before and after stability tests were subjected to various characterizations to disclose. And more detailed experimental illustration and computational method were given in the *Supporting Information*.

3 Results and Discussion

3.1 Catalytic Performances

The NH_3 -SCO performances of various fresh Cr_xCe mixed oxide catalysts were depicted in Fig. [1.](#page-2-0) As shown in Fig. [1](#page-2-0)a, fresh $CeO₂$ sample hardly converted ammonia efficiently within the investigated temperature window, while 100% NH₃ conversion in the temperature range of 250–450 \degree C was achieved on pure Cr_2O_3 . Unsurprisingly, NH₃ oxidation activity of Cr_xCe catalysts lied between that of pure $Cr₂O₃$ and $CeO₂$ samples. And the addition of Cr significantly promoted NH_3 conversion of CeO₂, where the NH_3 conversion changed little when Cr/Ce ratio exceeded 10%. The well dispersion of Cr species owing to the interaction between Cr species and $CeO₂$ could account for it. However, high amount of N_2O and NO_x species generated on Cr_xCe catalysts at low-medium and medium–high temperature range respectively, which resulted in rather poor N_2 selectivity on all Cr-related samples (see Figs. [1b](#page-2-0) and S1). It could be due to the fact that Cr*x*Ce samples with strong redox ability but lack of surface acidity promoted the unselective oxidation of ammonia [\[13](#page-9-6)]. Moreover, $Cr_{10}Ce$ sample with approximative $NH₃$ conversion and relative higher N₂ selectivity compered to pure Cr_2O_3 was further applied in the investigation of the effect of SO_2 .

As shown in Fig. [1c](#page-2-0), in the presence of 350 ppm SO_2 at 350 °C, $Cr_{10}Ce$ sample achieved complete NH₃ conversion

Fig. 1 NH_3 conversion (**a**) and N_2 selectivity (**b**) of various samples; $NH₃$ conversion and outlet $SO₂$ concentration during $SO₂$ resistance stability tests of $Cr_{10}Ce$ sample at 350 °C (c); NH₃-SCO performance of $Cr_{10}Ce$ sample after 20 h SO_2 poisoning reaction run-

during the initial 5 h, but gradually decreased to about 88% NH₃ conversion for the next 8 h and then maintained at this value for the later reaction time. In comparison, the introduction of SO_2 would quickly decrease NH₃ conversion of pure Cr_2O_3 from 100% to around 50%. The evolution in $NH₃$ oxidation activity was in good accordance with that of outlet SO_2 concentration detected, where it increased gradually to fnally reached its inlet value in the fnal stage of tests. This observation indicated that the deposition of sulfur could somewhat lower the $NH₃$ oxidation activity, as sulfation of metal oxides by SO_2 would generally deteriorate their redox capacity [[31](#page-9-21), [32](#page-9-22)]. However, such poisoning efect was lessened greatly on $Cr_{10}Ce$ sample compared to pure Cr_2O_3 , which deserved to be further investigation regarding the intrinsic mechanism. In addition, the $NH₃-SCO$ performances of $Cr₁₀Ce$ sample after 20 h SO_2 poisoning under different temperature had also been investigated (see Fig. [1](#page-2-0)d). It could be seen that $Cr_{10}Ce$ sample possessed near or above 90% NH₃

ning under different temperature (d) . NH₂-SCO reaction conditions: $[NH_3] = 100$ ppm, $[O_2] = [H_2O] = 5$ vol.%, $[SO_2] = 350$ ppm (if applicable), N_2 balance

conversion and 100% N₂ selectivity in the temperature range of 350–450 °C. Therefore, Cr-Ce mixed oxides could be suitable candidate of $NH₃$ slip elimination catalysts downstream SCR units. It was noted that the existence of SO_2 slightly decreased NH₃ conversion of Cr₁₀Ce sample but significantly promoted N_2 selectivity at temperatures higher than 350 °C. For instance, N_2 selectivity of $Cr_{10}Ce$ sample at 350 °C increased from less than 50% to 100%. Therefore, the existence of SO_2 could greatly suppress the unselective catalytic oxidation of ammonia over Cr-Ce mixed oxide catalysts. And the promoted N_2 selectivity in the $SO₂$ stability tests might be attributed to the enhanced surface acidity but weakened redox ability with surface sulfation, where similar fndings had been mentioned in previous works [\[31,](#page-9-21) [33](#page-9-23)]. To reveal the related mechanism regarding the effect of SO_2 on NH_3 -SCO performances, various corresponding characterizations were conducted in the following sections.

3.2 The Physical Property Changes

To identify the physical property changes of Cr-Ce mixed oxide catalysts caused by $SO₂$, the specific surface area, XRD and TEM/SEM characterizations had been conducted. As illustrated in Tables [1](#page-3-0) and S1, a S_{BET} of 69 m²/g was obtained on fresh CeO₂ sample, and that decreased at an elevated molar ratio of Cr/Ce for fresh Cr*x*Ce samples. The introduction of certain Cr species into micro-channels of $CeO₂$ during preparation process could be responsible for that [\[25](#page-9-17)]. Furthermore, after stability tests in the presence of $SO₂$, the surface area of $Cr_{10}Ce$ sample would be deteriorated over time (from 57 m²/g of fresh $Cr_{10}Ce$ to 41 m²/g of $Cr_{10}Ce-U_{30}$), owing to the block-age effect derived from the formed sulfate species [\[31](#page-9-21), [32](#page-9-22)]. Additionally, as shown in Figs. [2](#page-3-1) and S2a, XRD patterns of various samples showed that various difraction peaks located at 28.6°, 33.1°, 47.5°, 56.3°, 59.1°, 69.4°, 76.7°, 79.1° and 88.4 \degree emerged, which could be assigned to CeO₂ with cubic fuorite structure [PDF#43–1002]. However, characteristic diffraction peaks related to Cr species were hardly detected for $Cr_{10}Ce$ sample, indicating the high dispersion of Cr species [\[21,](#page-9-13) [34\]](#page-9-24). Furthermore, the intensity of characteristic difraction peaks of Cr₁₀Ce-U_y samples gradually decreased compared to fresh $Cr_{10}Ce$ sample, demonstrating that the crystal structure of $CeO₂$ was damaged by $SO₂$ poisoning. And similar findings could be observed for $CeO₂-U₂₀$ and $Cr₂O₃-U₂₀$ samples (see Fig. S2b), however, it was found that better crystallinity of Cr_2O_3 reserved after SO₂ resistance stability tests than CeO₂. It might be implied that SO_2 would preferentially interact on surface Ce sites to form cerium sulfate species compared to Cr species during stability tests, which had been similarly reported in the previous work [\[17](#page-9-10)].

In addition, the morphology and microstructure of fresh $Cr_{10}Ce$ and selected $Cr_{10}Ce-U_{20}$ samples were studied by TEM and SEM. As shown in Figs. [3](#page-4-0) and S3, no obvious lattice stripes of Cr related crystals were found in $Cr_{10}Ce$ sample, suggesting the well dispersion of Cr species on $CeO₂$ support, which was consistent with XRD patterns. Furthermore, slightly blurred edges of crystals were observed on $Cr_{10}Ce-U_{20}$ sample, indicating that the sulfation of catalysts occurred after $SO₂$ introduction in NH₃-SCO reaction [\[35\]](#page-9-25). As illustrated in Table S2, elements distribution analyzed by SEM EDS-Mapping indicated that there deposited certain amount of sulfur (S) species on $Cr_{10}Ce-U_{20}$ sample, while the content of surface O, Ce, Cr and nitrogen (N) species did not show evident changes compared to fresh $Cr_{10}Ce$ sample. The above phenomena

Fig. 2 XRD patterns of CeO₂ and various Cr₁₀Ce related samples

indicated that the metal oxides sulfation but not ammonium sulfates accumulation is the main cause of sulfur deposition on $Cr_{10}Ce-U_{20}$ catalyst [\[31](#page-9-21)].

3.3 The Redox Ability and Surface Acidity Changes

To investigate the changes in the redox ability of diferent samples before and after stability tests in the presence of $SO₂$, H_2 -TPR and O_2 -TPD experiments were conducted and the results were presented in Fig. [4](#page-4-1). As seen the H_2 -TPR results in Fig. [4a](#page-4-1), the pristine $CeO₂$ sample showed two reduction peaks of surface-active oxygen species related to ceria at 406 °C and 523 °C, respectively. After Cr addition, the reduction peaks shifted to a lower temperature range (349 °C and 445 °C), indicating the promoted reducibility derived from Cr species. Based on the previous works [[19](#page-9-12), [34\]](#page-9-24), the two peaks could be ascribed to the reduction of Cr^{6+} to Cr^{3+} and active surface oxygen derived from Cr–O-Ce strong interactions, respectively. However, after reaction with $SO₂$ poisoning, the reduction peaks of various samples shifted to higher temperature range (592 °C for $CeO₂-U₂₀$, 450 and 556 °C for $Cr_{10}Ce-U_{20}$, indicating the suppressed reducibility of catalysts caused by sulfation. As reported in the literatures [\[36](#page-9-26), [37](#page-9-27)], the much stronger H₂ consumption peaks emerged at above 550 $^{\circ}$ C on the two samples were subjected to the reduction of formed sulfate species. And the relatively lower reduction temperature of sulfate species observed on $Cr_{10}Ce-U_{20}$ sample compared to

catalysts

Fig. 3 TEM, HR-TEM and EDS-mapping images of $Cr_{10}Ce$ (**a**, **b**, **c**) and $Cr_{10}Ce$ -U₂₀ (**d**, **e**, **f**) samples

Fig. 4 H_2 -TPR (**a**), O₂-TPD (**b**) and NH_3 -TPD (**c**) profiles of various samples

 $CeO₂-U₂₀$ sample suggested that Cr addition would decrease the stability of sulfate species on $CeO₂$. Notably, compared with $CeO₂$ -U₂₀ sample, one small peak for the reduction of Cr-Ce species at 450 °C still could be found on $Cr_{10}Ce-U_{20}$ sample. It could be concluded that sulfation could not completely eliminate the active oxygens in $Cr_{10}Ce$ sample and the reserved active oxygens were still capable to participate in the NH_3 oxidation reaction. And the O₂-TPD results shown in Fig. [4b](#page-4-1) further confrmed this conclusion.

From Fig. [4](#page-4-1)b, one small oxygen desorption peak at 510 °C could be seen on fresh CeO₂ sample, where $Cr_{10}Ce$ catalyst showed two stronger oxygen desorption peaks at 560 and 660 °C. As mentioned [[31](#page-9-21), [37](#page-9-27)], the much larger oxygen desorption peak of $Cr_{10}Ce$ sample indicated that the formed strong Cr-Ce interactions could bring about abundant active oxygen species (O_6) , inducing better activation ability of reactants during NH₃-SCO reaction process. After reaction with SO_2 , CeO_2-U_{20} sample showed

one oxygen desorption peak at about 714 °C, while three oxygen desorption peaks located at 540, 630 and 730 °C emerged on $Cr_{10}Ce-U_{20}$ sample. Excluding these dramatically increased oxygen desorption peaks above 700 °C caused by thermal decomposition of sulfate species [\[31,](#page-9-21) [37](#page-9-27)], $Cr_{10}Ce-U_{20}$ sample could maintain more active oxygen species to participate in SCO reaction after SO_2 introduction, which was in accordance with the $H₂-TPR$ results.

Figure [4](#page-4-1)c showed the $NH₃-TPD$ profiles of various samples. From the previous works [[38,](#page-9-28) [39](#page-9-29)], the desorption peaks of $NH₃$ could be divided into three sections within 50–250 °C, 250–400 °C and 400–500 °C, corresponding to NH₃ desorbed from weak, moderate and strong acidic sites, respectively. It could be found that $SO₂$ poisoning signifcantly enlarged the amount of the moderate/strong acidic sites of catalysts. It was reasonable that the sulfate species formed were of strong electronic attractive effect, which improved the surface acidity $[36]$ $[36]$. It was widely recognized that strong acidity could inhibit the over oxidation of ammonia in SCR reaction [[40\]](#page-9-30). Therefore, the enhanced surface acidity after SO_2 poisoning was account for the improved N_2 selectivity of $Cr_{10}Ce$ sample for NH_3 -SCO reaction in the presence of SO_2 (see Fig. [1\)](#page-2-0).

3.4 The Influence of SO₂ on Surface Chemical States

To further reveal the influences of $SO₂$ on the existence states of surface elements in the catalyst, various $Cr_{10}Ce$ samples before and after stability tests in the presence of $SO₂$ were subjected to XPS characterization (see Fig. [5](#page-5-0)). The surface atomic concentration distribution and detailed peak calculation results were given in Table [2.](#page-5-1) As shown, the characteristic peaks of Cr 2p XPS spectra could be deconvoluted into three categories, including Cr^{6+} (~578.7 eV for Cr 2p_{3/2} and ~588.4 eV for Cr 2p_{1/2}), Cr³⁺ (~576.8 eV for Cr 2p_{3/2} and ~586.4 eV for Cr 2p_{1/2}) and Cr²⁺ (~575.8 eV for Cr 2p_{3/2} and ~585.8 eV for Cr $2p_{1/2}$) [\[21,](#page-9-13) [41\]](#page-9-31), while the Ce 3d XPS spectra were divided into two categories (u for Ce^{4+} and v for Ce^{3+}) [[33,](#page-9-23) [42](#page-10-0), [43](#page-10-1)]. Compared with fresh $Cr₁₀Ce$ sample, positive shifts in the binding energy of Cr 2p and Ce 3d XPS peaks could be observed after SO_2 poisoning. The strong electronic interaction of sulfate groups could be ascribed to the main reason for that [[44\]](#page-10-2). However, the shift in Cr 2p and Ce 3d XPS peaks showed respective variations in different durations of SO_2 poisoning reaction. It was evident that the displacement of Cr 2p XPS peaks occurred solely within the initial 10 h of $SO₂$ poisoning reaction, whereas the deviation in Ce 3d XPS peaks mainly occurred in the

Fig. 5 The Cr 2p (**a**), Ce 3d (**b**) and O 1 s (**c**) XPS spectra of various samples

 $Cr_{10}Ce-U_{20}$ sample. It was suggested that the impact of $SO₂$ poisoning on Cr species diminished over time, while it progressively afected Ce species.

Furthermore, focusing on the changes in the subpeaks of Cr and Ce species on various $Cr_{10}Ce-U_v$ samples, it could be seen that the proportion of $Cr^{6+}/Cr_{\text{total}}$ changed little except the increase during the initial 10-h reaction time, while Ce^{3+}/Ce_{total} ratio continued to increase. The above results indicated that the presence of $SO₂$ would signifcantly afect the existence states of Ce, whereas the impact on Cr was somewhat mitigated, which agreed with the results related to locations of XPS peaks. The increase of Ce^{3+}/Ce_{total} resulted from the reduction effect caused by SO₂ and the initial increase of Cr^{6+}/Cr_{total} might be due to the electronic interaction with sulfate species [[31](#page-9-21)]. From Fig. [5](#page-5-0)c, the O 1 s spectra of the catalysts were fitted into three sub-peaks: lattice oxygen $(O_{\alpha},$ 528.6–530.0 eV), surface chemisorbed oxygen species $(O_8,$ 531.4–532.0 eV) and oxygen containing surface groups $(O_{\gamma}, 532.6 - 533.5 \text{ eV})$ like carbonate and/or hydroxyl species $[29, 43]$ $[29, 43]$ $[29, 43]$ $[29, 43]$. As listed in Table [2,](#page-5-1) SO_2 poisoning reaction would promote the formation of surface chemisorbed oxygen species derived from surface formed sulfate species [[29\]](#page-9-19). Notably, the O_8/O_{total} in $Cr_{10}Ce-U_v$ samples trended to be stable when the reaction time increased beyond 20 h, indicating that the sulfation became lessened, corresponding to its stable $NH₃-SCO$ activity. Additionally, the above fndings of weakened sulfation process were further confrmed by various N 1s and S 2p XPS spectra (see Fig. S4 and Table [2\)](#page-5-1), as the obvious increased S and N species only occurred within the initial 10 h of $SO₂$ poisoning reaction. Furthermore, the surface atomic concentration of S was about 2.5 times higher than that of N on various Cr_xCe-U_y samples. It was implied that sulfate species existed as metal sulfate species rather than ammonium sulfates on the samples after stability tests.

3.5 Reaction Process Analysis

To identify the reaction process of $NH₃-SCO$, TPSR studies had been also carried out on $Cr_{10}Ce$ sample before and after 20 h $SO₂$ poisoning. As shown in Fig. [6](#page-6-0), it could be seen that the ammonia could be converted on fresh $Cr_{10}Ce$ sample at relative low temperature (about $250 \degree C$), where less N₂ emission and higher amount of NO emerged compared to $Ce_{10}Ce-U_{20}$ sample. It was implied that the activation of $NH₃$ could occur on $Cr₁₀Ce$ sample easily but mainly follow the unselective catalytic oxidation process. After 20 h reaction running in the presence of $SO₂$, owing to the suppressed redox ability and enhanced surface acidity, the ammonia conversion onset temperature of $Ce_{10}Ce-U_{20}$ sample shifted to higher temperature range (about 300 °C), where the signals of released byproducts, including N_2O , NO and NO_2 , obviously decreased, indicating the achievement of well N_2 selectivity. The above results were in accordance with the previous obtained redox ability, surface acidity and activity test results.

3.6 SO2 Infuential Mechanism Analysis

Based on the SEM EDS-mapping results above, it was indicated that less ammonium sulfates accumulated on catalysts after $SO₂$ poisoning reaction running. Therefore, TP, FT-IR and TG analysis were further conducted to identify it. As shown in Fig. S5, no signals of NO, H_2O and N_2 species derived from $NH₄HSO₄$ decomposition and only SO₂ emission due to sulfate species dissociation could be detected on the $Cr_{10}Ce-U_{20}$ sample. Then, FT-IR experiments in Fig. S6

Fig. 6 $NH_3 + O_2$ -TPSR profiles of Cr₁₀Ce (**a**) and Cr₁₀Ce-U₂₀ (**b**) samples

indicated that almost no characterization peaks ascribed to NH_4^+ existed on $Cr_{10}Ce-U_{20}$ sample [[38\]](#page-9-28). Finally, from TG analysis in Fig. S7, $Cr_{10}Ce-U_{20}$ sample did not show obvious weight loss at around 300 °C, where the temperature was related to the decomposition of $NH₄HSO₄$ [[30,](#page-9-20) [45](#page-10-3)]. As such, it could be concluded that sulfur deposition on $Cr_{10}Ce-U_{20}$ sample was mainly sulfate species associated with metal cations.

Aiming to investigate the existences of sulfate species on Cr₁₀Ce sample, SO_2 -TPD and $SO_2 + O_2$ DRIFT experi-ments were conducted (see Fig. [7](#page-7-0)). From SO_2 -TPD results in Fig. [7a](#page-7-0), it could be observed that only one $SO₂$ desorption peak emerged on Cr_2O_3 , $Cr_{10}Ce$ and CeO_2 samples, which located at 651, 721 and 735 °C, respectively. Obviously, the desorption peak area of sulfate species on various samples decreased as follows: $Cr_2O_3 <$ < $Cr_{10}Ce < CeO_2$, indicating that Cr addition diminished the formation of sulfate species and its stability on $CeO₂$. Although it was found that the sulfation of pure Cr_2O_3 was least severe among three samples, it lost about half of its activity by $SO₂$ poisoning at 350 °C. As such, the sulfur aversion feature of Cr species could not explain the high NH_{3} -SCO activity of $Cr_{10}Ce$ sample during the reaction in the presence of $SO₂$, whose inherent reason need to be further clarifed. In addition, DRIFT studies had been performed to further elucidate the states of adsorbed sulfate species. As shown in Fig. [7b](#page-7-0), after exposure to 500 ppm SO_2 + 5 vol% O_2 at 350 °C for 1 h, various peaks located at 1624 (1618), 1520, 1402 ~ 1382, 1314 ~ 1273, 1170, 1032 and 956 cm−1 emerged, which could be ascribed to H₂O (1624~1618 cm⁻¹), pyrosulfate species (1520 cm⁻¹), surface sulfate species $(1402 \sim 1382 \text{ cm}^{-1})$ and bulk-like sulfate species (1314 ~ 1273, 1170, 1032 and 956 cm⁻¹), respectively [[31](#page-9-21), [32\]](#page-9-22). Although surface and bulk-like sulfate species were detected on various samples, the $Cr_{10}Ce$ sample exhibited a majority formation of surface sulfate species, whereas $CeO₂$ sample predominantly generated bulk-like sulfate species. Based on previous literatures [[37,](#page-9-27) [46](#page-10-4)], the bulk-like sulfate species usually possessed more harmful effect on the activity compared to surface sulfate species, which would greatly inhibit the redox cycle of Cr-Ce species. These results indicated that Cr addition signifcantly suppressed the deep sulfation of bulk phase in $Cr_{10}Ce$ sample, which should be the main reason of its well activity against $SO₂$ poisoning. Moreover, little sulfate species formed on $Cr_{10}Ce-U_{20}$ sample was indicative of the saturation point being reached in the adsorption of SO_2 , which was related to its stable activity.

DFT studies were then performed to explore the intrinsic reason of such phenomena (see Fig. [8](#page-8-2) and Table [3](#page-8-3)). The adsorption energies of SO_2 molecule at atop Ce and O sites on the CeO₂ surface were −0.28 and −1.40 eV, while that at atop Ce, O_1 (Ce-O-Ce), O_2 (Cr-O-Ce) and Cr sites on the Cr-doped CeO₂ surface were $-0.83, -1.93, -1.66$ and -1.69 eV, respectively. It was confirmed that the SO₂ preferred to bond with the O atoms of Ce-O-Ce model around Cr atoms compared to pure Ce-O-Ce model. It could explain that the sulfation of Ceria was more serious and prolonged compared with that of Cr species. As such, during the $NH₃-SCO$ reaction, the adsorbed $SO₂$ would preferentially interact with the oxygens around the interface of $CeO₂$ and Cr_2O_3 . Different with the final deactivation of $CuCeO_x$ after SO₂ introduction reported in the literature $[17]$, CrO_x possessed stronger aversion to $SO₂$ than Cu species, combined with the spatial protection effect of the formed sulfate species on the interface of $CeO₂$ and $Cr₂O₃$ [\[47\]](#page-10-5), further $SO₂$ poisoning on Cr_2O_3 could be greatly inhibited. Therefore, remained clean Cr species and active oxygens could still participate in the $NH₃$ -SCO reaction, which had been verified

Fig. 7 SO₂-TPD (**a**) and in situ DRIFT spectra of SO₂ + O₂ co-adsorption (**b**) over various samples

Fig. 8 Optimized SO₂ molecule adsorption on $CeO₂$ and Cr-

by H_2 -TPR and O₂-TPD results in Fig. [4](#page-4-1). This should be the main reason of superior SCO performances achieved on $Cr_{10}Ce$ mixed oxide catalyst in the presence of SO_2 .

4 Conclusion

In summary, the influence of SO_2 on NH_3 -SCO performance of Cr-Ce mixed oxide catalysts had been disclosed. The existence of $SO₂$ in flue gases would somewhat inhibit the $NH₃$ oxidation ability due to the formation of surface sulfation but still could guarantee the fulfilled $NH₃-SCO$ reaction at high temperatures. In addition, the $N₂$ selectivity was greatly improved due to the enhanced acidity. For instance, near or above 90% ammonia conversion with excellent N_2 selectivity in the temperature range of 350–450 °C could be achieved on $Cr_{10}Ce$ sample after 20 h reaction running in the presence of 350 ppm SO_2 , while pure Cr_2O_3 quickly lost half of its activity. SO_2 would preferentially attack the oxygens around the interface of $CeO₂$ and $Cr₂O₃$ in Ce-Cr mixed oxides, the formed surface sulfate species created a protection structure for preventing the further sulfation of the metal oxides. As such, certain amount of active oxygens and clean Cr species were remained to fulfill the $NH₃-SCO$ reaction. Therefore, robust $NH₃$ -SCO performances in the presence of SO_2 could be achieved on $Cr_{10}Ce$ sample, which showed promising application potential for eliminating $NH₃$ slip downstream $NH₃$ -SCR process.

Supplementary Information The online version contains supplementary material available at<https://doi.org/10.1007/s10562-023-04535-4>.

Acknowledgements The authors acknowledge for the fnancial support of National Key R&D Program of China (No. 2022YFC3701600), National Natural Science Foundation of China (No. 22276162 and 22306072) and China Postdoctoral Science Foundation (No. 2023M731441).

Declarations

Conflict of interest There are no conficts to declare.

References

- 1. Liu Y, Liu Z, Wang C, Xu J, Ai J, Liu X, Zhang A, Zhao Y, Du C, Shan B (2023) Unraveling the lattice O assisted internal selective catalytic reduction mechanism on high N_2 selectivity of CuO_x/PtCu catalysts in NH₃-SCO. ACS Catal 13:7178-7188
- 2. Wang H, Murayama T, Lin M, Sakaguchi N, Haruta M, Miura H, Shishido T (2022) Understanding the distinct efects of Ag nanoparticles and highly dispersed Ag species on N_2 selectivity in $NH₃$ -SCO reaction. ACS Catal 12:6108–6118
- 3. Amblard M, Burch R, Southward BWL (2000) An investigation of the selective oxidation of $NH₃$ to $N₂$ in gasified biomass in the presence of excess CO and $H₂$ using zeolite catalysts. Catal Lett 68:105–108
- 4. Fung WK, Claeys M, van Steen E (2012) Efective utilization of the catalytically active phase: $NH₃$ oxidation over unsupported and supported $Co₃O₄$. Catal Lett 142:445-451
- 5. Ono Y, Wakita H, Inui T (1998) Relationship between oxidation states of copper supported on alumina and activities for catalytic combustion of NH₃. Catal Lett 53:83-89
- 6. Wang H, Lin M, Murayama T, Feng S, Haruta M, Miura H, Shishido T (2021) Ag size/structure-dependent effect on lowtemperature selective catalytic oxidation of NH_3 over Ag/MnO₂. ACS Catal 11:8576–8584
- 7. Liao Y, Liu Z, Li Z, Gao G, Ji L, Xu H, Huang W, Qu Z, Yan N (2022) The unique CO activation effects for boosting $NH₃$ selective catalytic oxidation over CuO_x-CeO₂. Environ Sci Technol 56:10402–10411
- 8. Sun D, Liu Q, Liu Z, Gui G, Huang Z (2009) An in situ DRIFTS study on SCR of NO with NH₃ Over V_2O_5/AC surface. Catal Lett 132:122–126
- 9. Xiao X, Xiong S, Li B, Geng Y, Yang S (2016) Role of WO_3 in NO reduction with NH₃ over V_2O_5 -WO₃/TiO₂: a new insight from the kinetic study. Catal Lett 146:2242–2251
- 10. Yu Y, Wei D, Tong Z, Wang J, Chen J, He C (2022) Rationally engineered ReO_x-CuSO₄/TiO₂ catalyst with superior NH₃-SCO efficiency and remarkably boosted $SO₂$ tolerance: synergy of acid sites and surface adsorbed oxygen. Chem Eng J 442:136356
- 11. Zhang Y, Zhang M, Zang Y, Wang H, Liu C, Wei L, Wang Y, He L, Wang W, Zhang Z, Han R, Ji N, Song C, Lu X, Ma D, Sun Y, Liu Q (2023) Elimination of $NH₃$ by interfacial charge transfer over the Ag/CeSnO_x tandem catalyst. ACS Catal 13:1449-1461
- 12. Gao F, Liu Y, Sani Z, Tang X, Yi H, Zhao S, Yu Q, Zhou Y (2021) Advances in selective catalytic oxidation of ammonia (NH_3-SCO) to dinitrogen in excess oxygen: a review on typical catalysts, catalytic performances and reaction mechanisms. J Environ Chem Eng 9:104575
- 13. Li Z, Wang C, Qiu J, Ma Y, Wang C, Sun X, Li K, Ning P, Wang F (2023) Advances in selective catalytic oxidation of ammonia (NH_3-SCO) : a review of catalyst structure-activity relationship and design principles. Chin Chem Lett 108432
- 14. Lan T, Zhao Y, Deng J, Zhang J, Shi L, Zhang D (2020) Selective catalytic oxidation of $NH₃$ over noble metal-based catalysts: state of the art and future prospects. Catal Sci Technol 10:5792–5810
- 15. Jabłońska M (2020) Progress on selective catalytic ammonia oxidation (NH3-SCO) over cu-containing zeolite-based catalysts. ChemCatChem 12:4490–4500
- 16. Chen C, Cao Y, Liu S, Jia W (2020) The effect of $SO₂$ on NH3-SCO and SCR properties over Cu/SCR catalyst. Appl Surf Sci 507:145153
- 17. Li Z, Chen J, Jiang M, Li L, Zhang J, Duan W, Wen J, Wang H, Liu M, Zhang Q, Chen J, Ning P (2022) Study on SO₂ poisoning mechanism of CO catalytic oxidation reaction on copper-cerium catalyst. Catal Lett 152:2729–2737
- 18. Su J, Yao W, Liu Y, Wu Z (2017) The impact of CrO*x* loading on reaction behaviors of dichloromethane (DCM) catalytic combustion over Cr-O/HZSM-5 catalysts. Appl Surf Sci 396:1026–1033
- 19. Guo M, Liu Q, Zhao P, Han J, Li X, Ha Y, Fu Z, Song C, Ji N, Liu C, Ma D, Li Z (2019) Promotional effect of SO_2 on Cr_2O_3 catalysts for the marine NH₃-SCR reaction. Chem Eng J 361:830–838
- 20. Liu H, Wei L, Yue R, Chen Y (2010) CrO_x-CeO₂ binary oxide as a superior catalyst for NO reduction with $NH₃$ at low temperature in presence of CO. Catal Commun 11:829–833
- 21. Guo M, Liu Q, Liu C, Wang X, Bi Y, Fan B, Ma D, Liang X, Li Z (2021) Rational design of novel CrZrO_x catalysts for efficient low temperature SCR of NO*x*. Chem Eng J 413:127554
- 22. Cai W, Zhao Y, Chen M, Jiang X, Wang H, Ou M, Wan S, Zhong Q (2018) The formation of 3D spherical Cr-Ce mixed oxides with roughness surface and their enhanced low-temperature NO oxidation. Chem Eng J 333:414–422
- 23. Su J, Liu Y, Yao W, Wu Z (2016) Catalytic combustion of dichloromethane over HZSM-5-supported typical transition metal (Cr,

Fe, and Cu) oxide catalysts: a stability study. J Phys Chem C 120:18046–18054

- 24. Fei X, Ouyang W, Gu Z, Cao S, Wang H, Weng X, Wu Z (2021) Efect of Cr doping in promoting the catalytic oxidation of dichloromethane (CH_2Cl_2) over Cr-Co@Z catalysts. J Hazard Mater 413:125327
- 25. Wang X, Liu Y, Ying Q, Yao W, Wu Z (2018) The superior performance of Nb-modifed Cu-Ce-Ti mixed oxides for the selective catalytic reduction of NO with $NH₃$ at low temperature. Appl Catal A 562:19–27
- 26. Wang X, Liu Y, Wu Z (2021) Temperature-dependent infuencing mechanism of carbon monoxide on the $NH₃-SCR$ process over ceria-based catalysts. ACS ES&T Eng 1:1131–1139
- 27. Liu W, Long Y, Liu S, Zhou Y, Tong X, Yin Y, Li X, Hu K, Hu J (2022) Promotional effect of Ce in NH_3 -SCO and NH_3 -SCR reactions over Cu-Ce/SCR catalysts. J Ind Eng Chem 107:197–206
- 28. Yan T, Chen J, Li K, Yin R, Peng Y, Li J (2023) CeO₂/ α -MnO₂ nanorods as dual-functional catalyst for simultaneous abatement of nitric oxide and chlorobenzene. Catal Lett
- 29. Gu T, Liu Y, Weng X, Wang H, Wu Z (2010) The enhanced performance of ceria with surface sulfation for selective catalytic reduction of NO by NH₃. Catal Commun 12:310-313
- 30. Jin R, Liu Y, Wang Y, Cen W, Wu Z, Wang H, Weng X (2014) The role of cerium in the improved SO_2 tolerance for NO reduction with NH_3 over Mn-Ce/TiO₂ catalyst at low temperature. Appl Catal B 148–149:582–588
- 31. Wang X, Liu Y, Yao W, Wu Z (2019) Boosting the low-temperature activity and sulfur tolerance of $CeZr₂O_x$ catalysts by antimony addition for the selective catalytic reduction of NO with ammonia. J Colloid Interface Sci 546:152–162
- 32. Wang X, Liu Y, Wu Z (2019) Highly active $NbOPO₄$ supported $Cu-Ce$ catalyst for $NH₃-SCR$ reaction with superior sulfur resistance. Chem Eng J 382:122941
- 33. Yao W, Liu Y, Wu Z (2018) The promoting effect of $CeO₂@Ce-$ O-P multi-core@shell structure on $SO₂$ tolerance for selective catalytic reduction of NO with $NH₃$ at low temperature. Appl Surf Sci 442:156–163
- 34. Xue L, Wei N, Zhao C, Hu X, Yun J, Chen Z, Deng Z, Chen Z (2022) Promotion effect of Cr addition on the activity and $SO₂$ tolerance of CeO_x catalysts for the NH₃-SCR at middle-low temperature. J Energy Inst 105:472–480
- 35. Qi K, Yi Q, Fang D, Gong P, Shi L, Gao L, Li X, He F, Xie J (2023) Temperature dependence of reaction mechanisms and SO₂ tolerance over a promising monolithic CuY catalyst for NO removal. Appl Surf Sci 615:156473
- 36. Yang S, Guo Y, Chang H, Ma L, Peng Y, Qu Z, Yan N, Wang C, Li J (2013) Novel effect of SO_2 on the SCR reaction over CeO_2 : mechanism and signifcance. Appl Catal B 136–137:19–28
- 37. Wang X, Liu Y, Wu Z (2020) The poisoning mechanisms of different zinc species on a ceria-based $NH₃-SCR$ catalyst and the co-efects of zinc and gas-phase sulfur/chlorine species. J Colloid Interface Sci 566:153–162
- 38. Chi R, Wang X, Liu Y, Wu Z (2023) Highly active alkali etching silica-modifed Cu-Ce-Ti catalyst with superior water resistance for low temperature NO_x reduction. Appl Surf Sci 627:157304
- 39. Wang X, Zhu Y, Liu Y, Weng X, Wu Z (2022) Tailoring the simultaneous abatement of methanol and NO*x* on Sb-Ce-Zr catalysts via copper modifcation. Front Environ Sci Eng 16:130
- 40. Liu F, Asakura K, He H, Shan W, Shi X, Zhang C (2011) Infuence of sulfation on iron titanate catalyst for the selective catalytic reduction of NO_x with $NH₃$. Appl Catal B 103:369–377
- 41. Guo M, Liu C, Liu Q, Wang Y, Fan B, Wang H, Liu B, Cui S, Zhao Y (2022) Investigation of SO₂ resistance on Novel Cr_{0.8}Zr_{0.2}O₂ catalysts for marine low-temperature SCR of NO removal. ACS ES&T Eng 2:1825–1835
- 42. Yao W, Wang X, Liu Y, Wu Z (2019) Ce-O-P material supported $CeO₂$ catalysts: a novel catalyst for selective catalytic reduction of NO with NH₃ at low temperature. Appl Surf Sci 467-468:439-445
- 43. Liu Y, Yao W, Cao X, Weng X, Wang Y, Wang H, Wu Z (2014) Supercritical water syntheses of $Ce_xTiO₂$ nano-catalysts with a strong metal-support interaction for selective catalytic reduction of NO with NH₃. Appl Catal B 160-161:684-691
- 44. Ying Q, Liu Y, Wang N, Zhang Y, Wu Z (2020) The superior performance of dichloromethane oxidation over Ru doped sulfated $TiO₂$ catalysts: synergistic effects of Ru dispersion and acidity. Appl Surf Sci 515:145971
- 45. Guo K, Fan G, Gu D, Yu S, Ma K, Liu A, Tan W, Wang J, Du X, Zou W, Tang C, Dong L (2019) Pore size expansion accelerates ammonium bisulfate decomposition for improved sulfur resistance in low-temperature $NH₃$ -SCR. ACS Appl Mater Interfaces 11:4900–4907
- 46. Zhang L, Li L, Cao Y, Yao X, Ge C, Gao F, Deng Y, Tang C, Dong L (2015) Getting insight into the influence of SO_2 on TiO₂/

 $CeO₂$ for the selective catalytic reduction of NO by NH₃. Appl Catal B 165:589–598

47. Costa CN, Savva PG, Fierro JLG, Efstathiou AM (2007) Industrial H₂-SCR of NO on a novel Pt/MgO-CeO₂ catalyst. Appl Catal B 75:147–156

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.