

The Effect of Lithium on NiMo/Al₂O₃ Hydrotreating Catalysts Prepared **from Heteropolycompounds**

Luděk Kaluža¹ • Květa Jirátová¹ • Alla A. Spojakina² • Jana Balabánová¹ • Dana Gulková¹ • Martin Koštejn¹ • **Radostina Palcheva2 · Georgi Tyuliev2 · Radek Fajgar1**

Received: 7 December 2022 / Accepted: 24 February 2023 / Published online: 17 March 2023 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

Recently, simultaneous hydrotreatment of various petroleum fractions and plant feedstocks has been in demand. NiMo catalysts can be active in these processes. Therefore, supported NiMo oxide catalysts were prepared by impregnating an alumina support with Anderson's molybdenum salt (ammonium salt of nickel heteropolymolybdate $(NH_4)_4NiMo_6O_{24}H_6$) and lithium carbonate. The prepared catalysts were tested in hydrodesulfurization (HDS) of thiophene and parallel HDS/ HDO (hydrodeoxygenation) of 1-benzothiophene and octanoic acid. Experimental data showed a positive efect of lithium on the parallel HDS/HDO reactions and a negative efect on the HDS of thiophene. A signifcant efect of lithium on the acidity and reducibility of the NiMo/Al₂O₃ catalyst as well as the contribution of an Anderson-type heteropolycompound was demonstrated.

Graphical Abstract

Keywords NiMo/Al₂O₃ catalysts · Lithium · Nickel heteropolymolybdate · Thiophene · 1-Benzothiophene · Octanoic acid

Luděk Kaluža kaluza@icpf.cas.cz

Alla A. Spojakina mariamaleva@yahoo.com

Jana Balabánová balabanova@icpf.cas.cz

Dana Gulková gulkova@icpf.cas.cz

Martin Koštejn Kostejn@icpf.cas.cz Radostina Palcheva radost@ic.bas.bg Georgi Tyuliev tyuliev@gmail.com Radek Fajgar fajgar@icpf.cas.cz

- ¹ Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 165 00 Praha 6, Czech Republic
- Institute of Catalysis of the BAS, Akad. G. Bonchev Str., Bl. 11, 1113 Sofa, Bulgaria

1 Introduction

Hydrotreatment of diferent feeds for the production of fuels includes several processes such as hydrodesulfurization (HDS), hydronitrogenation (HDN), hydrogenation (HYD), hydrodemetallization (HDMe) and hydrodeoxygenation (HDO). All these reactions take place in the presence of catalysts containing either Mo or W compounds, promoted by Co and/or Ni compounds, which are supported mostly on Al_2O_3 . In addition to the traditional chemical compounds used for the preparation of HDS catalysts, such as ammonium heptamolybdate, phosphomolybdic acid, nickel or cobalt nitrates, other compounds such as polyoxometalates (POMs) may be of interest due to their unique acidic properties and oxidative abilities, which can be systematically controlled by changing the countercation and the element in the anion.

Polyoxometalates (POM) are used either as a starting material for the preparation of metal oxide catalysts or directly as active components of supported catalysts. Recently, considerable attention has been paid to catalysts synthesized using polyoxometalates and various supports $(AI₂O₃, TiO₂, MgO, zcolites etc.).$ Polyoxometalates serve as catalysts or precursors of catalysts [[1,](#page-15-0) [2](#page-15-1)] acting in various acid and oxidation–reduction reactions including hydrodesulfurization (HDS).

Studies on supported polyoxometalates are particularly important because the interaction of the support and POM can alter properties of the resulting solids. The strength of the interaction can be infuenced by the components of the polyoxometalates and the acid–base properties of the support. The design of the catalyst at the molecular level can be straightforward and therefore it is worth studying the properties of POM. However, there is no uniform opinion in the literature on the stability of polyoxometalates formed at the support surface $[3-5]$ $[3-5]$.

In our previous papers on hydrodesulfurization catalysts, we have investigated the properties of Mo or W polyoxometalates of diferent structure and compositions prepared on diferent supports [[6–](#page-15-4)[8](#page-15-5)]. The catalysts prepared from POM, supported on silica and modifed by lithium showed higher activity for HDS of thiophene than the nonmodifed ones [[9\]](#page-15-6). We also showed that ammonium salts of polyoxometalates of Ni, Co and Fe of the Andersontype based on alumina are suitable precursors of active sites in hydrodesulfurization reactions. Among the metal salts studied, the nickel-containing catalyst showed the highest activity in HDS [[10\]](#page-15-7). In contrast to Keggin type of polymolybdates, Anderson type of polyoxomolybdates exhibit a planar structure which is an important factor for heteropolyanion–support interaction. This interaction produces an ordered distribution of metallic elements and their uniform deposition, which enhances the synergic efect [\[11,](#page-15-8) [12](#page-15-9)].

Moreover, catalysts prepared from Anderson salts exhibit good reducing and sulfidation properties, which represent an interesting alternative to traditional HDS systems [[13\]](#page-15-10). Using Anderson type of polyoxometalates, Nikulshin et al. [[14](#page-15-11)] investigated the efect of Co, Ni, Mn, Zn cations and morphology of nanosized transition metal sulfdes in hydrodesulfurization of dibenzothiophene. Pimerzin et al. [15] summarized the effect of Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga in Mo Anderson-type polyoxometalates on the activities in HDS and hydrogenation of thiophene and benzene.

The development of a wide range of catalysts for the hydrotreating of various petroleum fractions and secondary products is therefore signifcant. Thiophene is very often used as a model compound for HDS reactions representing the composition of light petrol. Thiophenes are sometimes used for simultaneous HDS/HDO with aromatic alcohols and furans representing pyrolyzed bio-oils [[16,](#page-15-13) [17](#page-15-14)]. Recently, however, simultaneous hydrotreating of various petroleum fractions, vegetal raw materials and/or waste fatty materials has been required [\[18](#page-15-15)[–21\]](#page-16-0). The use of Li-modifed $NiMo/Al₂O₃$ catalysts in the hydrogenation of a model reaction mixture (representing a mixture of petroleum fractions and fatty feedstocks, namely 1-benzothiophene and octanoic acid) could reveal the infuence of the diferent acid–base properties of the catalysts on the activity and selectivity of the reaction. Thiophene and 1-benzothiophene are known to exhibit similar reactivity during their HDS on NiMoS catalyst because of the identical reaction pathway [[22](#page-16-1), [23](#page-16-2)]. However, the similarity in the behavior of the two reactants may not hold true in the case of a set of catalysts that difer signifcantly in their surface properties afecting HDS reaction pathway. In addition, reaction byproducts formed during HDO of hydrocarbon feeds, high oxygen content mainly in the form of –OH or –COOH groups and their derivatives can infuence the HDS reaction pathway of, e.g., 1-benzothiophene. Therefore, a mixture of 1-benzothiophene and fatty acid is a good choice for waste fats and heavier hydrocarbon fraction co-hydrotreatment focused on environmentally friendly diesel production, while a mixture of thiophene and furan will be an excellent model mixture for light hydrocarbon fraction co–hydrotreating.

Improvements in hydrocatalytic processes, including the simultaneous hydrotreating of various petroleum fractions and plant feedstocks has recently been required due to the use of new renewable feedstocks and the demand for environmentally friendly fuel production. Therefore, not only hydrodesulfurization reactions are necessary in the processing of modern feedstocks. New feeds derived from waste plastics or renewable sources introduce high oxygen content into hydrocarbon feeds up to approximately 38% by weight [\[24](#page-16-3)[–26](#page-16-4)] (instead of approximately 2% in other feeds). When

synthetic or renewable feedstocks are co-hydrotreated with fossil-based feedstocks, sulfde hydrotreating catalysts must provide a large-scale hydrodeoxygenation reaction (HDO) in addition to the hydrodesulfurization reaction (HDS).

We found previously $[27]$ $[27]$ $[27]$ that the NiMo sulfide phase exhibits higher HDO and HDS activity than the sulfde phase of CoMo and Mo supported on MgO, Al_2O_3 , ZrO_2 , TiO_2 , and activated carbon. The type of support infuenced the HDO/HDS selectivity and the active phase used and was the highest for $NiMo/TiO₂$. Varakin et al. [[28\]](#page-16-6) suggested double-bed catalytic system consisting of unsupported $MoS₂$ catalyst and a NiMo catalyst supported by Al_2O_3 for cohydrotreating of a mixture of waste vegetable oils and oil fractions. Nikulshin et al. [\[18](#page-15-15)] showed that catalysts more useful for the HDO of renewable feed are those on the inert C-coated Al_2O_3 supports. However, acidity plays a major role in hydrodeoxygenation reactions and thus, seems to be crucial for HDO of fatty acids containing feeds because it afects the formation of linear or branched hydrocarbons [[27,](#page-16-5) [29](#page-16-7)].

Considering the dependence of the activity of supported polyoxometalates on the composition, type of support and added compounds, an important step in tailoring catalysts for HDS/HDO reactions is the selection of active and stable polyoxometalates in traditional HDS (HDN) processes that could be suitable also for HDO process.

The aim of this study is to investigate the effect of lithium in a Li-modified NiMo/Al₂O₃ catalyst prepared from the ammonium salt of Anderson compound $(NH_4)_4NiMo_6O_{24}H_6$ (abbreviated $NiMo₆$). We decided to investigate such catalysts in HDS of thiophene to reveal whether the efect of lithium on the Al_2O_3 -supported NiMo catalyst would be similar to that of $NiMo/SiO₂$ catalysts. These catalysts showed higher activity in HDS of thiophene with increasing Li concentration [[9](#page-15-6)], which was very likely due to the stabilization of molybdenum dispersion induced by lithium loaded on $SiO₂$ support.

It was previously found [[30](#page-16-8)] that lithium in the Al_2O_3 -MgO-supported CoMo catalysts can enhance the selectivity of direct desulfurization in HDS and promote not only the reduction of the number of acidic sites but also the reduction of the acid strength of these sites [[31](#page-16-9)]. Therefore, we decided to study Li-modified $NiMo/Al_2O_3$ catalysts in the hydrotreating of a model reaction mixture, namely 1-benzothiophene and octanoic acid, representing a mixture of petroleum fractions and fatty feedstocks. This study would be of great interest since the diferent acid–base properties of the $NiMo/Al₂O₃$ catalysts due to Li modification could be observed in both reactions.

Therefore, in this paper, the formation of molybdenum phases, their physical properties and activities in the hydrorefning reactions of model feeds are investigated. The study shows how lithium content in the range of 0.1–1.3 wt.% afects the activity in HDS of thiophene at 300–370 °C and 1.0 MPa and the activity in parallel HDO/HDS of octanoic acid (OA) and 1-benzothiophene (BT) at 330 °C and 1.6 MPa.

2 Experimental

2.1 Preparation of Catalysts

Basically, catalyst support (grains γ - Al₂O₃ with diameter 0.16–0.32 mm, S_{BET} =184 m²g⁻¹, V_{tot}=0.505 cm³g⁻¹, Euro Support Manufacturing Czechia, s.r.o, Litvínov, Czech Republic) was impregnated with an aqueous solution of Anderson's salt $(NH_4)_4NiMo_6O_{24}H_6$) prepared according to Tsigdinos by reacting solutions of ammonium molybdate and nickel sulfate at 80 °C [\[32](#page-16-10)]. Prior to the deposition of the active components onto alumina, the support was impregnated with an aqueous $Ni(NO₃)₂$ solution, dried and calcined at 350 \degree C for 4 h to ensure sufficient Ni in the resulting catalysts (−1.5 wt.%). The support thus prepared was impregnated with an aqueous solution of Anderson's salt and $Li₂CO₃$ at a temperature of about 80 °C. (Preparation of 5 g of NiMo6-0.1 sample: 0.28 g of Anderson salt + 0.053 g of Li_2CO_3 was dissolved in 40 ml of water and then a preprepared Al_2O_3 carrier containing about 1.5 wt.% Ni was added to this solution. The suspension was evaporated with stirring at 60 °C and 70 Pa to dryness on a vacuum evaporator. The resulting product was dried at 105 °C for about 8 h and subsequently calcined at 350 °C for 4 h. All impregnated samples were dried 4 h at 105 °C and calcined in a crucible furnace at a heating rate of 6 $^{\circ}$ C min⁻¹ and then at 350 $^{\circ}$ C for 4 h. After calcination, the prepared catalysts were designated as NiMo₆-x, where x indicates the amount of lithium (wt.%) in the calcined catalyst.

2.2 Characterization of the Catalysts

The content of metals in the prepared catalysts was determined by Agilent 4200 MP-AES (atomic emission spectroscopy with microwave plasma) after samples dissolution in diluted (2%) hydrochloric acid.

Nitrogen physisorption on catalyst (grain size 0.16–0.32 mm) was performed using an ASAP 2020 Micromeritics instrument after degassing at 350 °C and 1 Pa vacuum for 24 h. The adsorption–desorption isotherms of nitrogen at -196 °C were evaluated by the standard Brunauer–Emmett–Teller (BET) procedure [\[33](#page-16-11)] for the p/p_0 range = 0.05 –0.25 to calculate the specific surface area S_{BET} . Total pore volume, V_{total} , was determined from nitrogen adsorption isotherm at p/p_0 (−0.995). The measurements of S_{BET} and V_{total} are made with an accuracy of $\pm 2\%$. The poresize distribution (pore radius $10^0 - 10^2$ nm) was evaluated

from the adsorption branch of the nitrogen isotherm by the Barrett–Joyner–Halenda (BJH) method [[34](#page-16-12)] assuming a cylindrical pore geometry. The Lecloux–Pirard standard isotherm [[35\]](#page-16-13) was used for the *t*–plot and for the pore–size distribution evaluation. Volume of micropores, *Vmicro*, and pore radius, *R*, were determined.

Temperature-programmed reduction $(H_2$ -TPR) measurements were performed with the H_2/N_2 mixture (10 mol.%) H₂), flow rate of 50 ml min⁻¹, and a linear temperature increase of 20 °C min⁻¹ up to 800 °C. Changes in H₂ concentration were detected with a catharometer. Reduction of grained CuO (0.16–0.32 mm) was performed to calculate absolute values of the hydrogen consumed during reduction of the samples [\[6](#page-15-4)].

Temperature-programmed NH_3 desorption (NH_3 –TPD) was performed to investigate the acidic properties of the catalyst surface [[6,](#page-15-4) [36](#page-16-14), [37\]](#page-16-15), as it has been previously shown that Broensted sites are not present in Al_2O_3 -supported NiMo catalysts [[38\]](#page-16-16). Thus, the adsorption of pyridine on lithiummodified $NiMo/Al₂O₃$ catalysts has not been investigated. The NH_3 -TPD measurements were performed with a 0.5 g sample in the temperature range of $20-650$ °C, with helium (16 ml min⁻¹) as a carrier gas and NH₃ as the adsorbing gas. Prior to the $NH₃-TPD$ measurement, the sample was heated in helium from 25 to 500 °C, with a temperature ramp of 20 °C min−1; then, the sample was cooled in helium to 25 °C. Ten doses of NH₃, 840 µl each, were applied to the catalyst sample at 30 °C before fushing with helium for 1 h and heating at the rate of 20 °C min−1. The composition of gases evolved during the experiments was determined by a mass spectrometer (Balzers). The mass contributions *m/z* 16 –NH₃ was collected. The spectrometer was calibrated by dosing the known amount of $NH₃$ into the carrier gas (He) in every experiment. Identical apparatus and experimental conditions were used for the measurements of catalyst basicity (CO_2 -TPD), only CO_2 was used instead of NH₃. The mass contributions m/z 44–CO₂ was collected. The H₂-TPR, $NH₃-TPD$, and $CO₂-TPD$ experiments were evaluated using OriginPro 8.0 software with the accuracy of $\pm 5\%$.

An Avatar 360 (Nicolet) FTIR spectrometer was used to obtain infrared spectra from catalysts between 360 and 4000 cm−1 (resolution 1.93 cm−1, 300 scans, 1 s per scan, transmission mode) when the sample powder was pressed with KBr into a pellet. The spectrum of the support was eliminated using a compensation method [\[39](#page-16-17)].

The XPS measurements were performed in the analysis chamber of the electron spectrometer ESCALAB‐Mk II (VG Scientific) with a base pressure of $\sim 5 \times 10^{-8}$ Pa. The "as-prepared" calcined samples in powder form were pressed into graphite covered copper sample holders, the pellets so obtained had diameter of 10 mm and thickness −1.5 mm. The C 1 s, O 1 s, Al 2p, Li 1 s, Mo 3d, and Ni 2p photoelectron lines were recorded with AlK_{α} (hv=1486.6 eV)

radiation. All spectra were calibrated using O 1 s peak at 531.5 eV as a reference. The surface composition was evaluated from the photoelectron intensities divided by the corresponding photoionization cross sections taken from Scofeld [\[40](#page-16-18)]. In order to check at least qualitatively the uniformity of active phase distribution in the bulk of the alumina support, additional measurements of samples crushed in agate mortar before analysis were also performed.

The model reaction was gas-phase hydrodesulfurization of thiophene (Th) in a fixed-bed flow reactor at the total pressure of 1.0 MPa. The feed rate of Th, F_{Th} , was 0.909 mmol h^{-1} , and that of hydrogen, F_{H2} , was 0.732 mol h⁻¹. The catalyst charge, *W*, was 0.01 g. The catalyst was pre–sulfided in situ by a mixture of H_2S/H_2 (1:10) at atmospheric pressure with a flow rate of 110 ml min⁻¹, a temperature rise rate of 6 $^{\circ}$ C min⁻¹ to 400 $^{\circ}$ C and dwell time of 1 h. These pre-sulfdation conditions represent typical conditions for the formation of sulfde catalysts from oxide precursors. The sulfdation process is documented in [[41\]](#page-16-19) and references therein. The Th conversion, x_{Th} , was determined at 300, 340, and 370 °C. The conversion was defined as $x_{TH} = (n^o_{Th} - n_{Th})/n^o_{Th}$, where n^o_{Th} and n_{Th} are the initial and fnal number of moles of Th, respectively. The activity of catalyst was evaluated as a pseudo-frst-order rate constant k_{Th} (mmol_{Th} g_{cat}^{-1} h⁻¹) of Th conversion:

$$
k_{Th} = -(F_{Th}/W) \ln (1 - x_{Th})
$$
 (1)

Parallel deoxygenation and desulfurization was carried out on a fxed-bed fow reactor at 330 °C and 1.6 MPa using the previously reported method [[27](#page-16-5)]. Briefy, catalysts were pre–sulfded in situ as it was described above. The feed consisted of octanoic acid (OA), 1-benzothiophene (BT) , decane and $H₂$. The composition of the feed was kept constant at 16, 16, 200, and 1368 kPa of OA, BT, decane, and H_2 , respectively. The catalyst weight (W) was 0.06 and 0.1 g. The reaction was performed at three feed rates of OA and BT (F_{OA} and F_{BT}): 7.7, 10.3, and 15.5 mmol h⁻¹. The conversion of OA was defined as $x_{OA} = (n^{\circ}_{OA} - n_{OA})/n^{\circ}_{OA}$, where n^o _{OA} and n_{OA} are the initial and final number of moles of OA, respectively. Yields y_{C7+C8} were defined as $y_{C7+C8} = (n_{C7}+n_{C8})/n^{\circ}$ _{OA}, where n° _{OA} and *n* are the initial moles of octanoic acid and the moles of the linear hydrocarbons, respectively. The total hydrodeoxygenation (HDO) activity was quantifed as empiric pseudo-frst order rate constant k_{HDO} of the sum of the yields of linear C_7 and C_8 hydrocarbon formation y_{C7+C8} . The total HDO activity k_{HDO} $\text{(mmol}_{\text{(C7+C8)}} g_{\text{(cat)}}^{-1} h^{-1}$) was achieved by non–linear fitting from the dependence of y_{C7+C8} on W/F_{OA} :

$$
y_{C7+C8} = 1 - \exp(-k_{\text{HDO}} * W/F_{OA})
$$
 (2)

The hydrodesulfurization (HDS) activity during HDO/ HDS was quantifed as the empiric pseudo-frst order rate constant of the k_{HDS} yields of ethylbenzene (EB) formation *y_{EB}*. The BT conversion was defined as $x_{BT}=(n^o_{BT}-n_{BT})/n^o_{BT}$, where n^o_{BT} and n_{BT} are the initial and final moles of BT, respectively. The yield y_{EB} was defined as $y_{EB} = (n_{EB})/n^{\circ}_{BT}$, where n°_{BT} and n_{EB} are the initial amount of 1-benzothiophene and the amount of ethylbenzene, respectively. The HDS activity k_{HDS} (mmol_{EB} $g_{(cat)}^{-1}$ h⁻¹) was obtained by a non-linear fitting from the dependence of y_{EB} on W/F_{BT} :

$$
y_{EB} = 1 - \exp\left(-\frac{\mathrm{k_{HDS}}}{W/F_{BT}}\right) \tag{3}
$$

3 Results

3.1 Physical–Chemical Properties of the Prepared Catalysts

The chemical composition of $NiMo₆-x$ catalysts (calcined at 350 °C for 4 h) prepared from the ammonium salt of polyoxonickelate and a small amount of $Li₂CO₃$ is shown in Table [1](#page-4-0). The concentration of lithium was gradually increased from 0 wt.% for the NiMo₆-0 sample to 1.3 wt.% for the NiMo₆-1.3 sample. The concentration of Ni was around 1.5 wt.%. The concentration of molybdenum was around 8.5 wt.%. The molar ratio of Ni/Mo in the catalysts was close to 0.28.

The porous structure of the Li-doped $NiMo₆$ catalysts was characterized by adsorption/desorption of nitrogen at –196 °C and the results are summarized in Table [2](#page-4-1). The S_{BET} surface area of all catalysts was lower than the surface area of the support (184 m² g⁻¹, V_{tot} = 505 mm³_{liq} g⁻¹), which was due the partial blocking of small pores during the impregnation of the support with active components. The surface area of the catalyst without lithium showed the value approximately 167 m^2 g⁻¹. This value therefore represents a surface area of about 192 m² g⁻¹ after normalization per gram of support.

However, the addition of a small amount of lithium decreased the surface area of the catalysts slightly; the catalyst with 0.9 wt.% Li showed the smallest surface area $(S_{BET}=153 \text{ m}^2 \text{ g}^{-1})$. Accordingly, the total pore volume

Table 2 Characteristic values of porous structure of the examined samples

Sample	S_{BET}	V_{total}	V_{micro}	R
	m^2 g^{-1}	$mm3$ _{liq} $g-1$	$mm3$ liq $g-1$	nm
$NiMo6-0$	167	424	8	5.0
$NiMo6-0.1$	158	411	6	5.0
$NiMo6-0.2$	156	438	7	5.4
$NiMo6-0.9$	153	396		5.2
$NiMo6-1.3$	174	425	6	4.7

 S_{BET} Surface area determined from N_2 adsorption isotherm at *T*=–196 °C; V_{total} Total pore volume determined from N₂ adsorption isotherm at P/P_0 =0.995; V_{micro} Volume of micropores determined by *t*-plot method using standard isotherm of Lecloux and Pirard; *R* Pore radius determined from a maximum at pore-size distribution curve

decreased with increasing Li concentration in the solids from 425 to 396 mm³_{liq} g^{-1} . The V_{micro} micropore volume was small in all cases (about 2% of the total pore volume). Experimental data show that increasing lithium concentration higher than 1.0 wt.% in the catalysts have a negative efect on the porous structure of metal oxides.

The nitrogen adsorption–desorption isotherms obtained with calcined catalysts confrm that there is not a signifcant diference in the pore size distribution among the catalysts with lithium concentrations ranging from 0.1 to 1.3 wt.% (see Fig. S.1 in Supplementary Information). Very similar pore radii (around 5 nm) were observed for the NiMo₆-0 and $NiMo₆-0.1$ catalysts, while the other two catalysts ($NiMo₆-0.2$, $NiMo₆-0.9$) showed slightly larger pore radii (5.4 and 5.2 nm). The data show that the content of lithium in catalysts higher than about 1 wt.% leads to a decrease in pore radius due to sintering. The pore characteristics changed only slightly for the sample with 1.3 wt.% Li, probably due to the interaction of Li^+ with isolated MoO₄²⁻ ions leading to the formation of new poorly dispersed $Li₂MoO₄$ crystallites [[42](#page-16-20)].

Reduction of the prepared $NiMo₆-x$ catalysts containing various amount of lithium was studied by H_2 -TPR in the temperature range of $25-800$ °C (Fig. [1](#page-5-0)). The reduction of unsupported Anderson salt was carried out in three regions with temperature maxima at 492, 620 and>800 °C.

Sample	Li $wt.\%$	Ni $wt \%$	Mo $wt \%$	Ni/Mo mol mol $^{-1}$	H_2 -TPR ^a mmol g^{-1}	$NH_{3}-TPD^{a}$ mmol g^{-1}	$CO2-TPDa$ mmol g^{-1}
$NiMo6-0$	$\overline{0}$	1.49	8.61	0.28	0.62	0.60	0.01
$NiMo6-0.1$	0.09	1.50	8.70	0.28	0.59	0.64	0.01
$NiMo6-0.2$	0.18	1.48	8.61	0.28	0.52	0.53	0.01
$NiMo6-0.9$	0.89	1.65	9.85	0.27	0.29	0.29	0.04
$NiMo6-1.3$	1.32	1.37	6.95	0.32	0.23	0.21	0.09

a Upto 500 °C

 132 $0.2*10$ 426 ntensity, a.u. $NiMo₆-x$ $x=0.0$ 0.1 0.2 35 0.9 1.3 446 $\mathbf 0$ 200 400 600 Temperature, °C

Fig. 1 H2–TPR profles of unsupported Anderson salt and NiMo6-x catalysts with diferent amounts of Li (x is given in wt.%)

According to Cabello et al. [[43\]](#page-16-21) who investigated the reduction process of $(NH_4)_3COMo₆H₆O₂₄$.7 H₂O Anderson phase, two main reduction regions representing the $Mo^{VI} \rightarrow Mo^{IV}$ and $Mo^{IV} \rightarrow Mo^{0}$ reactions were found. Thus, in our case, the peak at 620 °C represents the reduction of NiMoO₄ to MoO₂ and the peak at temperature higher than 800 °C represents the reduction of $MoO₂$ to Mo. The small peak observed at 492 °C can be attributed to the reduction of $Mo₄O₁₁$, which is formed as an intermediate in the reduction process. After deposition of Anderson salt on Ni/γ–alumina support, all catalysts exhibit two typical temperature regions of H_2 consumption with increasing temperature. For $NiMo₆-x$ catalysts, we can observe signifcant changes in the temperature peaks with increasing Li concentration. The lithium-free catalyst ($NiMo₆-0$) showed temperature peaks at 430 and 674 °C, roughly separated at about 450 °C. Higher Li content led to a shift of the low temperature peak to higher temperatures and to its broadening. The catalyst with the highest Li concentration ($NiMo₆-1.3$) showed three reduction peaks with maxima at 430, 588, and 758 °C. Thus, the T_{max} positions of the reduction peaks in H_2 –TPR (Table [1](#page-4-0)) reflected the Li concentration in the $NiMo₆-x$ catalysts: increasing Li concentration led to delayed reduction of metal oxides. The intensity of the reduction peaks decreased with increasing Li

Fig. 2 NH_3 –TPD profiles of NiMo6-x catalysts modified with different amounts of lithium $(x=Li$ content in wt.%)

concentration. At the same time, the value of the peak position increased. The progression of the reduction peaks indicates a gradual change in the composition of the catalysts due to the addition of Li, and the formation of compounds such as $NiMoO₄$ and $MoO₂$ and compounds formed during interaction of POM with the support.

The acidity of the catalysts is an important factor that afects the chemical reactivity of the reactants due to the diferent acidic nature of the catalyst surface and the reacting molecules. Several types of acid sites can be recognized in the $NH₃-TPD$ profiles of oxide catalysts. Weakly acidic sites are attributed to –OH groups occurring on the catalyst surface, moderately acidic sites are formed by metal(Me)-bound oxygen as $Me^{2+}-O^{2-}$ or $Me^{3+}-O^{2-}$ pairs, and strongly acidic sites are attributed to isolated cations [[44\]](#page-16-22). Individual peaks below 140 °C can be assigned to weakly acidic sites, peaks appearing in the range 140–220 °C to moderately acidic sites, and peaks above 270 °C can be assigned to strongly acidic sites. Protons present in 6-heteropoly anions such as [NiMo₆O₂₄H₆]^{4–} are directly bound to oxygen atoms bridging Ni and Mo atoms and are not neutralized prior to the decomposition of these anions by the base.

NH₃-TPD measurements were performed to determine the differences in acidity between fresh $NiMo₆-x$ catalysts modified by lithium and calcined at 350 °C. The effect of lithium content on the amount of acid sites is shown in Table [1](#page-4-0) and Fig. [2](#page-5-1). The $NH₃-TPD$ desorption profiles represent all types of acid sites – weak, medium, and strong—but a strict separation between them was not possible. In the lithium-free catalyst (NiMo_6 -0), weak and moderately acidic sites were predominant. The $NiMo₆-0.1$ catalyst with the lowest Li concentration (0.09 wt.%) showed a very similar $NH₃$ desorption profile to the NiMo₆-0 catalyst.

A signifcant increase in Li concentration (0.9 wt.%) led to a gradual decrease in the amount of weakly acidic sites with a maximum desorption at 132 $\rm{°C}$ (Fig. [2](#page-5-1)), but the strongly acidic sites corresponding to $NH₃$ desorption at ca. 426 °C were still retained in the catalyst. An even higher concentration of lithium in the catalyst (1.3 wt.%) led to a signifcant reduction in the amount of weakly and strongly acidic sites desorbing at 132 and 426 °C. Thus, the NH₃ desorption of the $NiMo₆-1.3$ catalyst differed substantially from the other catalysts (Fig. [2](#page-5-1)), as it showed the lowest amount of very strong acid sites characterized by a T_{max} of NH₃ desorption around 470 °C.

Desorption of $CO₂$ at increasing temperature was chosen as a method to characterize the basicity of the catalysts (Fig. S2). The course of $CO₂$ desorption from catalysts with low Li concentration is practically the same as for the unmodifed catalyst. The addition of 0.09 wt.% Li caused a shift of $CO₂$ desorption to lower temperatures, indicating a shift of the strength of the basic sites to lower values. A more pronounced shift of desorption to lower temperatures can be seen in case of the catalyst with 1.3 wt.% Li. The temperature maximum has shifted from 550 to 450 °C. In addition, this catalyst showed a signifcant presence of weak base sites (temperature maximum of $CO₂$ desorption at about 100 °C). The basicity (Table [1\)](#page-4-0) expressed as mmol CO_2 g⁻¹ desorbed from 25 to 500 °C showed very low values, ranging from 0.01 for the unmodified catalyst to 0.09 mmol g^{-1} for the catalyst with 1.3 wt.% Li. These data demonstrate the amphoteric nature of POM- prepared catalysts, which shifted to basic nature after the introduction of \geq 0.9 wt.% Li.

Fourier transform infrared spectroscopy (FTIR) identifes diferent types of molecular bonds present in solid samples. In our catalysts, stretching mode bands in the range 3200–3600 cm⁻¹ and 1600–1750 cm⁻¹ (not shown here) appeared due to the presence of crystallization and constitution water, with higher amounts in $NiMo₆-0.9$ and $NiMo_{6}$ -1.3 catalysts than in $NiMo_{6}$ -0, $NiMo_{6}$ -0.1 and $NiMo₆-0.2$ catalysts. Figure. [3](#page-6-0) shows the FTIR spectra of the calcined catalysts taken in the region from 400 to 1200 cm^{-1} .

Two broad bands at about 900 cm^{-1} (with close bands at 875 and 926 cm⁻¹) and 636 cm⁻¹ (with a shoulder at 575 cm^{-1}) are characteristic of the synthesized Anderson polyoxomolybdate (POM) and correspond well with the bands described in the literature [\[45,](#page-16-23) [46](#page-16-24)]. The absorption

Fig. 3 FTIR spectra of Anderson salt and $NiMo₆–x$ catalysts modified with lithium $(x=Li$ content in wt.%); the spectrum of the support is subtracted

bands at ca. 950–850 cm^{-1} are attributed to cis–MoO₂ bonds and the bands at $636-500$ cm⁻¹ are attributed to bridging Mo–O–Mo bonds.

After deposition of nickel polyoxomolybdate $(NH_4)_4$ NiMo₆O₂₄H₆ on Ni/Al₂O₃, the bands of NiMo₆-0 catalyst were slightly shifted to higher wavenumbers (665, 900 and 945 cm⁻¹), and a new band at 445 cm⁻¹ appeared. These bands are in agreement with the bands found for (NH_4) ₃AlMo₆O₂₄H₆ [\[39\]](#page-16-17), which may have formed during the catalyst preparation due to the interaction between the Ni/Al_2O_3 and the active component $(NH_4)_4NiMo_6O_{24}H_6$. These species could also be formed by interaction of Ni and Mo compounds with partially dissolved alumina domains during impregnation [[47,](#page-16-25) [48\]](#page-16-26).

Very similar spectra were observed for the $NiMo₆-0.1$ and $NiMo₆-0.2$ catalysts with Li concentration < 0.2 wt.%; only the band at 945 cm^{-1} is more pronounced for the $NiMo₆-0.2$ catalyst.

The increasing Li concentration in the catalysts (0.9 and 1.3 wt.%) was refected by the disappearance of the characteristic Anderson salt bands and the appearance of new broad bands at 840 cm⁻¹ (attributed to lithium molybdate formation) and a not very strong band at 511 cm^{-1} . It is evident that the original Anderson salt was broken during the preparation of catalyst and new compounds may have formed on the support surface. Based on the position of the determined bands, NiO and/or $Li₂O$ could have been present in the catalysts after calcination, since the bands appearing below 600 cm^{-1} can be attributed to metal–oxygen–metal $(M-O-M)$, where $M = Ni$ or Li) bonding [[49\]](#page-16-27). Bielanski et al. [[50](#page-17-0)] reported on the basis of their FTIR measurements that no Lewis-acid sites are present in the ammonium salts of Keggin type heteropolyacid $H_3P_{12}MoO_{40}$, even after processing at 400 °C. Thus, only Brönsted acidity is present, which is due to protons originating from hydrogen bonds between the Keggin units and not to typical OH groups such as those in acid zeolites or alumina. A similar situation in acidity can be expected for the Anderson salt.

The chemical state and composition of the oxidized and freshly sulfded (400 °C) catalysts were investigated by XPS technique. The binding energies of the elements in the calcined samples are given in Table [3.](#page-7-0) Values in brackets refer to samples that were crushed in an agate mortar prior to analysis. The values found for Mo $3d_{5/2}$ (233 eV) and Ni $2p_{3/2}$ (856.6 eV – main line) are typical for oxidation state of $Mo⁶⁺$ and Ni²⁺ (in the oxide matrix). The surface concentrations of all elements in the calcined as-prepared and crushed samples are given in Table [4.](#page-7-1)

The surface concentration of Ni and Mo after crushing the samples shows only a small decrease (about $10 - 12\%$) compared to the concentration in the as-prepared samples. This indicates a uniform distribution of the active phase in the catalyst support grains. It is clear that the surface is

enriched in both Ni and Mo, when comparing these quantities with the bulk analysis. Due to the low photoelectric cross section for lithium [\[40](#page-16-18)] peak feature was observed only for the NiMo₆-0.9 and NiMo₆-1.3 samples, whose binding energy corresponds to the $Li₂CO₃$ compound [\[51](#page-17-1)]. The correctness of the assignment is demonstrated by the higher intensity at 289.5 eV in the C 1 s region for these two samples, which also indicates the presence of carbonate species on the surface. Another explanation for the Li peak could be the presence of LiNiO₂ on the surface. However, the Ni $2p_{3/2}$ binding energy (main line) for $LiNiO₂$ (i.e., $Ni³⁺$) shows a value about 1 eV lower [[51](#page-17-1)] compared to Ni^{2+} . Therefore, the very small shift (0.1 eV) observed for the $NiMo₆-0.9$ and $NiMo₆-1.3$ samples (see Table [3\)](#page-7-0) in this direction cannot be considered as evidence for the presence of a $LiNiO₂$ –like species on the surface.

Mo 3d spectra for the calcined samples are shown in Fig. [4](#page-8-0). It is worth mentioning the high sensitivity of all samples to X–rays in vacuum. After a few minutes of irradiation, the samples darken, and therefore lower power (30 W instead of 230 W) was used during data acquisition to reduce the observed effect. Peak features at \sim 232 eV indicate partial reduction of molybdenum during analysis. Samples with higher lithium content were more stable and remained virtually unchanged during analysis. To test this idea, we performed an additional study of the efect of X–ray irradiation for the sample $NiMo₆-0.1$. After prolonged irradiation under vacuum at high power, the surface portion of the sample was scraped off and analyzed by ESR spectroscopy. The

The values in parentheses are for samples crushed in an agate mortar before analysis

The values in parentheses are for samples crushed in an agate mortar before analysis

Table 4 Surface composition of oxide catalysts (at. %) determined by X–ray photoelectron spectroscopy and the ratio of surface (XPS) and bulk analysis (chemical analysis) for Ni and Mo

Table 3 Binding energies of elements in oxide catalysts (eV) **Fig. 4** Peak ftting of Mo 3d spectra for the as-prepared samples in oxide (left) and sulfdic (right) form. In order to minimize the efect of X-ray irradiation during data acquisition, the X–ray source was set to a lower power (5 mA/6 kV = $30 W$)

ESR result (not shown here) clearly showed the presence of $Mo⁵⁺$, which was not observed in the "fresh" sample. Based on this observation, it can be concluded that the components showing lower binding energy in the Mo 3d spectra are due to X–ray irradiation during XPS analysis.

After sulfdation of the samples, the Mo3d XPS line has a complex structure. For Mo $3d_{5/2}$, it is represented by three ftting peaks (Fig. [5,](#page-9-0) right) with binding energies of 228.7–229.2 eV, 230.4–231.0 eV and 232.7–233.4 eV (Table [5](#page-9-1)), which correspond to Mo^{4+} ions in MoS_2 , Mo^{5+} ions in Mo oxysulfide forms such as MoO_xS_y , and $Mo⁶⁺$ ions (as in $MoO₃$), respectively. These Mo $3d_{5/2}$ peaks were accompanied by Mo $3d_{3/2}$ peaks at about 3 eV higher binding energy.

Spectra decomposition of Ni 2p line showed two peaks; at 853.8 eV assigned to Ni^{2+} ions in NiS_x and at 856.7 eV indicating the presence of Ni^{2+} ions as in oxidic samples (Table [5](#page-9-1)), but the data are burdened with a large error due to the low Ni concentration. The S 2p line was ftted with two S 2p ftting peaks: the frst peak with binding energy S 2p_{3/2} 161.1–161.8 eV corresponds to S^{2-} ions in the $MoS₂$ and/or NiS phase, the second at 162.2–162.8 eV to S_2^2 ⁻ ions in the Mo oxysulfide form (Fig. [5](#page-9-0)). Note the shift of the S $2p_{3/2}$ peak in the sulfided NiMo₆-0.9 and $NiMo₆-1.3$ samples by 0.5–0.6 eV to lower binding energy values compared to the same S $2p_{3/2}$ peak in the other samples. Some authors attribute a similar shift to the formation of the K-intercalated $MoS₂$ phase in the supported

Fig. 5 Peak ftting of S 2p spectra of the sulfded catalysts

K-Mo samples [[52\]](#page-17-2). However, we did not observe a parallel shift to the lower BE of Mo $3d_{5/2}$ line. We assume that Li can modify the electronic properties of the $MoS₂$ phase in Li-NiMo₆ samples and can form Li_xMoS_2 in close interaction with it.

Regarding the surface atomic concentrations of the elements, the presence of Li in the catalysts caused a decrease

in the degree of sulfidation of Mo and Ni (Table 6). This may be due to the formation of tetrahedral forms of Mo species [[30\]](#page-16-8) that interact strongly with the support, as seen in the TPR profles (Fig. [1\)](#page-5-0). The sample with the highest Li content showed the lowest degree of sulfdation of Mo (62.8%) estimated from the Mo^{4+}/M_{tot} ratio (Table [6\)](#page-10-0). The degree of sulfdation of Mo for the other samples ranged from 70 to 75%. After sulfdation, Mo was stabilized on the surface of catalysts with higher Li content (0.9–1.3 wt.%), as Mo/ Al ratio did not decrease. On the other hand, Ni dispersion increased after sulfdation for all samples (Table [6](#page-10-0), Ni/Al ratio). The observed S/Mo ratio was higher than 2 for all samples.

As for N_iS_x species, their proportion (Table [6](#page-10-0)) was 81.8% for the NiMo₆-0.1 sample and 75.0% for the other Li-containing samples. Thus, in the samples with higher Li content $(0.2-1.3 \text{ wt.}\%)$, 25% of NiO_x species remained unsulfided, while in the NiMo6-0.1 sample, its proportion was only 18.2%. The proportion of S^{2-} ions present in the MoS₂/NiS_x phases of the samples was 83–87%, except for the $NiMo_{6}$ -1.3 sample where 62% was recorded.

The proportion of unsulfided $MoO₃$ in the NiMo6-0.1 sample was only 9.2%, which is the lowest value among all samples. The proportion of partially sulfided $MoO₃$, MoO_xS_y , was 18% in the NiMo₆-0.1 sample, which was higher than that of the $NiMo₆-0.2$ and $NiMo₆-0.9$ samples. Since the proportion of $MoS₂$ active phase in NiMo₆-0.1 was approximately 73%, the sum of the sulfide MoO_xS_y and $MoS₂ components was 90.8%, which was the highest value$ found among all the samples.

3.2 Activity of the Catalysts

3.2.1 HDS of Thiophene

The effect of lithium on the catalytic activity of supported NiMo catalysts in the hydrodesulfurization of thiophene was studied on the catalysts prepared from Ni Anderson salt

Sample	$Mo3d_{5/2}Mo^{4+}$	$Mo3d_{5/2}Mo^{5+}$	$Mo3d_{5/2} Mo^{6+}$	$S2p_{3/2} S^{2-}$	$S2p_{3/2}S_2^{2-}$	$\text{Ni2p}_{3/2} \text{NiS}_{\text{y}}$	$Ni2p_{3/2}$ Ni oxide
$NiMo6-0.0$	228.8(22.6)	230.6(4.4)	232.8(3.5)	161.7(58.7)	162.7(10.9)	853.8 (0.9)	856.5(0.2)
$NiMo6-0.1$	228.8(20.3)	230.4(5.0)	232.7(2.6)	161.6(60.3)	162.8(12.0)	853.7 (0.9)	856.7(0.2)
$NiMo6-0.2$	228.7(21.0)	230.6(4.7)	232.8(4.4)	161.7(59.5)	162.8(10.6)	853.8 (0.9)	856.5(0.3)
$NiMo6-0.9$	228.7(23.9)	230.7(3.5)	232.9(4.3)	161.2(59.7)	162.2(8.6)	853.8 (0.6)	856.7(0.2)
$NiMo6-1.3$	229.2(18.9)	231.0(6.7)	233.4(4.5)	161.1(43.5)	162.6(26.5)	853.8 (0.6)	856.7(0.2)

Table 5 Binding energies (eV) and (in parentheses) surface atomic concentration (at. %) of elements in sulfded catalysts

Table 6 Surface atomic ratio of elements in sulfded catalysts

The Ni/Al ratio in the oxide form of the catalysts is given in parentheses

containing also diferent amounts of lithium. The reaction proceeds as follows:

Thiophene + $2H_2 = H_2S$ + butane (4)

Butenes were not found in the reaction mixtures. The steady state thiophene conversions obtained with the $NiMo₆-x$ catalysts containing different Li concentrations (x from 0 to 1.3 wt.%) at 300, 340, and 370 °C are summarized in Fig. [6.](#page-10-1) The thiophene conversion was highest for the Li-free catalyst, reaching 36.6, 67.5 and 84.5% at 300, 340 and 370 °C, respectively. However, the thiophene conversion decreased with increasing lithium concentration in the catalysts.

1.0 \circ 370 0.8 $x_{\mathcal{T}/n}$, mol mol⁻¹ 0.6 310 0.4 ∩ ⊂ 0.2 \bigcirc O O 0.0 0.5 0.0 1.0 1.5 Li content, wt.%

Fig. 6 Dependence of thiophene x_{TH} conversion in HDS reaction on the amount of lithium in NiMo6-x catalysts (x denotes Li content in wt.%) at three temperatures

3.2.2 Parallel HDO/HDS of Octanoic Acid and 1‑Benzothiophene

Parallel deoxygenation and desulfurization was performed using octanoic acid (OA) and 1–benzothiophene (BT) as model reactants. During HDO/HDS, the following reactions took place:

1–benzothiophene +
$$
2H_2 = H_2S
$$
 + ethylbenzene
hydrodesulfurization (5)

$$
CH3(CH2)6COOH = n - heptane + CO2
$$

decarboxylation (6)

$$
CH3(CH2)6COOH = heptenes + CO + H2O
$$

dehydro-decarbonylation (7)

heptenes +
$$
H_2 = n
$$
 – heptane hydrogenation (8)

$$
CH3(CH2)6COOH + 2H2 = octenes + 2H2O
$$

direct hydrodeoxygenation (9)

octenes +
$$
H_2 = n - \text{octane}
$$
 hydrogenation (10)

The scheme of the reactions carrying out during HDS of thiophene and hydrodeoxygenation (HDO) of octanoic acid parallel with HDS of 1–benzothiophene is following:

Hydrodesulfurization (HDS): 300-370 °C, 1MPa

Hydrodeoxygenation (HDO) parallel with HDS: 330 °C, 1.6 MPa

Table 7 Results of HDS of thiophene at 340 °C, 1.0 MPa and parallel HDO/HDS of octanoic acid and 1–benzothiophene at 330 °C, 1.6 MPa

 k_{Th} pseudo-first order rate constant calculated by Eq. [\(1](#page-3-1)) from thiophene conversion

 k_{HDO} total HDO activity obtained by non–linear fitting of $C_7 + C_8$ yields using Eq. ([2\)](#page-3-0)

 k_{HDS} HDS activity obtained by non–linear fitting of ethylbenzene yields using Eq. [\(3\)](#page-4-2)

The overall activity of the catalysts was expressed using pseudo-frst order rate constants of hydrocarbon formation. The sum of linear $C_7 + C_8$ hydrocarbons formed from octanoic acid was used to calculate the total activity of HDO, k_{HDO} , and the formation of ethylbenzene from 1–benzothiophene was used to calculate the activity of HDS, k_{HDS} . An example how k_{HDO} and k_{HDS} were obtained is shown in Fig. [7](#page-11-0). The overview of k_{HDO} and k_{HDS} fitting is given in Fig. S.3 in the Supplementary Information. The activities of catalysts are summarized in Table [7.](#page-11-1) The highest activity in the parallel HDO reaction was exhibited by the NiMo6-0.1 catalyst with ca. 0.1 wt.% Li $(k_{\text{HDO}} = 98 \text{ mmol}_{(C7+C8)} g_{\text{cat}}^{-1} h^{-1}$). A slightly higher Li concentration (0.18 wt.%) in the $NiMo₆-0.2$ catalyst reduced the total HDO activity to 91 mmol_(C7+C8) g_{cat}^{-1} h⁻¹.

Catalysts with lower and higher lithium contents than the above values showed lower activities. In contrast to the HDO reaction, the parallel HDS of 1*–*benzothiophene was fastest with a catalyst containing slightly more Li $(0.18 \text{ wt.}\%)$. The 1.3 wt.% lithium content in the catalyst caused a decrease in the overall HDO activity by almost a factor of two and in the case of HDS by almost a factor of fve. The fndings show that the decrease in surface acidity caused by the introduction of lithium into $NiMo₆-x$ catalysts affected the HDS reaction signifcantly more than HDO.

3.3 Selectivity of the Catalysts

3.3.1 HDO/HDS Selectivity of the Catalysts

HDO/HDS selectivity was expressed as the ratio of k_{HDO} to the sum of k_{HDO} and k_{HDS} (Table [7\)](#page-11-1). The investigated

Fig. 8 Relationship between H_2 consumption determined by TPR measurements, the amount of desorbed $NH₃$ and $CO₂$ determined during TPD experiments (per gram of Li-modified NiMo₆-x catalysts, temperature range 25–500 °C) and the rate constant k_{Th}

catalysts can be divided into two groups. Modifcation of $NiMo₆$ catalyst with 0.09 and 0.18 wt.% lithium caused a slight decrease in HDO/HDS selectivity from 0.38 to approximately 0.33. A second group of catalysts with higher Li content exhibited HDO/HDS selectivities higher than 0.51. This represents a more than 1.34-fold increase in the HDO/HDS selectivity index compared to the frst group. It is evident that Li content in NiMo catalysts higher than 0.9 wt.% decreased HDS activity more than HDO activity.

3.3.2 Selectivity to Reaction Intermediates During HDO/ HDS

Regarding the selectivity towards the reaction intermediates in the HDO/HDS reactions of octanoic acid and 1*–*benzothiophene, i.e., octanol, the reaction intermediate of direct deoxygenation of octanoic acid, and dihydrobenzothiophene, the reaction intermediate of 1*–*benzothiophene hydrodesulfurization, this selectivity was similar and negligible over all prepared catalysts. The relative content of octanol and dihydrobenzothiophene in the reaction mixtures hardly reached the value of 0.01. These relative contents did not change with increasing Li concentration in the catalysts. Therefore, these intermediates were not discussed in schemes (5–10) and Fig. [8.](#page-12-0)

Similarly, no cracking activity was observed for the catalysts (C_{7-x} pathway). Branched hydrocarbons, such as 2-methyl-hexane, 3-methyl-hexane, 2-(or 4)methyl-heptane, and 3-methyl-heptane, were only observed in low yields (less than 1% of $C_8 + C_7$ yields) and were, therefore, not discussed. In contrast, the selectivity towards linear C_7 and C_8 hydrocarbons during HDO of octanoic acid was clearly expressed.

For all catalysts, the C_7 pathway (dehydration decarbonylation/decarboxylation, $HDeCO_x$) predominated, yielding C_7 olefins and finally n-heptane according to Eqs. [\(6,](#page-10-2) [7,](#page-10-3) [8](#page-10-4)). All catalysts showed similar selectivities for C_7 hydrocarbons, approximately 69–74% of the total hydrocarbons yields listed in Table [7.](#page-11-1) The C_8 pathway (direct hydrodeoxygenation, DDO) with yields of C_8 olefins and finally n-octane according to Eqs. [\(9](#page-10-5), [10\)](#page-10-6) was less pronounced. The formation of linear olefns, intermediates of the HDO reaction, was observed at low space time, while hydrogenation to both n-octane and n-heptane was predominant at higher space time. An example of a simplifed reaction progress kinetic analysis (RPKA), i.e., an example of the formation of linear olefns and linear alkanes in HDO, is given in the Supplementary Information (Fig. S.4). The same progression was observed in our previous work on NiMo sulfdes on commercial supports [\[27](#page-16-5)].

4 Discussion

NiMo catalysts prepared from the ammonium salt of Ni Anderson–type polyoxomolybdate over γ–alumina were modifed by small amounts of lithium to obtain catalysts with diferent acid–base properties of the catalyst surface. A relatively small amount of lithium (less than 1 wt.%) added to molybdonickelate slightly reduced the surface area (by about 10 rel. %). However, a higher amount of Li (1.3 wt.%) in the catalyst surprisingly increased the surface area, very likely, due to the partial decomposition of molybdonickelate during the impregnation of $Ni/Al₂O₃$ particles and probably the formation of Li-molybdates and/ or Ni–O (Li–O-Ni) species as shown by FTIR (Fig. [3](#page-6-0)). The mesopore volume and other pore characteristics changed only to a limited extent.

Temperature-programmed $NH₃$ desorption revealed the dependence of the amount and strength of acid sites on the addition of Li. A very low concentration of Li (about 1 wt.%) added to the $NiMo₆-x$ catalysts prepared from Ni Anderson salt substantially afected their acidity. The acidity (expressed in mmol NH₃ g^{-1} desorbed between 25 and 500 °C) of the catalyst with 1.3 wt.% Li dropped to one third of the value found for the unmodifed catalyst. The strength of the stronger sites increased slightly as the temperature maxima of desorption shifted to higher temperatures (Fig. [2](#page-5-1)). The catalyst basicity values confrmed the acidic nature of the POM-prepared catalysts, as the basicity of the Li unmodifed catalyst was very low. Basicity was increasing after gradual introduction of an alkali metal, Li, into the catalysts. Basicity of the catalyst with the highest Li concentration difered signifcantly from the other catalysts: the temperature maxima of $CO₂$ desorption was shifted to lower temperatures, indicating a decrease in the strength of the basic sites. With increasing Li concentration in the catalysts, the temperature-programmed H_2 -TPR reduction showed a shift of the temperature maxima of metal oxide reduction present in the calcined catalysts to higher temperatures (Fig. [1\)](#page-5-0), probably due to the strong interaction of Li with polymolybdates, both octahedral and tetrahedral, as well as the strong interaction of polyoxometalate with the support surface.

FTIR spectra (Fig. [3](#page-6-0)) revealed the preservation of the original polyoxometalate (POM) compound structure for samples with low Li concentration ($Li < 0.2$ wt.%). For samples with higher Li amount (Li concentration > 0.9 wt.%), the pH of the impregnation solution was much higher than that of the solution without Li and the structure of initial Anderson salt used for catalyst preparation was destroyed (characteristic bands at ca. 947 and 1043 cm–1 disappeared). In addition, FTIR spectra obtained in the 800–4000 cm^{-1} region showed the presence of crystalline and constitutional water, with larger amounts observed for samples containing 0.9 and 1.3 wt.% Li. It is very likely that the high basicity of the impregnation solution caused by the addition of alkali contributes to the decomposition of the Ni polyoxometalate (POM) and the resulting water is adsorbed on the support. Thus, it can be concluded that, based on the above reasons, it does not make sense to add more than−0.9 wt.% Li to the catalyst, since the Anderson salt is not stable at pH value higher than 5.

The role of nickel, which is deposited on the support prior to POM impregnation, is also not negligible. Adsorption studies of various Anderson polyoxometalates have indicated that nickel POM exhibits the lowest adsorption strength on alumina [\[53\]](#page-17-3) and thus more nickel remains on the surface without aluminate formation. It is evident that the nickel initially introduced on the alumina support interacted with the basic OH groups of the support surface and thus reduced the possible decomposition of POM. Therefore, nickel added to the support prior to its impregnation with Anderson salt contributes to the retention of nickel in the position of countercation in the Anderson salt and apparently helps to pre-serve the structure of the supported POM [\[45](#page-16-23)]. Moreover, $Ni²⁺$ ions present on the alumina surface could interact with the loaded Anderson salt by substituting NH_4^+ ions and lead to a highly dispersed, easily reducible form of the surface compound. However, H_2 -TPR experiments revealed a shift of the temperature reduction maxima to higher values with increasing amounts of lithium in the catalysts. This implies that catalysts with higher Li concentration are not easily

Fig. 9 Dependence of HDO selectivity on acidity (expressed as the amount of desorbed NH₃ in the temperature range 25–500 $^{\circ}$ C) of $NiMo₆-x$ catalysts

reducible and therefore their hydrogenation function would be worse. These fndings may afect the ability of the catalysts in the HDO/HDS reaction.

Findings in literature [[14\]](#page-15-11) inform that O- and S-containing compounds compete for the same active sites of hydrotreatment catalysts. The catalysts synthesized using $(NH_4)_4Ni(OH)_6Mo_6O_{18}$ Anderson salt and Li_2CO_3 leading to catalysts with various acid–base and reduction properties confrmed their role in hydrodesulfurization reaction and parallel treatment of 1–benzothiophene and octanoic acid. The HDS of thiophene gradually decreased with increasing Li concentration due to decreasing acidity, increasing basicity and decreasing reducibility of the catalysts (Fig. [8,](#page-12-0) Table [1\)](#page-4-0). It is clear that acidic sites are essential for the activation of thiophene in its HDS reaction.

The situation in parallel HDO/HDS of octanoic acid and 1–benzothiophene is more complex. In these reactions, the selectivity of the catalysts depends on their acidity (Fig. [9](#page-13-0)), which is determined by the properties of the support, the molybdenum compound added and the lithium concentration (Table [1](#page-4-0)). The acidity of the catalysts afects the reaction rates of both HDO octanoic acid and 1–benzothiophene HDS, but in diferent ways. Small amounts of added lithium (0.1 and 0.2 wt.%) increased catalyst activity for HDS 1–benzothiophene by 40%. Similar to the case of HDS thiophene, the HDS of 1–benzothiophene decreased with decreasing catalyst acidity. However, the HDO reaction rate of octanoic acid increased up to a certain acidity value (about 0.5 mmol NH_3 g^{-1}) and then seemed to decrease.

The conversion of octanoic acid, which is a part of the reaction mixture, probably positively infuences the conversion of 1–benzothiophene by HDS, since hydrotreatment leads to the formation of H_2O . It is clear that the affinity of lithium for water alters the necessary acid–base properties of the catalysts in the HDO reaction, and these reach an optimum at certain Li concentrations. The HDO activity of octanoic acid on the catalyst prepared from an Anderson salt is increased by 20% if the catalyst contains 0.1 wt.% Li, while at a concentration of 0.18 wt.% Li it increases only by 12%. In the case of HDS of 1–benzothiophene, the activity of the investigated catalysts increased by 20–40%. It is noteworthy that the catalyst with higher Li content shows higher activity.

As for the selectivity of the examined catalysts in HDO reaction is concerned, the C_7 pathway (dehydration $decarbonylation/decarbonylation$, HDe CO_x) yielding first C_7 olefins and finally n-heptane predominated over all catalysts. All catalysts revealed similar selectivity to C_7 hydrocarbons about 70% from the total yield of hydrocarbons. The C_8 pathway (the direct hydrodeoxygenation, HDO) yielding C_8 olefins and finally n-octane was less pronounced. Linear olefns, the intermediates of the HDO reaction, were observed at low space–time, while

hydrogenation to n-octane and n-heptane predominated at higher space–time. In HDO/HDS processes, two reactions take place on the catalyst, but probably involving diferent catalyst centers. Nickel is apparently active in both processes. Nickel enhances the acidity of $NiMo/Al₂O₃$ catalysts [[54](#page-17-4)], forming active sites for HDS reactions together with Mo because of its ability to donate electrons to Mo and thus increase the electron density on Mo [[55](#page-17-5)]. Nickel is also very important for the hydrogenation of octanoic acid. The oxygen-containing reactant can be adsorbed on the catalyst and its O^- ion, as well as H_2O formed during reactant hydrogenation, can decrease the electron density of Mo^{+4} to Mo^{+5} . It is very likely that the low concentration of lithium, which has an affinity to H_2O , helps to create balance between the acidity and reducibility of the catalyst.

As can be seen from the FTIR spectra (Fig. [3\)](#page-6-0), the catalysts $NiMo₆-0$, $NiMo₆-0.1$ and $NiMo₆-0.2$ have a close spectral image with some diference in intensity. The consumption of H_2 (Table [1](#page-4-0)) taken up to 500 °C decreases from 62 to 52 mmol g^{-1} , indicating that the addition of Li reduces the reduction of molybdenum. Comparison of these data with the activity of the samples during HDS of 1–benzothiophene and HDO of octanoic acid (Table [7\)](#page-11-1) shows that Li at a low concentration of $0.1-0.2$ wt.% has a positive efect on these reactions. It can be assumed that the situation in these samples is analogous to that observed in our earlier work with $NiMo₆$ -based catalysts [\[56\]](#page-17-6).

It has been shown that the presence of certain amount of MoO_xS_y , originated from tetrahedral $MoO₄^{2–}$ species, is beneficial for high HDS activity. Nevertheless, MoO_xS_y phase exist in all prepared catalysts (Table [6](#page-10-0)). Thus, the low loading of Li has to interact also in other way. Lithium in the presence of octanoic acid contributes to the formation of other portion of the active phase, thus achieving higher activity of Li-modifed samples in HDO/HDS reactions. It is clear from the experimental XPS data that maximum synergy exists between the $MoS_2(MoO_xS_y)$ and N iS_x phases at low Li content. In the case of a catalyst containing a high concentration of Li, the high basicity of the catalyst prevails over the positive efect caused by the interaction between lithium and octanoic acid, and therefore the resulting activity in the HDO/HDS reaction is low.

The presented data obtained from HDS of thiophene in the presence of Li-modified NiMo/Al₂O₃ catalysts did not confrm the expected improvement in catalyst activity pre-viously observed for NiMo/SiO₂ catalysts [\[9](#page-15-6)]. This finding can be explained by the ability of the unmodifed alumina support to provide a sufficiently high dispersion of molybdenum. However, the addition of lithium to the aluminasupported catalysts gradually decreased their acidity and, for this reason, reduced their activity in HDS of thiophene.

5 Conclusions

Parallel processing of octanoic acid and 1-benzothiophene in HDO and HDS hydroprocessing showed relatively high activity of the catalyst containing $(NH_4)_4NiMo_6O_{24}H_6$ Anderson salt in both reactions. The low amount of lithium added to the catalyst $(0.1-0.2 \text{ wt.}\%)$ did not cause signifcant changes in the acid–base properties of the catalysts. However, this low amount of lithium signifcantly increased the activity during the hydrotreatment of the mixed feedstock, in HDS by 40% in the case of 1-benzothiophene, and in HDO by 18% in the case of octanoic acid. The interaction of octanoic acid with these low amounts of Li thus created additional active centers for the HDO/HDS reactions. Such centers were not present in the HDS of thiophene. In contrast, the high amount of lithium added to the catalysts (0.9–1.3 wt.%) had detrimental effect on the studied acid–base properties and HDS and HDO/HDS activities.

The optimization of the catalyst preparation, i.e., the selection of a support with the necessary acid–base properties, a suitable heteropolycompound and its modifcation procedure can obviously lead to high catalyst activity in the hydrogenation of mixed feedstocks.

Supplementary Information The online version contains supplementary material available at<https://doi.org/10.1007/s10562-023-04315-0>.

Acknowledgements The authors thank Ms. Hana Šnajdaufová for the characterization of porous structure of catalysts. The authors are grateful for the support of the mobility project of the Czech and Bulgarian Academies of Sciences (Project Nos. BAS-20-01 and BAS-23-01).

Funding This study is supported by the mobility project of the Czech and Bulgarian Academies of Sciences (Project Nos. BAS-20-01 and BAS-23-01).

Data Availability The data will be made available on request.

Declarations

Conflict of interest The authors declare that they have no known competing fnancial interests or personal relationships that could have appeared to infuence the work reported in this article.

References

- 1. K.Y. Lee, M. Misono (1997) in: Handbook of heterogeneous catalysis, vol. 1, eds. G. Ertl and H. Knoezinger. Wiley–VCH, Weinheim.
- 2. Hayashi H, Moffat JB (1983) Methanol conversion over metal salts of 12-tungstophosphoric acid. J Catal 81:61-66. [https://](https://doi.org/10.1016/0021-9517(83)90146-X) [doi.org/10.1016/0021-9517\(83\)90146-X](https://doi.org/10.1016/0021-9517(83)90146-X)
- 3. Misono M (1987) Heterogeneous catalysis by heteropoly compounds of molybdenum and tungsten. Catal Rev-Sci Eng 29:269–321. <https://doi.org/10.1080/01614948708078072>
- 4. Cheng WC, Luthra NP (1988) NMR study of the adsorption of phosphomolybdates on alumina. J Catal 109:163–169. [https://](https://doi.org/10.1016/0021-9517(88)90194-7) [doi.org/10.1016/0021-9517\(88\)90194-7](https://doi.org/10.1016/0021-9517(88)90194-7)
- 5. Goncharova OI, Yurieva TM, Davydov AA (1985) Infuence of the nature of the support on the composition and structure of molybdenum supported heteropolycompounds. Kinet Catal (Transl of Kinet Katal) 27:942–949
- 6. Palcheva R, Spojakina AA, Dimitrov L, Jiratova K (2009) 12-Tungstophosphoric heteropolyacid supported on modifed SBA-15 as catalyst in HDS of thiophene. Micropor Mesopor Mater 122(1–3):128–134. [https://doi.org/10.1016/j.micromeso.](https://doi.org/10.1016/j.micromeso.2009.02.026) [2009.02.026](https://doi.org/10.1016/j.micromeso.2009.02.026)
- 7. Kraleva E, Spojakina AA, Edreva-Kardjieva R, Jiratova K, Petrov L (2007) Titania-supported mixed HPMoV polyoxometallates as precursors of hydrodesulfurization catalysts. React Kinet Catal Lett 92(1):111–119. [https://doi.org/10.1007/](https://doi.org/10.1007/s11144-007-4896-8) [s11144-007-4896-8](https://doi.org/10.1007/s11144-007-4896-8)
- 8. Spojakina A (1994) Damyanova S (1994) IR and DRS study of TiO₂-supported 12-molybdophosphoric heteropolycompounds. React Kinet Catal Lett 53(2):405–412. [https://doi.org/10.1007/](https://doi.org/10.1007/BF02073049) [BF02073049](https://doi.org/10.1007/BF02073049)
- 9. Spojakina A, Kostova N, Jiratova K (1998) Efect of heteroatom on properties of SiO₂-supported heteropolymolybdates. Collect Czech Chem Commun 63:1927. [https://doi.org/10.1135/cccc1](https://doi.org/10.1135/cccc19981927) [9981927](https://doi.org/10.1135/cccc19981927)
- 10. Spojakina A, Jiratova K, Kostova N, Kocianova J, Stamenova M (2003) Tungsten/alumina catalysts: effect of $H_3PW_{12}O_{40}$ countercation on surface properties and hydrodesulfurization activity. Kinet Katal 44:813–818. [https://doi.org/10.1023/B:KICA.00000](https://doi.org/10.1023/B:KICA.0000009059.80675.4e) [09059.80675.4e](https://doi.org/10.1023/B:KICA.0000009059.80675.4e)
- 11. van Veen JAR, Hendriks PAJM, Andrea RR, Romers EJGM, Wilson AE (1990) Chemistry of phosphomolybdate adsorption on alumina surfaces 1: the molybdate/alumina system. J Phys Chem 94:5275–5282.<https://doi.org/10.1021/j100376a021>
- 12. Nikulshin PA, Mozhaev AV, Pimerzin AA, Konovalov VV, Pimerzin AA (2012) CoMo/Al₂O₃ catalysts prepared on the basis of $Co₂Mo₁₀$ -heteropolyacid and cobalt citrate: effect of Co/Mo ratio. Fuel 100:24–33.<https://doi.org/10.1016/j.fuel.2011.11.028>
- 13. Cabello CI, Cabrerizo FM, Alvarez A, Thomas HJ (2002) Decamolybdodicobaltate(III) heteropolyanion: structural, spectroscopical, thermal and hydrotreating catalytic properties. J Mol Catal A: Chem 186:89–100. [https://doi.org/10.1016/S1381-](https://doi.org/10.1016/S1381-1169(02)00043-2) [1169\(02\)00043-2](https://doi.org/10.1016/S1381-1169(02)00043-2)
- 14. Nikulshin PA, Mozhaev AV, Ishutenko DI, Minaev PP, Lyashenko AI, Pimerzin AA (2012) Infuence of the composition and morphology of nanosized transition metal sulfdes prepared using the Anderson-type heteropoly compounds $[X(OH)_{6}Mo_{6}O_{18}]n-(X =$ Co, Ni, Mn, Zn) and $[Co₂Mo₁₀O₃₈H₄]^{6–}$ on their catalytic properties. Kinet Catal 53:620–631. [https://doi.org/10.1134/S002315841](https://doi.org/10.1134/S0023158412050114) [2050114](https://doi.org/10.1134/S0023158412050114)
- 15. Pimerzin AA, Tomina NN, Nikulshin PA et al (2015) Catalysts based on molybdenum and tungsten heteropoly compounds for the hydrotreatment of oil fractions. Catal Ind 7:30–37. [https://doi.org/](https://doi.org/10.1134/S2070050415010110) [10.1134/S2070050415010110](https://doi.org/10.1134/S2070050415010110)
- 16. Dhandapani B, Clair TSt, Oyama ST (1998) Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide. Appl Catal A 168:219-228. [https://](https://doi.org/10.1016/S0926-860X(97)00342-6) [doi.org/10.1016/S0926-860X\(97\)00342-6](https://doi.org/10.1016/S0926-860X(97)00342-6)
- 17. Odebunmi EO, Ollis DF (1983) Catalytic hydrodeoxygenation II: interactions between catalytic hydrodeoxygenation of m-cresol and hydrodesulfurization of benzothiophene and dibenzothiophene. J Catal 80:65–75. [https://doi.org/10.1016/0021-9517\(83\)](https://doi.org/10.1016/0021-9517(83)90230-0) [90230-0](https://doi.org/10.1016/0021-9517(83)90230-0)
- 18. Varakin AN, Salnikov VA, Nikulshina MS, Maslakov KI, Mozhaev AV, Nikulshin PA (2017) Benefcial role of carbon in Co(Ni)MoS catalysts supported on carbon-coated alumina for

co-hydrotreating of sunfower oil with straight-run gas oil. Catal Today 292:110–120.<https://doi.org/10.1016/j.cattod.2016.10.031>

- 19. Vonortas A, Papayannakos N (2016) Hydrodesulphurization and hydrodeoxygenation of gasoil-vegetable oil mixtures over a Pt/γ-Al2O3 catalyst. Fuel Process Technol 150:26–131. [https://doi.org/](https://doi.org/10.1016/j.fuproc.2016.05.013) [10.1016/j.fuproc.2016.05.013](https://doi.org/10.1016/j.fuproc.2016.05.013)
- 20. Vonortas A, Kubicka D, Papayannakos N (2014) Catalytic cohydroprocessing of gasoil–palm oil/AVO mixtures over a NiMo/γ-Al2O3 catalyst. Fuel 116:49–55. [https://doi.org/10.1016/j.fuel.](https://doi.org/10.1016/j.fuel.2013.07.074) [2013.07.074](https://doi.org/10.1016/j.fuel.2013.07.074)
- 21. Nikulshin PA, Salnikov VA, Pimerzin AA et al (2016) Co-hydrotreating of straight_run diesel fraction and vegetable oil on Co(Ni) -PMo/Al2O3 catalysts. Petrol Chem 56:56–61. [https://doi.org/10.](https://doi.org/10.1134/S0965544115080150) [1134/S0965544115080150](https://doi.org/10.1134/S0965544115080150)
- 22. Kaluža L, Zdražil M, Gulková D, Vít Z (2013) The infuence of the chelating agent nitrilotriacetic acid on promotion of hydrodesulfurization activity by Co in CoMo catalysts prepared on Al_2O_3 , C, and $ZrO₂$ supports. Chem Eng Trans 32:841–846. [https://doi.](https://doi.org/10.3303/CET1332141) [org/10.3303/CET1332141](https://doi.org/10.3303/CET1332141)
- 23. Kaluža L, Gulková D, Vít Z, Zdražil M (2007) Efect of support type on the magnitude of synergism and promotion in CoMo sulphide hydrodesulphurisation catalyst. Appl Catal A Gen 324:30– 35. <https://doi.org/10.1016/j.apcata.2007.02.050>
- 24. Furimsky E (2000) Catalytic hydrodeoxygenation. Appl Catal A 199:147–190. [https://doi.org/10.1016/S0926-860X\(99\)00555-4](https://doi.org/10.1016/S0926-860X(99)00555-4)
- 25. Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A 407:1–19. [https://doi.org/10.1016/j.apcata.](https://doi.org/10.1016/j.apcata.2011.08.046) [2011.08.046](https://doi.org/10.1016/j.apcata.2011.08.046)
- 26. Furimsky E (2013) Hydroprocessing challenges in biofuels production. Catal Today 217:13–56. [https://doi.org/10.1016/j.cattod.](https://doi.org/10.1016/j.cattod.2012.11.008) [2012.11.008](https://doi.org/10.1016/j.cattod.2012.11.008)
- 27. Kaluža L, Karban J, Gulková D (2013) Activity and selectivity of Co(Ni)Mo sulfdes supported on MgO, Al2O3, ZrO2, TiO2, MCM-41 and activated carbon in parallel hydrodeoxygenation of octanoic acid and hydrodesulfurization of 1-benzothiophene. React Kinet Mech Catal 127:887–902. [https://doi.org/10.1007/](https://doi.org/10.1007/s11144-019-01620-x) [s11144-019-01620-x](https://doi.org/10.1007/s11144-019-01620-x)
- 28. Varakin AN, Mozhaev AV, Pimerzin AA, Nikulshin PA (2020) Toward HYD/DEC selectivity control in hydrodeoxygenation over supported and unsupported $Co(Ni)$ -MoS₂ catalysts. A key to effective dual-bed catalyst reactor for co-hydroprocessing of diesel and vegetable oil. Catal Today 357:556–564. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.cattod.2019.06.005) [cattod.2019.06.005](https://doi.org/10.1016/j.cattod.2019.06.005)
- 29. Ramesh A, Tamizhdurai P, Krishnan PS, Ponnusamy VK, Sakthinathan S, Shanthi K (2020) Catalytic transformation of nonedible oils to biofuels through hydrodeoxygenation using Mo-Ni/ mesoporous alumina-silica catalysts. Fuel 262:116494. [https://doi.](https://doi.org/10.1016/j.fuel.2019.116494) [org/10.1016/j.fuel.2019.116494](https://doi.org/10.1016/j.fuel.2019.116494)
- 30. Solís-Casados DA, Escobar-Alarcón L, Klimova T et al (2016) Catalytic performance of $CoMo/Al_2O_3-MgO-Li(x)$ formulations in DBT hydrodesulfurization. Catal Today 271:35–44. [https://doi.](https://doi.org/10.1016/j.cattod.2015.07.046) [org/10.1016/j.cattod.2015.07.046](https://doi.org/10.1016/j.cattod.2015.07.046)
- 31. Escobar-Alarcyn L, Klimova T, Escobar-Aguilar J, Romero S, Morales-Ramirez C, Solis-Casados D (2013) Preparation and characterization of Al_2O_3-MgO catalytic supports modified with lithium. Fuel 110:278–285. [https://doi.org/10.1016/j.fuel.2012.](https://doi.org/10.1016/j.fuel.2012.10.013) [10.013](https://doi.org/10.1016/j.fuel.2012.10.013)
- 32. Tsigdinos GA (1978) Heteropoly compounds of molybdenum and tungsten. Top Curr Chem 76:1–64. [https://doi.org/10.1007/BFb00](https://doi.org/10.1007/BFb0047026) [47026](https://doi.org/10.1007/BFb0047026)
- 33. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. [https://doi.](https://doi.org/10.1021/ja01269a023) [org/10.1021/ja01269a023](https://doi.org/10.1021/ja01269a023)
- 34. Barrett EP, Joyner LG, Halenda PP (1951) the determination of pore volume and area distributions in porous substances I: computations from nitrogen isotherms. J Am Chem Soc 73:373–380. <https://doi.org/10.1021/ja01145a126>
- 35. Lecloux A, Pirard JP (1979) The importance of standard isotherms in the analysis of adsorption isotherms for determining the porous texture of solids. J Colloid Interface Sci 70:265–281. [https://doi.](https://doi.org/10.1016/0021-9797(79)90031-6) [org/10.1016/0021-9797\(79\)90031-6](https://doi.org/10.1016/0021-9797(79)90031-6)
- 36. Glotov AP, Vutolkina AV, Vinogradov NA, Pimerzin AA, Vinokurov VA, AlA P (2021) Enhanced HDS and HYD activity of sulfde Co-PMo catalyst supported on alumina and structured mesoporous silica composite. Catal Today 377:82–91. [https://doi.](https://doi.org/10.1016/j.cattod.2020.10.010) [org/10.1016/j.cattod.2020.10.010](https://doi.org/10.1016/j.cattod.2020.10.010)
- 37. Lan X, Pestman R, Hensen EJM, Weber T (2021) Furfural hydrodeoxygenation (HDO) over silica-supported metal phosphides – The infuence of metal–phosphorus stoichiometry on catalytic properties. J Catal 403:181–193. [https://doi.org/10.1016/j.jcat.](https://doi.org/10.1016/j.jcat.2021.01.031) [2021.01.031](https://doi.org/10.1016/j.jcat.2021.01.031)
- 38. Wu H, Duan A, Zhao Z, Li T, Prins R, Zhou X (2014) Synthesis of NiMo hydrodesulfurization catalyst supported on a composite of nano-sized ZSM-5 zeolite enwrapped with mesoporous KIT-6 material and its high isomerization selectivity. J Catal 317:303– 317.<https://doi.org/10.1016/j.jcat.2014.07.002>
- 39. Davydov AA, Goncharova OI (1993) Use of IR spectroscopy in studies of catalysts based on molybdenum heteropoly compounds supported on oxides. Usp Khim 62:118–134. [https://doi.org/10.](https://doi.org/10.1070/RC1993v062n02ABEH000008) [1070/RC1993v062n02ABEH000008](https://doi.org/10.1070/RC1993v062n02ABEH000008)
- 40. Scofeld JH (1976) Hartree-Slater subshell photoionization crosssections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenomena 8:129–137. [https://doi.org/10.1016/0368-2048\(76\)80015-1](https://doi.org/10.1016/0368-2048(76)80015-1)
- 41. Vissers JPR, Schefer B, de Beer VHJ, Moulijn JA et al (1987) Efect of the support on the structure of Mo-based hydrodesulfurization catalysts: activated carbon versus alumina. J Catal 105:277–284. [https://doi.org/10.1016/0021-9517\(87\)90058-3](https://doi.org/10.1016/0021-9517(87)90058-3)
- 42. Kordulis CH, Voliotis S, Lycourghiotis A, Vattis D, Delmon B (1984) Studies on the state of dispersion of Mo(VI) supported on γ -Al₂O₃ doped with alkali cations. Appl Catal 11:179–193. [https://](https://doi.org/10.1016/S0166-9834(00)81877-1) [doi.org/10.1016/S0166-9834\(00\)81877-1](https://doi.org/10.1016/S0166-9834(00)81877-1)
- 43. Cabello CI, Botto IL, Thomas HJ (1994) Reducibility and thermal behavior of some Anderson phases. Thermochim Acta 232:183– 193. [https://doi.org/10.1016/0040-6031\(94\)80058-8](https://doi.org/10.1016/0040-6031(94)80058-8)
- 44. Tanabe K, Makoto M, Ono Y, Hattori, H (1989) New solid acids and bases. Stud Surf Sci Catal 51, 1st ed., Elsevier, Kodansha.
- 45. Palcheva R, Kaluža L, Spojakina A, Jirátová K, Tyuliev G (2012) NiMo/γ-Al2O3 catalysts from Ni heteropolyoxomolybdate and efect of alumina modifcation by B Co, or Ni. Chin J Catal 33:952–961. [https://doi.org/10.1016/S1872-2067\(11\)60376-8](https://doi.org/10.1016/S1872-2067(11)60376-8)
- 46. Nikulshin PA, Tomina NN, Pimerzin AA, Stakheev AYu, Mashkovsky IS, Kogan, (2011) Efect of the second metal of Anderson type heteropolycompounds on hydrogenation and hydrodesulphurization properties of XMo6(S)/Al2O3 and Ni3-XMo6(S)/ Al2O3 catalysts. Appl Catal A: Gen 393:146–152. [https://doi.](https://doi.org/10.1016/j.apcata.2010.11.033) [org/10.1016/j.apcata.2010.11.033](https://doi.org/10.1016/j.apcata.2010.11.033)
- 47. Nicosia D, Prins R (2005) 31P MAS NMR and Raman study of a Co(Zn)MoP/γ -Al2O3 HDS catalyst precursor containing triethylene glycol. J Catal 234:414–420. [https://doi.org/10.1016/j.jcat.](https://doi.org/10.1016/j.jcat.2005.07.011) [2005.07.011](https://doi.org/10.1016/j.jcat.2005.07.011)
- 48. Escobar J, Barrera MC, Gutiérrez AW, Cortés-Jacome MA, Angeles-Chávez C, Toledo JA, Solís-Casados DA (2018) Highly active P-doped sulfded NiMo/alumina HDS catalysts from Moblue by using saccharose as reducing agents precursor. Appl Catal B-Environ 237:708–720. [https://doi.org/10.1016/j.apcatb.2018.06.](https://doi.org/10.1016/j.apcatb.2018.06.034) [034](https://doi.org/10.1016/j.apcatb.2018.06.034)
- 49. Nyquist RA, Nagel RO (1971) Infrared spectra of inorganic compounds. Academic Press, New York
- 50. Bielanski A, Malecka A, Kubelkova, (1989) Infrared study of the thermal decomposition of heteropolyacids of the series $H_{3+x}PMo_{12-x}V_{x}O_{40}$. J Chem Soc Faraday Trans 1(85):2847–2856. <https://doi.org/10.1039/F19898502847>
- 51. Mansour AN (1994) Characterization of LiNiO₂ by XPS. Surf Sci Spectra 3:279–286. <https://doi.org/10.1116/1.1247757>
- 52. Jichang Lu, Luo Y, He D et al (2020) An exploration into potassium containing MoS2 active phases and its transformation process over MoS2 based materials for producing methanethiol. Catal Today 339:93–104. <https://doi.org/10.1016/j.cattod.2019.01.012>
- 53. Cabello CI, Botto IL, Gabriezo F, Gonzales MG, Thomas HJ (2000) γ-Al₂O₃-supported XM_{O₆} Anderson heteropolyoxomolybdates: adsorption studies for $X = TeVI$, AlIII, CoIII, CrIII and NiII by DR spectroscopy and TPR analysis. Ads Sci Technol 18:591–608.<https://doi.org/10.1260/0263617001493657>
- 54. Baba T, Watanabe E, Ono Y (1983) Generation of acidic sites in metal salts of heteropoly acids. J Phys Chem 87:2406–2411. <https://doi.org/10.1021/j100236a033>
- 55. Harris S, Chianelli RR (1986) Catalysis by transition metal sulfdes: a theoretical and experimental study of the relation

between the synergic systems and the binary transition metal sulfdes. J Catal 98:17–31. [https://doi.org/10.1016/0021-9517\(86\)](https://doi.org/10.1016/0021-9517(86)90292-7) [90292-7](https://doi.org/10.1016/0021-9517(86)90292-7)

56. Kaluža L, Jirátová K, Tyuliev G et al (2018) Hydrodesulfurization NiMo catalysts over gamma-alumina prepared mechanochemically. React Kinet Mech Catal 125:319–337. [https://doi.org/10.](https://doi.org/10.1007/s11144-018-1436-7) [1007/s11144-018-1436-7](https://doi.org/10.1007/s11144-018-1436-7)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.