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Abstract
A novel photocatalytic cyclization reaction was developed for the synthesis of quinazolinones from o-aminobenzamides and 
in-situ generated aldehydes from alcohols using 9-fluorenone as the photocatalyst through a "one-pot" process. Furthermore, 
alcohols are perfect alternatives to aldehydes due to some unique advantages, such as being green, less toxic, available, and 
economical. The present protocol showed good tolerance for various substrates and could afford a range of quinazolinones 
(29 examples) up to 91% under ambient conditions.
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1  Introduction

N-containing heteroaromatic compounds are important 
structures found in natural products, pharmaceutically 
important molecules, and organic functional materials 
[1–3]. Among them, quinazolinone and its derivatives have 
received considerable attention in recent years, because they 
exhibit significant pharmacological and biological activities, 
such as antibacterial, antineoplastic, anti-in ammatory, anti-
convulsant, antimalarial, anti-asthmatic, anti-Alzheimer, and 
anticancer (Scheme 1) [4–7]. In addition, quinazolinones 
play an important role in organic reactions due to their 
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excellent characteristics. Hence, the excellent characteris-
tics of quinazolinone derivatives have promoted extensive 
studies of their synthesis, and a number of synthetic meth-
ods have been developed over the past few decades [8–12]. 
Despite these significant advances, the most classical and 
general approaches still utilized o-aminobenzamides and 
aldehydes as the substrates to form quinazolinones fol-
lowed by the oxidation of the resulting aminal intermedi-
ates in the laboratory and industry [13–16]. Most of these 
processes generally require the use of stoichiometric of non-
renewable oxidants (KMnO4 [17], DDQ [18], and CuCl2 
[19]) and metal catalysts [20–22]. However, aldehydes were 
required as the reagents to generate quinazolinones with 
good yields in the above reactions, which were significantly 
toxic and sensitive to unavoidably occurring self-aldol side 
reactions. Therefore, the development of greener and more 
harmless material instead of aldehydes for the synthesis of 

quinazolinones is highly desirable. As a class of compounds, 
alcohols are perfect alternatives to aldehydes because they 
are greener, more available, more economical, more stable, 
and less toxic than aldehydes, which are smoothly oxidized 
to aldehydes followed by the condensation with o-aminoben-
zamides forming quinazolinones. In recent years, various 
metal catalysts or oxidants (such as Ir [23], Pd [24], Ru [25], 
Mn [26], Fe [27], Cu [28], DMSO [29], TBHP [30]) have 
been used to prepare quinazolinones (Scheme 2). Although 
these protocols have certain disadvantages, these conden-
sations require the use of metal catalysts or stoichiometric 
quantities of toxic oxidants. Therefore, it is imperative to 
develop a more practical, green, and efficient approach to 
constructing quinazolinones.

Recently, visible-light catalysis has attracted widespread 
research interest in light degradation [31, 32] and organic 
synthesis owing to the inherent green, mild, and character of 
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light [33–47]. Many kinds of organic transformations have 
already been accomplished with good to excellent yields 
under ambient conditions by using transition-metal catalysts, 
such as Aza-Henry reaction, oxidative addition, and cross-
coupling reaction [48–51]. However, compared to transition 
metal catalysts, organic dyes, and small organic molecules, 
as photosensitizers, have recently aroused growing inter-
est due to their high efficiency of visible-light absorption, 
enhanced stability, and easy modification for visible light 
catalysis [52–57]. Advantageously, these organic mol-
ecules show unique reactivity and unparalleled selectivity 
in organic reactions, and the structures of these molecules 
can be easily optimized for obtaining the desired products. 
Especially, 9-fluorenone, as a commercially available and 
cheap metal-free photocatalyst, can activate O2 molecule 
to transform it into reactive oxygen species (ROS) such as 
superoxide anion radical, hydrogen peroxide, singlet oxygen 
and hydroxy radical which are the key oxidants in many 
organic reactions [58–60].

Based on all this information and our own interest to 
explore metal-free catalysis, we develop an efficient, highly 
atom economical, and environmentally friendly one-pot 

strategy for constructing quinazolinones from alcohols with 
o-aminobenzamides in good yields using 9-fluorenone as the 
photocatalyst by irradiation of visible light under ambient 
conditions.

2 � Experiment

2.1 � Materials

All reagent-grade chemicals were obtained from commer-
cial suppliers and were used as received unless otherwise 
noted (Table  S1, Support Information). DMSO (anhy-
drous, ≥ 99.9%) and CH3CN (anhydrous, ≥ 99.9%) were 
purchased from Sigma Aldrich.

2.2 � General Procedure for the Synthesis 
of Quinazolinones Using Alcohol

O-aminobenzamides (0.2 mmol), alcohols (0.24 mmol), 
9-fluorenone (0.01 mmol, 5 mol %), p-TsOH (0.02 mmol, 
10 mol %), CH3CN (1.8 mL), and DMSO (0.2 mL) were 

Table 1   Condition optimization for the synthesis of quinazolinones

Reaction conditions: 1a (0.2 mmol), 2a (0.24 mmol), photocatalyst (x mol%) and p-TsOH (y mol%) in solvent (2.0 mL) with 10 W blue LEDs at 
room temperature for 16 h
a Isolated yields
b CH3CN/DMSO (v/v) = 9: 1

Entry Photocatalyst (x mol%) p-TsOH (y mol%) Solvent Time (h) 3aa (%)a

1 Eosin Y (2) 10 CH3CN 10 34
2 Fluorescein (2) 10 CH3CN 10 35
3 Pyrenedione (2) 10 CH3CN 10 31
4 9-fluorenone (2) 10 CH3CN 10 43
5 9-fluorenone (2) 0 CH3CN 10 22
6 9-fluorenone (2) 10 PhMe 10 Trace
7 9-fluorenone (2) 10 THF 10 4
8 9-fluorenone (2) 10 DMF 10 7
9 9-fluorenone (2) 10 CH3CN + DMSOb 10 52
10 9-fluorenone (5) 10 CH3CN + DMSOb 10 78
11 9-fluorenone (5) 10 CH3CN + DMSOb 16 91
12 9-fluorenone (5) 10 CH3CN + DMSOb 20 92
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Table 2   Scope of the alcohols

Entry Substrate Product Yield (%)a M.P. [Refer-
ences]

1

  

  

91 237–238 ℃ [67]

2

  

  

87 222–224 ℃ [67]

3

  

  

89 210–212 ℃ [29]

4

  

  

89 244–245 ℃ [67]

5

  

  

88 211–212 ℃ [67]

6

  

  

87 245–247 ℃ [67]

7

  

  

88 245–247 ℃ [68]

8

  

  

87 241–243 ℃ [69]
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Table 2   (continued)

Entry Substrate Product Yield (%)a M.P. [Refer-
ences]

9

  

  

87 276–279 ℃ [70]

10

  

  

85 258–259 ℃ [29]

11

  

  

86 295–296 ℃ [67]

12

  

  

89 300–301 ℃ [67]

13

  

  

82 296–297 ℃ [71]

14

  

  

89  > 300 ℃ [72]

15

  

  

85 275–277 ℃ [73]

16

  

  

88 281–282 ℃ [74]

17

  

  

84 308–310 ℃ [67]

18

  

  

85 269–270 ℃ [75]
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added to a 10 mL flat quartz glass jar and placed in a pho-
tocatalytic parallel reactor. The container was placed under 
the 10 W blue LEDs lamp at room temperature for 16 h. 
After completion of the reaction, 100 mL of distilled water 
is added to the mixture. Then, the mixture was extracted 
with ethyl acetate (50 mL×3), dried over anhydrous sodium 
sulfate, filtered, and the solvent was rotary evaporated to 
obtain a crude product. The produce was obtained by col-
umn chromatography on silica gel and was identified by 
NMR analyses. All analytical data of the known compounds 
are consistent with those reported in the literatures.

2.3 � Gram‑Scale Synthesis of 3aa

O-aminobenzamides (8 mmol), benzyl alcohol (9.6 mmol), 
9-fluorenone (5 mol%), p-TsOH (10 mol%), CH3CN (9 mL), 
and DMSO (1 mL) were added into a 25 mL flat quartz glass 
jar with a stirrer under 10 W blue LEDs at room temperature 
for 16 h. After completion, 500 mL of distilled water was 
added to the mixture. The mixture was extracted with ethyl 
acetate (100 mL×3), dried over anhydrous sodium sulfate, 
and filtered. The mixture was concentrated in vacuo and 

Table 2   (continued)

Entry Substrate Product Yield (%)a M.P. [Refer-
ences]

19

  

  

80 272–273 ℃ [76]

20

  

  

87 212–214 ℃ [67]

21b

  

  

45 229–231 ℃ [77]

22b

  

  

32 140–142 ℃ [78]

23b

  

  

42 200–201 ℃ [30]

24b

  

  

N.D

Reaction conditions: 1a (0.2 mmol), 2 (0.24 mmol), 9-fluorenone (5 mol%) and p-TsOH (10 mol%) in the mixed solvent of CH3CN (1.8 mL) and 
DMSO (0.2 mL) with 10 W blue LEDs at room temperature for 16 h
a Isolated yield, N.D. = not detected
b Reaction for 24 h
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purified by flash column chromatography with hexanes/ethyl 
acetate to afford the product 3aa.

2.4 � Product Analysis

Melting points of all products were measured on an RY-1 
micro melt apparatus. Proton nuclear magnetic resonance 
(1H NMR) spectra were recorded using a 400 spectrom-
eter at 400 MHz. Chemical shifts in 1H NMR spectra are 
reported in parts per million (ppm) on the scale from an 
internal standard of DMSO-d6 (2.50 ppm). Coupling con-
stant J values are reported in hertz (Hz), and the corre-
sponding representation of splitting mode is as follows: s, 
singlet; d, doublet; t, triplet; m, multiplet; b, broad. Car-
bon-13 nuclear magnetic resonance (13C NMR) spectra were 
recorded at 100 MHz using a 400 spectrometer. Chemical 
shifts are reported in delta (δ) units and the ppm from the 
center of the peak of DMSO-d6 (39.520 ppm). 13C NMR 
spectra were routinely run with broadband decoupling.

3 � Results and Discussions

3.1 � Optimization of Reaction Conditions

To optimize the reaction conditions, we initially chose 
o-aminobenzamide (1a) to react with benzyl alcohol (2a) 
as a model reaction.To achieve a green reaction outcome, 
we chose a series of organic dyes (eosin Y, fluorescein, pyr-
enedione, and 9-fluorenone as the photocatalysts (2 mol%) 
to give the target product under 10 W blue LEDs in the air 
within 10 h under ambient conditions. During these pre-
liminary tests, 9-fluorenone showed reasonable activity 
in the preparation of quinazolinone (3aa) in the presence 
of 10 mol% p-TsOH (Table 1, entries 1–4). It was found 
that the efficiency of the reaction was reduced markedly in 
the absence of p-TsOH (Table 1, entry 5). Next, we exam-
ined different solvents. The use of other nonpolar and polar 
aprotic solvents such as toluene, THF, and DMF resulted in 
the formation of the desired product in ≤ 7% yields (Table 1, 
entries 6–8). According to previous research, the lifetime of 
the excited state of 9-fluorenone could be increased with an 
additional stabilizing effect of DMSO [61]. To our delight, 
a further improved yield (52%) was achieved in the mixture 
of CH3CN and DMSO (Table 1, entry 9). In addition, the 

results showed that the catalyst dosage and extending reac-
tion time were advantageous to improve the yield of 3aa 
(Table 1, entries 10–12). In addition, the effect of the dos-
age of 9-fluorenone on the yield of the target product 3aa 
and the methods of improving photocatalytic activity were 
further studied [31, 32, 62–66]. In summary, the reaction 
works best using 5 mol% 9-fluorenone and 10 mol% p-TsOH 
in the mixed solvent of CH3CN and DMSO for 16 h under 
air and blue LEDs at room temperature (Table 1, entry 11).

3.2 � Synthesis of Quinazolinone.

After optimization of the reaction conditions and finding 
the best photocatalyst, we become interested in explor-
ing the scope of the reactions and the results are listed 
in Table 2. Benzyl alcohols bearing one or two electron-
donating groups, such as methyl (2b, 2c, and 2d), iso-
propyl (2e), methoxy (2f and 2g), dimethoxy (2h), and 
methyl-enedioxy (2i) were converted to the corresponding 
products (3ab–3ai) in 87–89% yields. In the case of hal-
ide-substituted benzyl alcohol, the corresponding desired 
products (3aj–3am) were obtained in good to excellent 
yields. No cleavage of halogen atoms was observed when 
halide-substituted alcohols were utilized. In addition, 4- 
hydroxybenzyl alcohol (2n) and methyl 4-(hydroxymethyl)
benzoate (2o) were also suitable substrates, which gave 
the corresponding products 3an and 3ao in 89% and 85% 
yields, respectively. In this case, benzyl alcohols with a 
strong electron-withdrawing group, such as cyano (2p), 
trifluoromethyl (2q), and trifluoromethoxy(2r) were used 
as substrates, the desired products 3ap–3ar could be 
obtained in 84–88% yields. Also, heteroatom-containing 
and fused-ring primary alcohols (2s and 2t) reacted with 
1a to provide the corresponding products (3as and 3at) in 
80% and 87% yields. Finally, aliphatic alcohols such as 
cyclohexanemethanol (2u), 1-octanol (2v), and 1-butanol 
(2w) were tested successively, and the desired products 
3au–3aw were obtained in 32–45% yields. Unfortunately, 
when ethanol (2x) was chosen as the substrate, the target 
product was not obtained.

Encouraged by the above results, we then extended this 
method to different o-aminobenzamides (1). As can be 
seen in Table 3, the electronic properties of the substitu-
ents on the phenyl group of o-aminobenzamides did not 

Scheme 3   Gram-scale synthesis 
of 3aa 
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Table 3   Scope of the o-aminobenzamides

Reaction conditions: 1 (0.2 mmol), 2a (0.24 mmol), 9-fluorenone (5 mol%), p-TsOH (10 mol%) in the mixed solvent of CH3CN (1.8 mL) and 
DMSO (0.2 mL) with 10 W blue LEDs at room temperature for 16 h
a Isolated yield
b 1g (0.1 mmol), 2a (0.12 mmol), reaction for 24 h

Entry Substrate Product Yield (%)a M.P
[References]

1

    

84 238–238 ℃ [25]

2

    

82 278–279 ℃ [25]

3

    

85 279–287 ℃ [67]

4

    

81 285–286 ℃ [79]

5

    

85 112–114 ℃ [80]

6b

    

78 158–159 ℃ [81]
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have a significant impact on the reaction outcome, and the 
desired products (3ba–3ea) could be obtained in 81–85% 
yields. To our delight, the N-substituted o-aminobenza-
mides 1f and 1 g could also react with 2a to satisfactorily 
generate the desired products 3fa and 3ga in 85% and 78% 
yields, respectively.

Further, to test the utility of this photochemical strategy, 
an 8 mmol scale-up reaction was conducted under optimized 
reaction conditions (Scheme 3). To our delight, the reaction 
of o-aminobenzamide (1a) and benzyl alcohol (2a) was also 
performed well under blue LEDs, giving the product 3aa in 
62% yield (1.10 g). Therefore, the catalytic system works 
well for the synthesis of quinazolinones on a gram scale.

3.3 � Controlled Experiment

Through the UV–visible diffuse reflectance spectra (UV–vis 
DRS), the absorption profiles of the 9-fluorenone have 
wide absorption in the visible light region [82, 83] (Fig. 
S3, Supporting Information). Next, the recyclability of the 

optimized catalyst (9-fluorenone) for the model reaction was 
investigated (Fig. S4, Support Information). After each recy-
cling, the catalyst was recovered by column chromatography, 
and applied to the next cycle. The activity of the catalyst 
decreased a little during the five cycles.

To shed light on the mechanism of this visible-light-
induced reaction for the preparation of quinazolinones from 
primary alcohols and o-aminobenzamides, several control 
experiments were conducted (Scheme 4). When various 
amounts of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) 
as radical trapping the agent was added to the photocata-
lytic reaction under an identical reaction conditions and the 
yield of (3aa) significantly decreased upon increasing the 
amount of TEMPO, implying that the radical the pathway 
may be involved (Scheme 4a). The reaction of o-aminoben-
zamide 1a and benzyl alcohol 2a, in the absence of light or 
O2, was performed under optimal conditions, with no prod-
uct (3aa) was observed, suggesting the essentiality of light 
and O2 in such a transformation (Scheme 4b and c). Equally 
unsurprisingly, when 1a was treated with 2a without pho-
tocatalyst, nearly no product was observed for the standard 

Scheme 4   Controlled experi-
ments
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reaction (Scheme 4d). In addition, the reaction of intermedi-
ate 4 could proceed smoothly to furnish the desired product 
3aa in 97% yield under the optimized reaction conditions, 
which strongly demonstrated the formation of intermediate 
4 in the reaction. Moreover, we carried out a set of elec-
tron paramagnetic resonance (EPR) experiments. The ESR 
experiments verified that both superoxide radical anion and 
singlet oxygen radical were included in the reaction (Fig. 
S6, Support Information). These experimental results clearly 
revealed that the route was involved in the reaction.

3.4 � Reaction Mechanism

On the basis of the experimental results and literature refer-
ences [84, 85], a possible mechanism for the photocatalytic 
reaction of the condensation of o-aminobenzamide (1a) with 
benzyl alcohol (2a) to quinazolinone (3aa) is suggested in 
Scheme 5. Initially, 9-fluorenone* was produced by 9-flu-
orenone under visible light conditions. Benzyl alcohol was 
converted to activated benzyl alcohol with the action of 
9-fluorenone* via single electron transfer (SET) producing 
9-fluorenone*−. Accompanied by the oxidation of 9-flu-
orenone*− under O2 in the air, 9-fluorenone was generated 
by releasing singlet oxygen radical and superoxide radical 
anion. Next, the activated benzyl alcohol reacted with the 
superoxide radical anion to generate peroxide radical and 

further abstraction of one more hydrogen atom by the per-
oxide radical generated benzaldehyde (A) and H2O2. Then, 
H2O2 was reacted with DMSO to generate dimethyl sulfone 
and H2O. Intermediate 4 was formed by the condensation 
between o-aminobenzamide (1a) and benzaldehyde (A) 
through a stepwise acid-promoted cyclization in the pres-
ence of p-TsOH. Intermediate C was generated through 
single electron transfer (SET) from the reaction of 9-flu-
orenone* and 4. The superoxide radical anion from O2 was 
reacted with C to produce intermediate D and the peroxide 
radical. Finally, the peroxide radical abstracted one hydrogen 
atom from D to give the target product (3aa) by produc-
ing H2O2, which was transformed to dimethyl sulfone in the 
presence of DMSO.

4 � Conclusions

In conclusion, we have developed a novel and efficient 
method for the synthesis of quinazolinones from o-amin-
obenzamides and primary alcohols using 9-fluorenone as 
the cheap and high active photocatalyst under irradiation of 
visible light. Base on this approach, various multi-substi-
tuted quinazolinones were easily synthesized in good yields 
under mild reaction conditions. Moreover, it could achieve 
the gram-scale transformation in a satisfactory yield, which 
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might indicate that this strategy has more applications in the 
future. Further study on the synthesis of other heterocyclic 
structures by photoredox catalysis is currently underway in 
our laboratory.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10562-​022-​04266-y.
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