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Abstract
Copper pyrithione was used for the first time as the catalyst for oxidation secondary and primary benzyl alcohols to furnish 
corresponding carbonyl compounds in high yields of up to 98%. This type of reactions can be carried out in mild conditions, 
using molecular oxygen or air as the oxidant, and exhibiting a wide substrate scopes and selectivity.
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1  Introduction

Aromatic aldehydes and ketones are versatile synthetic 
intermediates for various C–C/O bond formation reactions, 
which are widely used in the preparation of natural products, 
biologically active molecules, and polymer materials [1]. 
Although several methodologies have been established for 

the synthesis of aromatic aldehydes and ketones, aerobic 
selective oxidation of primary or secondary alcohols to the 
corresponding carbonyl derivatives is one of the most effec-
tive protocols [2–6]. Traditional oxidation procedures for 
these transformations often involve the use of stoichiometric 
amount of oxidants such as Mn salts [7], Cr salts [8] and 
hypervalent iodines [9, 10], which usually cause the side 
reactions and over-oxidation of alcohols to carblic acids, as 
well as the formation of harmful gases and toxic heavy metal 
salts. Therefore, from the economic and environment view-
point, development of cleaner catalytic oxidation systems 
for this reaction is highly desirable. In comparison to these 
conventional inorganic oxidants, molecular oxygen or air is 
an ideal oxidant because of its non-toxic, natural abundance, 
low cost and eco-friendly benign, and it has been success-
fully employed for various oxygenated chemicals synthe-
sis.[11–14] However, due to the low reactivity and ther-
modynamically-stable of oxygen, the oxidation processes 
with oxygen or air generally have to rely on the presence of 
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transition-metal catalysts, such as Pd [15, 16], Ru [17–19], 
Au [20, 21] or other noble metals. In recent years, signifi-
cant efforts have been made to achieve economic and envi-
ronmental friendly reaction conditions, including the use of 
cheaper and earth-abundant metal (e.g. Cu [4, 22–29] or Ni 
[30, 31]), heterogeneous catalysts [32–34], or photocatalysts 
[35–37] and so on. Among the mentioned copper-based cata-
lysts, (ligand)Cu/TEMPO (2,2,6,6-tetramethylpiperidinyl-
1-l, and its derivatives)/base systems are proved to be effi-
cient and selective for the oxidation of alcohols to aldehydes 
or ketones utilization of O2 or air as the oxidant under mild 
conditions [23–29], [38–48], which have emerged as some 
of the most versatile bench scale methods for alcohol oxida-
tion. Nevertheless, there is still a need to further develop a 
generally efficient catalytic system for this class of reactions.

Copper pyrithione (bis(1-hydr-1H-pyridine-2-thionato-
O,S)copper, CuPT), as an inexpensive, low toxicity and sta-
ble bivalent copper complex (Scheme 1), is often used as 
antifungal and antimicrobial agents in aquatic applications 
[49]. Very recently, we found that CuPT could act as an 
effective catalyst and/or coupled partner for selective C-N/C-
S coupling reactions [50]. In order to further explore the 
scope of CuPT to other types of organic reactions, we herein 
report CuPT as a novel and high active catalyst for oxidation 
of secondary benzyl alcohols (without TEMPO) and primary 
benzyl alcohols (with TEMPO) to ketones and aldehydes 
under air or O2 atmosphere.

2 � Results and Discussion

Our preliminary research began with diphenylmethanol (1a) 
as the model substrate for the oxidative reaction catalyzed 
by CuPT with air as the sole oxidant in DMSO at 70 °C for 
30 min, and the results were illustrated in Table 1. Interest-
ingly, the oxidation efficiency was found to be obviously 
dependent on the nature of inorganic base (entries 1–6). The 
bases with strong basicity demonstrated higher yields than 
the weak ones, and KOH was proved to be the best one with 
97% yield (entry 6). No oxidated product was observed in 
the absence of base (entry 7). To our delight, decreasing the 
amount of CuPT and KOH to 5 mol% and 25 mol%, respec-
tively, the yield of diphenylmethanone (2a) still remained 
constant at 97%. However, further decreasing the loading of 
CuPT and KOH all resulted in lower yields (entries 8–12). 
In different solvents other than DMSO, catalytic activities of 
the reactions were decreased significantly (entries 13–15). 

Fortunately, when the reaction temperature was reduced to 
25 °C, a 97% yield was also obtained with only prolonging 
the reaction time to 40 min (entries 16–18). The reaction was 
investigated under Ar and no desired product was formed, 
indicating that air was the oxidant source (entry 19). The 
reaction yields were suppressed with other simple copper 
salts as the catalysts, such as CuSO4 and Cu(OAc)2 (entries 
20 and 21). Finally, we obtained an optimal reaction condi-
tions as follows: 5 mol% of CuPT and 25 mol% of KOH in 
DMSO under air at 25 °C.

With the optimized conditions in hand, the scope of sec-
ondary benzyl alcohols oxidation reactions was explored 
(Table 2). The results showed that the electronic effect of 
the substituents had slight effect on the reactivity. For exam-
ple, the aromatic ring bearing electron-rich groups, such as 
Me, OMe and NH2 (2a-2f and 2m, 88–98% yields), gave the 
corresponding oxidative products in relatively higher yields 
than the cases containing electron-deficient groups, such as 
F or Cl (2g-2l, 2n and 2o, 49–90% yields). Notably, steri-
cally 2-substituted substrate did not hamper the reaction. For 
example, excellent yields of 98% and 92% could be obtained 
when oxidation of 2-methyl or 2-amino diphenylmethanols 
(2d and 2e). Because of incomplete conversion, lower yields 
for 1-aryl-ethan-1-ols were observed (2p-2r). The results 
might be due to their less reactivity than diarylmethanols, 
and more catalyst amount was needed. Moreover, 1,2,3,4-tet-
rahydronaphthalen-1-ol (2s), 2,3-dihydro-1H-inden- 1-ol 
(2t) and 9H-fluoren-9-ol derivatives (2u-2w) were also 
well-tolerated and produced the desired oxidation products 
in 43–91% yield. Gram-scale reaction was carried out with 
10 mmol scale to generate the product in 98% yield (2a, 
1.78 g), indicating the practical application of the present 
method.

The oxidation time on the product concentration of 2b 
and 2j were tested under the optimal conditions, and the 
results were shown in Fig. 1. Most of the raw materials were 
converted to the corresponding oxidation products within 
1 h, and only a little improvement of the yield with further 
prolonging the reaction time to 4 h. These results suggested 
that the present oxidation proceeded rapidly under the estab-
lished conditions.

The success of the above oxidation of secondary benzyl 
alcohols prompted us to investigate the feasibility of primary 
benzyl alcohols under the same condition. Unfortunately, 
only 41% yield of 4-bromo benzaldehyde was obtained with 
a 53% of carblic acid byproduct from over-oxidation. There-
fore, we chose 2-naphthalenemethanol (3a) as a model sub-
strate to optimize the oxidation reaction for primary benzyl 
alcohol (Table 3). First, we attempted to examine the effect 
of bases under the standard conditions for secondary benzyl 
alcohols. As we can see, higher yields were observed for 
KOH, NaOH and Cs2CO3 than K2CO3 and K3PO4 (entries 
1–5). However, K2CO3 was the recommended base as its 

Scheme 1   The structure of 
CuPT
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weaker basicity and no over-oxidation 2-naphthoic acid 
byproduct formation. Slight improvement in the transfor-
mation of 3a into 4a was obtained by elevating the reaction 
temperature (entries 6–8). Replacing air with O2 balloon 
provided a significant increased yield of 4a (62%, entry 9). 
Considering the high catalytic efficiency of TEMPO in cop-
per-catalyzed alcohol oxidation reaction, the reaction was 
then carried out with the addition of 5 mol% of TEMPO as 
the promoter in combination with O2 balloon. As expected, 
the oxidation reaction proceeded to complete conversion of 
3a and gave a 95% yield of 4a, whereas the yield reduced 
to 55% under air (entries 10 and 11). Lowering results were 
observed by decreasing the amount of CuPT or TEMPO 
(entries 12–14). Prolonging the reaction time to 12 h, the 
reaction was also worked well to give a yield of 96% even 
dropped the temperature to 40 °C (entries 15 and 16). Other 
simple copper salts still gave depressed yields similar 

with oxidation of secondary alcohols (entries 17 and 18). 
Finally, in the oxidation reaction of 2-naphthalenemethanol 
to 2-naphthaldehyde, the highest yield of 96% was gained 
when 5 mol% of CuPT as well as 5 mol% of TEMPO were 
used as the catalysts in DMSO at 40 °C for 12 h under O2 
atmosphere (entry 16).

As indicated in Table 4, various type of primary benzyl 
alcohols bearing electron-donating, electron-withdrawing, or 
electron-neutral groups at the para-, meta-, or ortho- posi-
tions of the aromatic ring could smoothly be converted to 
the corresponding aldehydes in 65–98% yield (4a–4n). It 
is clear that the reactions of electron-donating substituent 
substrates are faster and more efficient than the electron-
withdrawing ones. The oxidation of cinnamaldehyde was 
occurred well in 94% yield and the conjugated C = C bond 
did not influence the activity under the optimized conditions, 
showing the high selectivity of the present catalytic system 

Table 1   Optimization study for oxidation of diphenylmethanol

Reaction conditions: 1a (0.5 mmol), catalyst, base, solvent (1 mL), air, 30 min
a NMR yield with 1,3,5-trimethbenzene as the standard
b 40 min
c Ar

Entry Cu catalyst (mol%) Base (mol%) Solvent Temp. (°C) Yield (%)a

1 CuPT (10) K3PO4 (100) DMSO 70 26
2 CuPT (10) NaHCO3 (100) DMSO 70 5
3 CuPT (10) K2CO3 (100) DMSO 70 8
4 CuPT (10) Cs2CO3 (100) DMSO 70 52
5 CuPT (10) NaOH (100) DMSO 70 96
6 CuPT (10) KOH (100) DMSO 70 97
7 CuPT (10) / DMSO 70 0
8 CuPT (5) KOH (100) DMSO 70 97
9 CuPT (2.5) KOH (100) DMSO 70 87
10 – KOH (100) DMSO 70 8
11 CuPT (5) KOH (25) DMSO 70 97
12 CuPT (5) KOH (15) DMSO 70 86
13 CuPT (5) KOH (25) DMF 70 73
14 CuPT (5) KOH (25) MeCN 70 85
15 CuPT (5) KOH (25) DCE 70 0
16 CuPT (5) KOH (25) DMSO 50 95
17 CuPT (5) KOH (25) DMSO 25 90
18 CuPT (5) KOH (25) DMSO 25 97b

19 CuPT (5) KOH (25) DMSO 25 0c

20 CuSO4 KOH (25) DMSO 25 29
21 Cu(OAc)2 KOH (25) DMSO 25 10
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(4o). Notably, ferrocenemethanol was also a suitable case for 
this reaction, affording the desired ferrocenecarboxaldehyde 
(4p) in 64% yield, which highlighted that this oxidation is 

a useful approach for producing metal containing aldehyde. 
Moreover, heteroaromatic alcohol reacted excellently under 
our conditions to furnish the aldehyde in good yield (4q). 

Table 2   CuPT-catalyzed aerobic oxidation of secondary benzyl alcohols to ketones

a

a

a

a

Reaction conditions: 1 (0.5 mmol), CuPT (5 mol%), KOH (25 mol%), DMSO (1 mL), 25 °C, air; isolated yield
a CuPT (10 mol%).
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We are pleased to find that treatment of double-oxidation of 
1,4-benzenedimethanol proceeded without any difficulty to 
give 4r in 80% yield. Compared to the absence of TEMPO, 
higher yield for 9H-fluoren-9-ol was delivered with the addi-
tion of TEMPO (2u, 85% vs 77%). In addition to these, the 

reaction could also be scaled to 10 mmol without loss of 
efficiency (91% yield).

We further attempted to investigate the scope of this reac-
tion to some drug-like molecules 5 and 6a-6c. However, 
all these substrates failed under the two optimized reaction 
conditions (Scheme 2).

Based on related reports [23, 51–54], a proposed mecha-
nism for CuPT-catalyzed oxidation reaction was shown in 
Scheme 3. First, one ligand from the initial CuPT was cleaved 
and formed OH-copper complex A in alkaline media. Then, 
the intermolecular elimination was occurred between OH 
ligand and alcohol to generate copper-alkoxide complex B 
with a loss of one water molecule. Under the TEMPO-free 
conditions, carbonyl-copper(I) π complex C was formed via 
H-atom abstraction and one-electron transfer reaction of B. 
Oxidation reaction of C with O2 produced ketones and D, 
which was easily reacted with water and regenerate A. In the 
presence of TEMPO, it preferred to coordinate with B to form 
E, followed by β-hydrogen transfer to TEMPO led to complex 
F. Intramolecular one-electron transfer provided aldehyde, 

Fig. 1   Time-concentration profile of the oxidation products of 
phenyl(p-tolyl)methanol (1, 2b) and (3-chlorophenyl)(phenyl)metha-
nol (2, 2j)

Table 3   Optimization study for oxidation of 2-naphthalenemethanol

Reaction conditions: 3a (0.5 mmol), Cu catalyst, base, DMSO (1 mL), air
a NMR yield with 1,3,5-trimethbenzene as the standard
b O2 balloon

Entry Cu catalyst (mol%) TEMPO mol%) Base (mol%) T (℃) T (h) Yield (%)a

1 CuPT (5) 0 KOH (25) 25 6 51
2 CuPT (5) 0 NaOH (25) 25 6 33
3 CuPT(5) 0 Cs2CO3 (25) 25 6 38
4 CuPT (5) 0 K2CO3 (25) 25 6 24
5 CuPT (5) 0 K3PO4 (25) 25 6 16
6 CuPT (5) 0 K2CO3 (25) 40 6 26
7 CuPT (5) 0 K2CO3 (25) 60 6 32
8 CuPT (5) 0 K2CO3 (25) 80 6 40
9 CuPT (5) 0 K2CO3 (25) 60 6 62b

10 CuPT (5) 5 K2CO3 (25) 60 6 95b

11 CuPT (5) 5 K2CO3 (25) 60 6 55
12 CuPT (2.5) 5 K2CO3 (25) 60 6 87b

13 CuPT (0) 5 K2CO3 (25) 60 6 12b

14 CuPT (2.5) 2.5 K2CO3 (25) 60 6 64b

15 CuPT (5) 5 K2CO3 (25) 40 6 87b

16 CuPT (5) 5 K2CO3 (25) 40 12 96b

17 CuSO4 (5) 5 K2CO3 (25) 40 12 57b

18 Cu(OAc)2 (5) 5 K2CO3 (25) 40 12 78b
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TEMPOH and Cu(I) species G. Finally, A and TEMPO were 
all regenerated by the aerobic oxidation with O2.

3 � Conclusion

In summary, we have for the first time established a very 
simple and efficient protocol for CuPT-catalyzed oxidation 

Table 4   CuPT-catalyzed aerobic oxidation of primary benzyl alcohols to aryl aldehyde.

 
a

a

Reaction conditions: 3a (0.5 mmol), CuPT (5 mol%), TEMPO (5 mol%), K2CO3 (25 mol%), DMSO (1 mL), O2 balloon, isolated yield
a Volatile substrates, NMR yield with 1,3,5-trimethbenzene as the standard

Scheme 2   Failed examples of some drug-like molecules



2671Copper Pyrithione (CuPT)‑Catalyzed Oxidation of Secondary and Primary Benzyl Alcohols with…

1 3

of secondary and primary benzyl alcohols with air or O2 as 
the oxidant under mild conditions. In the process, ketones 
were obtained in good to excellent yields in the presence 
of CuPT-KOH catalytic system, while CuPT-TEMPO-
K2CO3 was more suitable for selective oxidation of pri-
mary benzyl alcohols to aldehydes. The low-cost, broad 
substrate tolerance with green oxidant will make it attrac-
tive both in lab research and industrial applications.

4 � Experimental

4.1 � Materials and Instruments

Unless otherwise stated, CuPT and other reagents were 
purchased from Adamas and Energy-Chemical, and used 
without further purification. Column chromatography and 
thin-layer chromatography were performed with silica gel 
(200–300 mesh) and GF254 plates purchased from Qingdao 
Haiyang Chemical Co. Ltd. 1H NMR and 13C NMR were 
recorded on a Bruker Avance III HD 400 instrument using 
TMS as the internal standard and DMSO-d6 or CDCl3 as 
the solvent.

4.2 � General Procedure for CuPT‑Catalyzed 
Oxidation of Secondary Benzyl Alcohols

To a 10  mL reaction tube was added secondary alco-
hol (0.5  mmol), CuPT (0.025  mmol, 5  mol%), KOH 
(0.125 mmol, 25 mol%) and DMSO (1 mL). The reaction 
tube was stirred at 25 °C in an open air for the mentioned 
time in Table 2. The reaction solution was diluted with 
10 mL saturated brine, and then extracted with ethyl acetate 
(3 × 10 mL). Combined the organic phases, washed with 

saturated brine for twice, dried over anhydrous Na2SO4, and 
concentrated in vacuo. The residue was purified by silica gel 
column chromatography (petroleum ether-ethyl acetate) to 
afford the target compound 2a-2w   in Table 2.

4.3 � General Procedure for CuPT‑ Catalyzed 
Oxidation of Primary Benzyl Alcohols

To a 10  mL reaction tube was added benzyl alco-
hol (0.5  mmol), CuPT (0.025  mmol, 5  mol%), K2CO3 
(0.125 mmol, 25 mol%), TEMPO (0.025 mmol, 5 mol%) 
and DMSO (1 mL). The reaction tube was stirred at 40 °C 
under O2 balloon for the mentioned time in Table 4. The 
reaction solution was diluted with 10 mL saturated brine, 
and then extracted with ethyl acetate (3 × 10 mL). Combine 
the organic phases, washed with saturated brine for twice, 
dried over anhydrous Na2SO4, and concentrated in vacuo. 
The residue was purified by silica gel column chromatogra-
phy (petroleum ether-ethyl acetate) to afford the target com-
pound 4a-4r and 2u in Table 4.

4.4 � General Procedure for Time‑Concentration 
Experiments

Five parallel experiments were conducted for 2b and 2j 
under CuPT-KOH catalytic system condition, respectively. 
The reactions were stopped after 20 min, 40 min, 1 h, 2 h 
and 4 h, and then the reactions mixture were purified to 
afford the target products in corresponding yields. The time-
concentration curves were next drawn as shown in Fig. 1.

Scheme 3   Possible reaction mechanism
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